首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the development of peptide-based cancer immunotherapies, we aimed to identify specific HLA-A*0201-restricted CTL epitopes in hepatocellular carcinoma (HCC) associated antigen HCA587, which has been identified as a member of the cancer/testis (CT) antigens highly expressed in HCC. We first combined the use of an HLA-A*0201/peptide binding algorithm and T2 binding assays with the induction of specific CD8(+) T cell lines from normal donors by in vitro priming with high-affinity peptides, then IFN-gamma release and cytotoxicity assays were employed to identify the specific HLA-A*0201 CD8(+) T cell epitope using peptide-loaded T2 cells or the HCA587 protein(+) HCC cell line HepG2. In the six candidate synthesized peptides, two peptides showed higher binding ability in T2 binding assays. No. 2 peptide, encompassing amino acid residues FLAKLNNTV (HCA587(317-325)), was able to activate a HCA587-specific CD8(+) T-cell response in human lymphocyte cultures from two normal donors and two HCC patients, and these HCA587-specific CD8(+) T cells recognized peptide-pulsed T2 cells as well as the HCA587 protein(+) HCC cell line HepG2 in IFN-gamma release and cytotoxicity assays. The results indicate that no. 2 peptide is a new HLA-A*0201-restricted CTL epitope capable of inducing HCA587-specific CTLs. Our data suggest that identification of this new HCA587/HLA-A*0201 peptide FLAKLNNTV may facilitate the design of peptide-based immunotherapies for the treatment of HCA587-bearing HCC patients.  相似文献   

2.
Heat shock protein (hsp) 65 is a major T cell antigen of Mycobacterium leprae. The hsp 65 of M. leprae is nearly identical in M. bovis/M. tuberculosis (greater than 95% protein sequence homology) and surprisingly similar in man (65% protein sequence homology). Recently, we had provided evidence in a murine model that CD8+ T cells recognize and lyse Schwann cells presenting M. leprae antigen in the context of major histocompatibility (MHC) class I gene products. Because murine Schwann cells are class I negative, antigen presentation requires prior stimulation with interferon-gamma (IFN-gamma). CD8+ T cells were activated against tryptic fragments of mycobacterial hsp 65. These T cells recognized epitopes of hsp 65 which had been generated through the cytoplasmic class I processing pathway. They were also capable of lysing Schwann cells which had been activated by IFN-gamma and not primed with nominal hsp 65 peptides. In contrast, T cells activated against tryptic ova peptides only lysed Schwann cells which had been both stimulated with IFN-gamma and primed with ova peptides. Evidence is presented that class I (H-2D) restricted, CD8+ alpha/beta T lymphocytes with specificity for the mycobacterial hsp 65 recognize IFN-gamma-stimulated Schwann cells probably because they are specific for a(n) epitope(s) shared by the bacterial hsp and a host cognate. Activation of autoreactive T cells with specificity to shared epitopes could contribute to nerve damage in tuberculoid leprosy which is characterized by low to absent M. leprae in Schwann cells.  相似文献   

3.
Infection with the common pathogen Chlamydophila pneumoniae (Cpn, previously Chlamydia pneumoniae) has a high prevalence in patients suffering from arteriosclerosis and may trigger or contribute to heart disease. In mice, CD8-positive T cells are critical for the eradication of the infection and the development of immune memory against Cpn. Although several H2-class I epitopes have been described, no HLA-class I-associated peptides from Cpn are known. In order to define HLA-A*0201 epitopes from Cpn, we focused on the bacterial heat shock proteins (HSP) 60 and 70 which are known to be recognized by the immune system. Using epitope prediction, peptide binding studies and peptide-specific CTLs from HLA-A2 transgenic mice, we could define a potential HSP-70-derived epitope. The study of PBMCs from Cpn-infected individuals using fluorescent MHC tetramers revealed that some patients have CD8(+) T cells capable of recognizing the Cpn HSP-70 HLA-A*0201 epitope. Our studies pave the way to the immunomonitoring of the anti-Cpn CTL immune response present in patients suffering from different diseases potentially linked to Cpn or anti-Cpn immunity.  相似文献   

4.
5.
Major histocompatibility complex (MHC) class I tetramer technology has become the central technique for analyzing antigen-specific CD8^+ T cell responses and it has been widely used to explore the differentiation and formation of memory CD8^+ T cells. Previously, a simplified and efficient procedure for preparing high quality HLA-A*0201 tetramers has been established in our lab and the tetramers loaded with HCMV peptide pp6549s.50a has been successfully applied to investigate HCMV-specific CD8^+ T cells in Chinese populations. Using similar procedure we reported here the construction of HLA-A*0201 tetramer loaded with another dominant epitope derived from immediate early (IE)-1 316.324 (VLEETSVML, VLE) of HCMV (A2-VLE) and characterization of this tetramer. After A2-VLE monomer was prepared and purified, its tetramer was then formed at a yield of 83%. The optimized amount of A2-VLE tetramer for staining 100 μl whole blood was 0.5 μg with incubation at 4℃ for 1 h. Furthermore, the dissociation constant of the tetramer binding to the specific CD8^+ T cells of one HLA-A2^+ donor was estimated to be 32.7 nmol/L, which is markedly higher than that of MHC monomer. The construction of A2-VLE tetramer provides an alternative choice for investigating HCMV-specific CD8^+ T cell responses and will deepen our understanding of the differentiation and formation of HCMV-specific memory CD8^+ T cells. Cellular & Molecular Immunology.  相似文献   

6.
The adenylate cyclase (CyaA) of Bordetella pertussis is able to deliver CD8(+) T cell epitopes into the cytosol of CD11b(+) dendritic cells (DC) following its specific interaction with the alpha(M)beta(2) integrin (CD11b/CD18). This delivery results in intracellular processing and presentation by MHC class I molecules of the CD8(+) T cell epitopes inserted into CyaA. Indeed, we previously showed that CyaA toxins carrying a single cytotoxic T lymphocyte (CTL) epitope can induce efficient protective and therapeutic antitumor immunity in mice. With a view to elaborating cancer immunotherapy in humans using CyaA, we constructed two recombinant CyaA carrying HLA*0201-restricted melanoma epitopes. Here we show that these recombinant CyaA induce strong anti-melanoma CTL responses in HLA*0201 transgenic mice, even after a single i.v. immunization without adjuvant. These responses are long lasting, since they were also detected 5 months after the last injection. Finally, human DC treated with the recombinant CyaA were shown to process and present efficiently the melanoma epitopes to human CTL clones. Altogether, our results demonstrate that tumoral epitopes inserted into CyaA are efficiently processed and presented in association with human MHC molecules. These observations suggest that CyaA is capable of activating antitumoral CTL in humans and highlight the potential of CyaA for use in cancer immunotherapy.  相似文献   

7.
8.
Challenged by scattered understanding of protective immunity to Mycobacterium tuberculosis (MTB), we have mapped peptide epitopes to human leukocyte antigen (HLA)-A*0101, A*0201, A*1101, A*2402, B*0702, B*0801 and B*1501 of the secreted mycobacterial antigen Ag85B, a vaccine candidate that may be associated with immune protection. Affinity (ED(50)) and half-life (t(1/2), off-rate) analysis for individual peptide species on HLA-A and HLA-B molecules revealed binding ranges between 10(-3) and 10(-7) M. After selection of the best matches, major histocompatibility complex class I/peptide tetramer complexes were constructed to measure the CD8+ T-cell responses directly ex vivo in peripheral blood mononuclear cells (PBMC) derived from 57 patients with acute pulmonary tuberculosis. Three patterns of (allele-) specific CD8+ recognition were identified: (a). Focus on one dominant epitope with additional recognition of several subdominant T-cell epitopes (HLA-A*0301, A*2402, B*0801 and B*1501); (b). Co-dominant recognition of two distinct groups of peptides presented by HLA-B*0702; and (c). Diverse and broad recognition of peptides presented by HLA-A*0201. Peptides that bound with slow off-rates to class I alleles, that is HLA-A*0201, were associated with low frequency of CD8+ T cells in PBMCs from patients with tuberculosis. HLA-B alleles showed fast off-rates in peptide binding and restricted high numbers (up to 6%) of antigen-specific CD8+ T cells in patients with pulmonary tuberculosis.  相似文献   

9.
The protective efficacy of the influenza matrix protein epitope 58-66 (called M1), recognized in the context of human HLA-A2 molecules, was evaluated in a HLA-A2/K(b) transgenic mouse model of lethal influenza infection. Repeated subcutaneous immunizations with M1 increased the percentage of survival. This effect was mediated by T cells since protection was abolished following in vivo depletion of all T lymphocytes, CD8(+), or CD4(+) T cells. The survival correlated with the detection of memory CD8(+) splenocytes able to proliferate in vitro upon stimulation with M1 and to bind M1-loaded HLA-A2 dimers, as well as with M1-specific T cells in the lungs, which were directly cytotoxic to influenza-infected cells following influenza challenge. These results demonstrated for the first time that HLA-A2-restricted cytotoxic T cells specific for the major immunodominant influenza matrix epitope are protective against the infection. They encourage further in vivo evaluation of T cell epitopes recognized in the context of human MHC molecules.  相似文献   

10.
CD8+ T cells are thought to play an important role in protective immunity against tuberculosis. We report the identification of three peptides derived from Rv1818c, Rv3812 and Rv3018c proteins of Mycobacterium tuberculosis that bound to HLA-A*0201 molecules and their ability to induce in vitro T-cell response in peripheral blood lymphocytes from HLA-A*0201-positive healthy individuals (PPD+) and patients with TB. The peptide-specific cytotoxic T lymphocytes (CTL) generated were capable of recognizing peptide pulsed targets. Three 9-mer peptides bound with high affinity to HLA-A*0201 and displayed low dissociation rates of the bound peptide from HLA. Epitope-specific recognition was demonstrated by the release of perforin and γ-interferon. Overall, our results demonstrate the presence of HLA class I-restricted CD8+ CTL against proteins from PE and PPE proteins of M. tuberculosis and identify epitopes that are strongly recognized by HLA-A*0201-restricted CD8+ T cells in humans. These epitopes thus represent potential subunit components for the design of vaccines against tuberculosis.  相似文献   

11.
Major histocompatibility complex class I-restricted CD8(+) cytotoxic T lymphocytes (CTL) are implicated in protective Th1 immunity to Mycobacterium tuberculosis infection. We report the identification of three novel HLA-A*0201-restricted CTL epitopes within mycobacterial superoxide dismutase (SodA), L-alanine dehydrogenase (AlaDH), and L-glutamine synthetase (GlnS) proteins.  相似文献   

12.
CD8+ T cells play a pivotal role in protection against Mycobacterium tuberculosis infection. We identified a novel HLA-A*0201-restricted CD8+ T-cell epitope on a dominant secreted antigen of M. tuberculosis, MPT51, in HLA-A*0201 transgenic HHD mice. HHD mice were immunized with plasmid DNA encoding MPT51 with gene gun bombardment, and gamma interferon (IFN-gamma) production by the immune splenocytes was analyzed. In response to overlapping synthetic peptides covering the mature MPT51 sequence, the splenocytes were stimulated to produce IFN-gamma by only one peptide, p51-70. Three-color flow cytometric analysis of intracellular IFN-gamma and cell surface CD4 and CD8 staining revealed that the MPT51 p51-70 peptide contains an immunodominant CD8+ T-cell epitope. Further analysis using computer algorithms permitted identification of a bona fide T-cell epitope, p53-62. A major histocompatibility complex class I stabilization assay using T2 cells confirmed that this epitope binds to HLA-A*0201. The T cells were capable of lysing MPT51 p53-62 peptide-pulsed T2 cells. In addition, MPT51 p53-62-specific memory CD8+ T cells were found in tuberculin skin test-positive HLA-A*0201+ healthy individuals. Use of this HLA-A*0201-restricted CD8+ T-cell epitope for analysis of the role of MPT51-specific T cells in M. tuberculosis infection and for design of vaccines against tuberculosis is feasible.  相似文献   

13.
CD8 T cells specific for islet autoantigens are major effectors of β cell damage in type 1 diabetes, and measurement of their number and functional characteristics in blood represent potentially important disease biomarkers. CD8 T cell reactivity against glutamic acid decarboxylase 65 (GAD65) in HLA-A*0201 subjects has been reported to focus on an immunogenic region 114–123 (VMNILLQYVV), with studies demonstrating both 114–123 and 114–122 epitopes being targeted. However, the fine specificity of this response is unclear and the key question as to which epitope(s) β cells naturally process and present and, therefore, the pathogenic potential of CD8 T cells with different specificities within this region has not been addressed. We generated human leucocyte antigen (HLA)-A*0201-restricted CD8 T cell clones recognizing either 114–122 alone or both 114–122 and 114–123. Both clone types show potent and comparable effector functions (cytokine and chemokine secretion) and killing of indicator target cells externally pulsed with cognate peptide. However, only clones recognizing 114–123 kill target cells transfected with HLA-A*0201 and GAD2 and HLA-A*0201+ human islet cells. We conclude that the endogenous pathway of antigen processing by HLA-A*0201-expressing cells generates GAD65114–123 as the predominant epitope in this region. These studies highlight the importance of understanding β cell epitope presentation in the design of immune monitoring for potentially pathogenic CD8 T cells.  相似文献   

14.
For long-term attack on tumor cells in patients with prostate cancer, induction of cytolytic T cells is desirable. Several lineage-specific target proteins are known and algorithms have identified candidate MHC class I-binding peptides, particularly for HLA-A*0201. We have designed tolerance-breaking DNA fusion vaccines incorporating a domain of tetanus toxin fused to candidate tumor-derived peptide sequences. Using three separate peptide sequences from prostate-specific membrane antigen (PSMA) (peptides PSMA(27) , PSMA(663) , and PSMA(711) ), this vaccine design induced high levels of CD8(+) T cells against each peptide in a HLA-A(*) 0201 preclinical model. In contrast, the full-length PSMA sequence containing all three epitopes was poorly immunogenic. Induced T cells were cytotoxic against peptide-loaded tumor cells, but only those against PSMA(27) or PSMA(663) peptides, and not PSMA(711) , were able to kill tumor cells expressing endogenous PSMA. Cytotoxicity was also evident in vivo. The preclinical model provides a powerful tool for generating CD8(+) T cells able to predict whether target cells can process and present peptides, essential for planning peptide vaccine-based clinical trials.  相似文献   

15.
Telomerase is a ribonucleoprotein complex responsible for the maintenance of the length of the telomeres during cell division, which is active in germ-line cells as well as in the vast majority of tumors but not in most normal tissues. The wide expression of the human telomerase catalytic subunit (hTERT) in tumors makes it an interesting candidate vaccine for cancer. hTERT-derived peptide 540-548 (hTERT(540)) has been recently shown to be recognized in an HLA-A*0201-restricted fashion by T cell lines derived from peptide-stimulated peripheral blood mononuclear cells (PBMC) from healthy donors. As a first step to the inclusion of this peptide in immunotherapy clinical trials, it is crucial to assess hTERT(540)-specific T cell reactivity in cancer patients as well as the ability of hTERT-specific CD8(+) T lymphocytes to recognize and lyse hTERT-expressing target cells. Here, we have analyzed the CD8(+) T cell response to peptide hTERT(540) in HLA-A*0201 melanoma patients by using fluorescent HLA-A*0201/hTERT(540) peptide tetramers. HLA-A*0201/hTERT(540) tetramer(+) CD8(+) T cells were readily detected in peptide-stimulated PBMC from a significant proportion of patients and could be isolated by tetramer-guided cell sorting. hTERT(540)-specific CD8(+) T cells were able to specifically recognize HLA-A*0201 cells either pulsed with peptide or transiently transfected with a minigene encoding the minimal epitope. In contrast, they failed to recognize hTERT-expressing HLA-A*0201(+) target cells. Furthermore, in vitro proteasome digestion studies revealed inadequate hTERT processing. Altogether, these results raise questions on the use of hTERT(540) peptide for cancer immunotherapy.  相似文献   

16.
We investigated CD8(+) T cell frequencies of five different Epstein-Barr virus-specific cytotoxic T lymphocyte epitopes located within proteins of the replicative cycle and the latent state in healthy long-term virus carriers with IFN-gamma enzyme-linked immunospot assay. Frequencies of the HLA-A3-restricted epitope RVRAYTYSK (RVR) whose minimal length was mapped in this study to amino acid position 148-156 of the immediate-early protein BRLF1 were compared with those of a further known HLA-A3-restricted epitope within EBNA3A, RLRAEAQVK (RLR). Determination of frequencies of CD8(+) T lymphocytes directed against lytic antigen epitope RVR revealed that only one of eight donors recognized this epitope. Frequency was calculated to be 65 RVR-specific CD8(+) T lymphocytes per 10(6) PBMC. None of the HLA-A3-positive donors exhibited IFN-gamma release after antigenic stimulation with the EBNA3A-specific peptide epitope RLR. Furthermore, we chose three known HLA-B8-restricted epitopes, RAKFKQLL (RAK), FLRGRAYGL (FLR), and QAKWRLQTL (QAK), of the lytic protein BZLF1 and the latent protein EBNA3A. Examination of eight HLA-B8-positive virus carriers revealed that the BZLF1-specific epitope RAK was recognized by all donors with a median frequency of 233 RAK-specific CD8(+) T lymphocytes per 10(6) PBMC. Only 50% of these donors reacted against EBNA3A-specific epitope FLR and a minority (25%) reacted against EBNA3A-specific epitope QAK.  相似文献   

17.
Cytotoxic T lymphocytes (CTL) directed against Plasmodium falciparum-derived antigens were shown to play an important role for the protection against malaria. Although several CTL epitopes have been identified from P. falciparum sporozoite-derived antigens, none has been described for the merozoite form. Since the merozoite surface protein (MSP)-1 is a known target of the immune response, we focused on this protein to identify HLA-A*0201-associated epitopes. Using our mass spectrometry-based method [the 'predict-calibrate-detect' (PCD) approach], we were able to identify an MSP-1-derived epitope in the peptide mixture naturally associated with HLA-A*0201 molecules purified from an MSP-1-expressing cell line. CTLs against this epitope were generated from HLA-A*0201 monochain transgenic mice (HHD). They specifically killed MSP-1-expressing HLA-A2-positive target cells. Thus, we describe here the first MHC class I epitope from the merozoite form of P. falciparum. This epitope can be used as a tool for the immunomonitoring of natural or vaccine-induced CTL immune responses against malaria and could eventually be proposed as a component of an anti-malaria peptide-based vaccine.  相似文献   

18.
The circumsporozoite (CS) is the most abundant surface protein of the Plasmodium sporozoite, and is also present early in the liver stage of the infection. Following successful protective experiments in mice and monkeys, the synthetic 102-mer malaria vaccine polypeptide representing the C-terminal region of the CS of Plasmodium falciparum was tested in a clinical trial with healthy human volunteers. This vaccine induced strong CD8(+), CD4(+) T lymphocyte and antibody responses specific for the immunizing peptide. CD8(+) T lymphocyte responses elicited in HLA-A*0201 volunteers recognized two well-defined cytotoxic T lymphocyte epitopes within the CS. Here, we show that both monocyte-derived dendritic cells (Mo-DC) and Epstein-Barr virus-transformed B-lymphoblastoid cells (LCL) can present a cytotoxic T lymphocyte epitope contained within the 102-mer synthetic peptide. Paraformaldehyde and low temperature inhibited presentation, indicating that cellular processing was required. Using specific inhibitors, we show that, in both cell types, processing requires the proteasome and the MHC class I pathway, while the endosomal compartment appears to be critical only for the presentation by Mo-DC. Antigen uptake is associated with actin polymerization in both cell types. These in vitro results demonstrate the likely pathway of antigen presentation achieved via vaccination with this synthetic peptide.  相似文献   

19.
HER-2/neu is a tumor-associated antigen overexpressed in a large variety of human tumors. Eight HER-2/neu peptides displaying HLA-A*0201 anchoring motifs were selected and tested for their binding affinity to HLA-A*0201 and their capacity to elicit cytotoxic T lymphocyte (CTL) responses in both HLA-A*0201 transgenic mice and in HLA-A*0201(+) healthy donors. Two high-affinity (p5 and p48) and one intermediate-affinity (p1023) peptides triggered CTL responses in both transgenic mice and humans, comparable to those observed for the well-known HER2/neu dominant peptide p369. CTL induced in transgenic mice lysed HLA-A*0201(+) RMA cells infected with recombinant HER-2/neu but not cells infected with wild-type vaccinia virus. Human CTL lysed HLA-A*0201(+) HER-2/neu(+) tumor cells of different origins (breast, colon, lung and renal cancer) irrespective of the expression levels of HER-2/neu. Importantly, primed CTL specific for these epitopes were detected in freshly isolated tumor-infiltrating lymphocytes from three renal cell carcinoma patients. Therefore, the HER-2/neu peptides p5, p48 and p1023 may be good candidates for immunotherapy of a broad spectrum of tumors, including renal cell carcinoma.  相似文献   

20.
CD8(+) cytolytic T lymphocytes (CTL) play a fundamental role in the clearance of malaria parasites from the liver in mouse models. In humans, however, only low levels of parasite-specific CD8(+) T lymphocytes have been observed in individuals living in endemic areas. In the present study, we identified high levels of circulating CD8(+) T lymphocytes specific for a previously described HLA-A2-restricted CTL epitope of the circumsporozoite (CS) protein of Plasmodium falciparum in an adult living in Burkina Faso, as evidenced by IFN-gamma ELISPOT assay and MHC-tetramer technology. After cloning by limiting dilution culture, T cell recognition of natural CS variants of P. falciparum was studied. The results demonstrate that naturally occurring variations drastically affect residues critical for T cell recognition as only two out of nine sequences analyzed were efficiently recognized by the CTL clones. These clones were also used to analyze T cell recognition of the endogenously presented cognate antigen. We observed efficient antigen recognition of both HLA-A*0201-transfected murine antigen presenting cells and liver cells from HLA-A*0201/K(b)-transgenic mice upon infection with recombinant vaccinia virus encoding the CS protein (WR-CS). More importantly, we demonstrate for the first time efficient recognition of WR-CS-infected human liver cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号