首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pulsatile drug release control using hydrogels.   总被引:15,自引:0,他引:15  
Current research in the field of drug delivery devices, by which pulsed and/or pulsatile release is achieved, has been intensified. In this article several types of drug delivery systems using hydrogels are discussed that showed pulsed and/or pulsatile drug delivery characteristics. As is frequently found in the living body, many vital functions are regulated by pulsed or transient release of bioactive substances at a specific site and time. Thus it is important to develop new drug delivery devices to achieve pulsed delivery of a certain amount of drugs in order to mimic the function of the living systems, while minimizing undesired side effects. Special attention has been given to the thermally responsive poly(N-isopropylacrylamide) and its derivative hydrogels. Thermal stimuli-regulated pulsed drug release is established through the design of drug delivery devices, hydrogels, and micelles. Development of modified alginate gel beads with pulsed drug delivery characteristic is also described in this article.  相似文献   

2.
Thermo-sensitive polymers are appealing materials for several therapeutic applications, such as in regenerative medicine and in situ drug release. These macromolecules are characterized by the ability to undergo swelling/deswelling processes during temperature change-induced phase transitions. Swelling and shrinking temperatures depend on the specific physicochemical properties, namely salt concentration or pH, of the thermo-sensitive gels as well as the incubation environment. An understanding of the mechanisms underlying the gel-swelling equilibrium and kinetics is necessary for the selection of an appropriate gel in relation to the specific pharmaceutical application. Thermo-sensitive polymers used in medicine include polyacrylamides, polyvinyls, polyethers, polysaccharides, and polyphosphazenes. A few of them have been successfully used as 3-dimentional supports for cell cultivation, allowing for the production of scaffolds with excellent biologic properties for application in regenerative medicine. Stem cells that can undergo specific differentiation under the appropriate stimulation have also been cultivated. The ability of drug/polymer solutions to turn into gels at physiologic temperature has been exploited for local drug delivery. The prolonged in situ presence and slow drug release enhances the therapeutic performance of antibiotics used in urogenital pathologies, anti-inflammatory agents, and anticancer drugs. The reduced toxicity as well as lower fluctuations in peak-to-trough drug concentrations make these systems superior to traditional gels. Thermo-sensitive hydrogels have also been demonstrated to be interesting formulations for the delivery of biotechnological drugs. Proteins and oligonucleotides can be loaded under mild conditions, stabilized, and released at a controlled rate. Finally, thermo-reversible polymers have been investigated for protein conjugation to enhance the physicochemical, biologic, immunologic, and pharmacokinetic properties of biotechnological products.  相似文献   

3.
Studies on the effect of polymers on physicochemical properties hydrogels for topical use. Rheological parameters were tested and pharmaceutical availability of hydrocortisone from gels. Formulation of hydrogels with 1% hydrocortisone content produced on the basis of methylcellulose, carboxymethlcellulose sodium salt and Carbopol 934 P.  相似文献   

4.
Biomolecule-sensitive hydrogels.   总被引:8,自引:0,他引:8  
Stimuli-sensitive hydrogels have attracted considerable attention as intelligent materials in the biochemical and biomedical fields, since they can sense environmental changes and induce structural changes by themselves. In particular, biomolecule-sensitive hydrogels that undergo swelling changes in response to specific biomolecules have become increasingly important because of their potential applications in the development of biomaterials and drug delivery systems. This article provides an overview of the important and historical research regarding the synthesis and applications of glucose-sensitive hydrogels which exhibit swelling changes in response to glucose concentration. Enzymatically degradable hydrogels and antigen-sensitive hydrogels are also described in detail as protein-sensitive hydrogels that can respond to larger biomolecules. The synthetic strategies of other biomolecule-sensitive hydrogels are summarized on the basis of molecular imprinting and specific interaction. The biomolecule-sensitive hydrogels reviewed in this paper are expected to contribute significantly to the exploration and development of newer generations of intelligent biomaterials and self-regulated drug delivery systems.  相似文献   

5.
Introduction: As an essential complement to chemically crosslinked hydrogels, drug delivery systems based on physical hydrogels with self-assembled nanostructures are gaining increasing attention, owing to potential advantages of reduced toxicity, convenience of in situ gel formation, stimuli-responsiveness, reversible sol-gel transition, and improved drug loading and delivery profiles.

Areas covered: In this review, drug delivery systems based on physical hydrogels are discussed according to their self-assembled nanostructures, such as micelles, layer-by-layer constructs, supramolecular inclusion complexes, polyelectrolyte complexes and crystalline structures. The driving forces of the self-assembly include hydrophobic interaction, hydrogen bonding, electrostatic interaction, π–π stacking and weak van der Waals forces. Stimuli-responsive properties of physical hydrogels, including thermo- and pH-sensitivity, are considered with particular focus on self-assembled nanostructures.

Expert opinion: Fabricating self-assembled nanostructures in drug delivery hydrogels, via physical interactions between polymer–polymer and polymer–drug, requires accurately controlled macro- or small molecular architecture and a comprehensive knowledge of the physicochemical properties of the therapeutics. A variety of nanostructures within hydrogels, with which payloads may interact, provide useful means to stabilize the drug form and control its release kinetics.  相似文献   

6.
INTRODUCTION: As an essential complement to chemically crosslinked hydrogels, drug delivery systems based on physical hydrogels with self-assembled nanostructures are gaining increasing attention, owing to potential advantages of reduced toxicity, convenience of in situ gel formation, stimuli-responsiveness, reversible sol-gel transition, and improved drug loading and delivery profiles. AREAS COVERED: In this review, drug delivery systems based on physical hydrogels are discussed according to their self-assembled nanostructures, such as micelles, layer-by-layer constructs, supramolecular inclusion complexes, polyelectrolyte complexes and crystalline structures. The driving forces of the self-assembly include hydrophobic interaction, hydrogen bonding, electrostatic interaction, π-π stacking and weak van der Waals forces. Stimuli-responsive properties of physical hydrogels, including thermo- and pH-sensitivity, are considered with particular focus on self-assembled nanostructures. EXPERT OPINION: Fabricating self-assembled nanostructures in drug delivery hydrogels, via physical interactions between polymer-polymer and polymer-drug, requires accurately controlled macro- or small molecular architecture and a comprehensive knowledge of the physicochemical properties of the therapeutics. A variety of nanostructures within hydrogels, with which payloads may interact, provide useful means to stabilize the drug form and control its release kinetics.  相似文献   

7.
Hydrogels for the buccal application of the anesthetic drug lidocaine hydrochloride (LDC) were prepared using chitosan glutamate (CHG), a soluble salt of chitosan, or a binary mixture of CHG and glycerin, at different weight ratios. The in vitro drug release was studied at the pH value of saliva to assess the effect of the different formulations on drug delivery. The anesthetic activity of mucoadhesive LDC-CHG hydrogels was assessed in vivo after application on the buccal mucosa, compared to commercial semisolid formulations containing the same drug. LDC-loaded hydrogels can be proposed for the symptom relief of aphthosis or other painful mouth diseases.  相似文献   

8.
INTRODUCTION: Controlled drug delivery has been widely applied in areas such as cancer therapy and tissue regeneration. Thermosensitive hydrogel-based drug delivery systems have increasingly attracted the attention of the drug delivery community, as the drugs can be readily encapsulated and released by the hydrogels. AREAS COVERED: Thermosensitive hydrogels that can serve as drug carriers are discussed in this paper. Strategies used to control hydrogel properties, in order to tailor drug release kinetics, are also reviewed. This paper also introduces applications of the thermosensitive hydrogel-based drug delivery systems in cancer therapy and tissue regeneration. EXPERT OPINION: When designing a drug delivery system using thermosensitive hydrogels, one needs to consider what type of thermosensitive hydrogel needs to be used, and how to manipulate its properties to meet the desired drug release kinetics. For material selection, both naturally derived and synthetic thermosensitive polymers can be used. Various methods can be used to tailor thermosensitive hydrogel properties in order to achieve the desired drug release profile.  相似文献   

9.
10.
Hydrogels containing different amounts of amphotensides--carboxybetaine and amineoxide--have been obtained. It has been stated that obtained preparations in "in vitro" tests showed higher activity than commercially available ones, and their rheological properties--which can be modified in large range--permit to apply them topically with ease.  相似文献   

11.
Introduction: Controlled drug delivery has been widely applied in areas such as cancer therapy and tissue regeneration. Thermosensitive hydrogel-based drug delivery systems have increasingly attracted the attention of the drug delivery community, as the drugs can be readily encapsulated and released by the hydrogels.

Areas covered: Thermosensitive hydrogels that can serve as drug carriers are discussed in this paper. Strategies used to control hydrogel properties, in order to tailor drug release kinetics, are also reviewed. This paper also introduces applications of the thermosensitive hydrogel-based drug delivery systems in cancer therapy and tissue regeneration.

Expert opinion: When designing a drug delivery system using thermosensitive hydrogels, one needs to consider what type of thermosensitive hydrogel needs to be used, and how to manipulate its properties to meet the desired drug release kinetics. For material selection, both naturally derived and synthetic thermosensitive polymers can be used. Various methods can be used to tailor thermosensitive hydrogel properties in order to achieve the desired drug release profile.  相似文献   

12.
Molecular imprinting within hydrogels.   总被引:15,自引:0,他引:15  
Hydrogels have been used primarily in the pharmaceutical field as carriers for delivery of various drugs, peptides and proteins. These systems have included stimuli-responsive gels that exhibit reversible swelling behavior and hence can show modulated release in response to external stimuli such as pH, temperature, ionic strength, electric field, or specific analyte concentration gradients. The focus of this article is to review molecular imprinting within hydrogels and discuss recent efforts on analyte-responsive intelligent gels, specifically suggesting the possibility of utilizing molecular imprinting strategies to impart analyte specificity and responsiveness within these systems. Molecular imprinting is an emerging field that produces precise chemical architecture that can bind analytes and differentiate between similar molecules with enantiomeric resolution. On the forefront of imprinting gel systems are intelligent, stimuli-sensitive imprinted gels that modify their swelling behavior and in turn modulate their analyte binding abilities. We discuss the challenges creating an imprinting effect in hydrogels and the possibilities of using molecularly imprinted mechanisms within controlled release gels.  相似文献   

13.
14.
Superporous hydrogels (SPHs) were originally developed as a novel drug delivery system to retain drugs in the gastric medium. These systems should instantly swell in the stomach and maintain their integrity in the harsh stomach environment, while releasing the pharmaceutical active ingredient. For years, the synthetic features and properties of these SPH materials have been modified and improved to meet the requirements for gastric retention applications. Furthermore, an instant swelling hydrogel has also shown potential application for peroral intestinal peptide and protein absorption. This review discusses the formulation, characterization, properties and applications of these polymers.  相似文献   

15.
Environmentally sensitive hydrogels have enormous potential in various applications. Some environmental variables, such as low pH and elevated temperatures, are found in the body. For this reason, either pH-sensitive and/or temperature-sensitive hydrogels can be used for site-specific controlled drug delivery. Hydrogels that are responsive to specific molecules, such as glucose or antigens, can be used as biosensors as well as drug delivery systems. Light-sensitive, pressure-responsive and electro-sensitive hydrogels also have the potential to be used in drug delivery and bioseparation. While the concepts of these environment-sensitive hydrogels are sound, the practical applications require significant improvements in the hydrogel properties. The most significant weakness of all these external stimuli-sensitive hydrogels is that their response time is too slow. Thus, fast-acting hydrogels are necessary, and the easiest way of achieving that goal is to make thinner and smaller hydrogels. This usually makes the hydrogel systems too fragile and they do not have mechanical strength necessary in many applications. Environmentally sensitive hydrogels for drug delivery applications also require biocompatibility. Synthesis of new polymers and crosslinkers with more biocompatibility and better biodegradability would be essential for successful applications. Development of environmentally sensitive hydrogels with such properties is a formidable challenge. If the achievements of the past can be extrapolated into the future, however, it is highly likely that responsive hydrogels with a wide array of desirable properties can be made.  相似文献   

16.
Photoresponsive hydrogels for biomedical applications   总被引:2,自引:0,他引:2  
Hydrogels are soft materials composed of a three-dimensional network which contain a high percentage of water similar to body tissue and are therefore regarded as a biocompatible material. Hydrogels have various potential applications in the biomedical field such as drug delivery and as scaffold for tissue engineering. Control over the physical properties of a hydrogel by an external stimulus is highly desirable and is therefore actively studied. Light is a particularly interesting stimulus to manipulate the properties of a hydrogel as it is a remote stimulus that can be controlled spatially and temporally with great ease and convenience. Therefore in recent years photoresponsive hydrogels have been investigated as an emerging biomaterial. Here we will review recent developments and discuss these new materials, and their applications in the biomedical field.  相似文献   

17.
Thermosensitive sol-gel reversible hydrogels.   总被引:26,自引:0,他引:26  
Aqueous polymer solutions that are transformed into gels by changes in environmental conditions, such as temperature and pH, thus resulting in in situ hydrogel formation, have recently attracted the attention of many investigators for scientific interest and for practical biomedical or pharmaceutical applications. When the hydrogel is formed under physiological conditions and maintains its integrity for a desired period of time, the process may provide various advantages over conventional hydrogels. Because of the simplicity of pharmaceutical formulation by solution mixing, biocompatibility with biological systems, and convenient administration, the pharmaceutical and biomedical uses of the water-based sol-gel transition include solubilization of low-molecular-weight hydrophobic drugs, controlled release, labile biomacromolecule delivery, such as proteins and genes, cell immobilization, and tissue engineering. When the formed gel is proven to be biocompatible and biodegradable, producing non-toxic degradation products, it will provide further benefits for in vivo applications where degradation is desired. It is timely to summarize the polymeric systems that undergo sol-gel transitions, particularly due to temperature, with emphasis on the underlying transition mechanisms and potential delivery aspects. This review stresses the polymeric systems of natural or modified natural polymers, N-isopropylacrylamide copolymers, poly(ethylene oxide)/poly(propylene oxide) block copolymers, and poly(ethylene glycol)/poly(D,L-lactide-co-glycolide) block copolymers.  相似文献   

18.
19.
The influence of the proportion of acrylamidomethyl-gamma-cyclodextrin (gamma-CD-NMA) on loading and release of the hydrophobic triamcinolone acetonide (TA) and the hydrophilic propranolol (PR) by acrylic acid hydrogels was evaluated. gamma-CD-NMA was synthesized by condensation of gamma-cyclodextrin (gamma-CD) with N-(hydroxymethyl) acrylamide. Hydrogels were prepared with gamma-CD-NMA and sodium acrylate (3 M or 4 M), using N,N'-methylen(bisacrylamide) (BIS) as cross-linker, by free radical polymerization into glass moulds of 2 mm wide and were cut as discs (10 mm diameter). gamma-CD-NMA did not modify the pH-dependent swelling of the hydrogels, but significantly increased the swelling degree in the 40:60 ethanol:water, medium in which TA can be dissolved. Hydrogels prepared with gamma-CD-NMA above 5% (w/w of total monomers) showed a remarkably higher capacity to load TA, e.g., 33 mg/g dry hydrogel versus 0.6 mg/g dry hydrogel without gamma-CD-NMA. This is explained by the formation of 1:1 inclusion complexes of TA with gamma-CD mers that overcomes the lack of interactions with the acrylic groups of the network. The release of TA in water, 0.1 N HCl, or pH 6.8 phosphate buffer was sustained for at least 24 h, whatever the pH and the composition of the medium used. In contrast, loading of PR from the water solutions was greater for hydrogels prepared with 3 M acrylate than with 4 M acrylate, irrespective to their content in gamma-CD-NMA, and in less than 2 h ca. 80% PR was released. The lower affinity of PR for the gamma-CD cavities, compared to the strong intensity of the electrostatic interactions with the acrylic acid groups, explains why the incorporation of gamma-CD-NMA did not increased the loading and control release capacity of the hydrogels of this hydrophilic drug. In summary, the copolymerisation of CD with acrylic monomers can provide highly hydrophilic pH-sensitive networks which load large amounts of hydrophobic drugs and release them in a sustained way.  相似文献   

20.
Hydrogen-bonded interpolymer complexes can be used for development of novel dosage forms. In this study, two types of crosslinked hydrogels, copolymer networks of N-vinyl pyrrolidone and acrylamide (PVP-co-PAM) and interpenetrating polymer networks (IPN) composed of crosslinked PVP-co-PAM and poly(vinyl alcohol) (PVA), were synthesized at three different degrees of crosslinking. The side chain groups in such polymers can form non-ionic complexes through H-bonding, resulting in additional "crosslinks" in the hydrogels. Both kinds of hydrogels have significantly larger swelling sensitivities than the networks formed with ionizable side chains. In the IPNs, introduction of the PVA chains into the PVP-co-PAM networks raises the permeability, indicating more open pores. The permeability decreases with the increasing degree of crosslinking of the copolymer. For probing the drug binding in the hydrogels, Fourier transform infrared spectra (FTIR) difference spectroscopy indicated the presence of significant H-bonding interactions between 5-fluorouracil (5-FU) and the side chains of the polymers. Such interactions are larger in the PVP-co-PAM copolymers than in the IPN hydrogels, thereby causing an additional source of the slower release kinetics in the copolymer hydrogels as revealed by the Peppas model, albeit both types of the networks followed a non-Fickian transport mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号