首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Allergic asthma is characterized by airway hyperresponsiveness and pulmonary eosinophilia, and may be mediated by T helper (Th) lymphocytes expressing a Th2 cytokine pattern. Interleukin (IL) 12 suppresses the expression of Th2 cytokines and their associated responses, including eosinophilia, serum immunoglobulin E, and mucosal mastocytosis. We have previously shown in a murine model that antigen- induced increases in airway hyperresponsiveness and pulmonary eosinophilia are CD4+ T cell dependent. We used this model to determine the ability of IL-12 to prevent antigen-induced increases in airway hyperresponsiveness, bronchoalveolar lavage (BAL) eosinophils, and lung Th2 cytokine expression. Sensitized A/J mice developed airway hyperresponsiveness and increased numbers of BAL eosinophils and other inflammatory cells after single or repeated intratracheal challenges with sheep red blood cell antigen. Pulmonary mRNA and protein levels of the Th2 cytokines IL-4 and IL-5 were increased after antigen challenge. Administration of IL-12 (1 microgram/d x 5 d) at the time of a single antigen challenge abolished the airway hyperresponsiveness and pulmonary eosinophilia and promoted an increase in interferon (IFN) gamma and decreases in IL-4 and IL-5 expression. The effects of IL-12 were partially dependent on IFN-gamma, because concurrent treatment with IL-12 and anti-IFN-gamma monoclonal antibody partially reversed the inhibition of airway hyperresponsiveness and eosinophilia by IL-12. Treatment of mice with IL-12 at the time of a second antigen challenge also prevented airway hyperresponsiveness and significantly reduced numbers of BAL inflammatory cells, reflecting the ability of IL-12 to inhibit responses associated with ongoing antigen-induced pulmonary inflammation. These data show that antigen-induced airway hyperresponsiveness and inflammation can be blocked by IL-12, which suppresses Th2 cytokine expression. Local administration of IL-12 may provide a novel immunotherapy for the treatment of pulmonary allergic disorders such as atopic asthma.  相似文献   

2.
Inhalation of antigen in immunized mice induces an infiltration of eosinophils into the airways and increased bronchial hyperreactivity as are observed in human asthma. We employed a model of late-phase allergic pulmonary inflammation in mice to address the role of leukotrienes (LT) in mediating airway eosinophilia and hyperreactivity to methacholine. Allergen intranasal challenge in OVA-sensitized mice induced LTB4 and LTC4 release into the airspace, widespread mucus occlusion of the airways, leukocytic infiltration of the airway tissue and broncho-alveolar lavage fluid that was predominantly eosinophils, and bronchial hyperreactivity to methacholine. Specific inhibitors of 5- lipoxygenase and 5-lipoxygenase-activating protein (FLAP) blocked airway mucus release and infiltration by eosinophils indicating a key role for leukotrienes in these features of allergic pulmonary inflammation. The role of leukotrienes or eosinophils in mediating airway hyperresponsiveness to aeroallergen could not be established, however, in this murine model.  相似文献   

3.
Interleukin (IL)-4 and IL-13 are two key cytokines released from activated T helper type 2 (Th2) cells and strongly associated with asthma and allergic disease. We applied silencing of the IL-4 and IL-13 gene expression by RNA interference delivered by a lentiviral vector to evaluate the therapeutic role of IL-4 and IL13 short hairpin RNAs (shRNAs) in a murine model of asthma. Mice were sensitized with ovalbumin (OVA), and one treatment of IL-4 and IL-13 shRNA lentiviral vector (Lenti-si-IL-4 and Lenti-si-IL-13) was instilled intratracheally 48?hr before challenge. After three challenges of OVA antigen, mice were assessed for airway inflammation and hyperresponsiveness. With infection of Lenti-si-IL-4 and Lenti-si-IL-13 in EL-4 cells, both RNA and protein expressions of IL-4 and IL-13 were obviously abrogated. Furthermore, intratracheal instillation of Lenti-si-IL-4 and Lenti-si-IL-13 in OVA-immunized mice resulted in a strong inhibition of local IL-4 and IL-13 cytokine release. Treatment with Lenti-si-IL-4 and Lenti-si-IL-13 successfully alleviated OVA-induced airway eosinophilia and Th2 cell cytokine release. Finally, to determine airway hyperresponsiveness by enhanced pause and pulmonary resistance in noninvasive and invasive body plethysmography, we found that administration of Lenti-si-IL-4 and Lenti-si-IL-13 markedly decreased airway hyperresponsiveness in OVA-immunized mice. These results suggest that inhibition of IL-4 and IL-13 gene expression by shRNA lentiviral vector markedly inhibits antigen-induced airway inflammation and hyperresponsiveness in mice.  相似文献   

4.
5.
Our understanding of the pathogenesis of atopic dermatitis (AD) and its relationship to asthma remains incomplete. Herein, we describe a murine model of epicutaneous (EC) sensitization to the protein allergen, chicken egg albumin, ovalbumin (OVA), which results in a rise in total and OVA-specific serum IgE and leads to the development of a dermatitis characterized by infiltration of CD3(+) T cells, eosinophils, and neutrophils and by local expression of mRNA for the cytokines IL-4, IL-5, and interferon-gamma. A single exposure of the EC sensitized mice to aerosolized OVA induced eosinophilia in the bronchoalveolar lavage fluid and airway hyperresponsiveness to intravenous methacholine as assessed by measurement of pulmonary dynamic compliance (Cdyn). These results suggest a possible role for EC exposure to antigen in atopic dermatitis and in the development of allergic asthma.  相似文献   

6.
Previous studies established that IL-5-producing CD4(+) T cells play a pivotal role in allergic respiratory inflammation. It was also reported that CD4(+) T cells express higher levels of CD44 in the airway than in peripheral blood of patients with allergic respiratory diseases. We have used experimental pulmonary eosinophilia induced in mice by Ascaris suum (Asc) extract to investigate the role of CD44 in the development of allergic respiratory inflammation. Intraperitoneal administration of anti-CD44 mAb prevented both lymphocyte and eosinophil accumulation in the lung. Anti-CD44 mAb also blocked antigen-induced elevation of Th2 cytokines as well as chemokines (CCL11, CCL17) in bronchoalveolar lavage fluid (BALF). Treatment with anti-CD44 mAb inhibited the increased levels of hyaluronic acid (HA) and leukotriene concentrations in BALF that typically result from antigen challenge. Anti-CD44 mAb also blocked antigen-induced airway hyperresponsiveness. An anti-CD44 mAb (IM7) inhibited the HA-binding ability of splenocytes associated with decreased levels of CD44. Soluble CD44 levels in serum were increased in Asc-challenged IM7-treated mice, but not in KM201-treated mice, compared with Asc-challenged rat IgG-treated mice. Ab's that block CD44-HA binding reduced allergic respiratory inflammation by preventing lymphocyte and eosinophil accumulation in the lung. Thus, CD44 may be critical for development of allergic respiratory inflammation.  相似文献   

7.
Viral respiratory infections can predispose to the development of asthma by mechanisms that are presently undetermined. Using a murine model of respiratory syncytial virus (RSV) infection, acute infection is associated with airway hyperresponsiveness as well as enhanced responses to subsequent sensitization to allergen. We demonstrate that acute viral infection results in increased airway responsiveness to inhaled methacholine and pulmonary neutrophilic and eosinophilic inflammation. This response is associated with predominant production of Th-1-type cytokines in peribronchial lymph node cells in vitro. Mice sensitized to ovalbumin via the airways after RSV infection developed increased airway responsiveness to methacholine and pulmonary eosinophilic and neutrophilic inflammation, associated with the predominant production of Th-2-type cytokines. Treatment of the mice with anti-IL-5 antibody abolished airway hyperresponsiveness and eosinophilic but not neutrophilic inflammation in both acutely infected mice and mice sensitized after infection. We conclude that RSV infection results in airway hyperresponsiveness in the acute phase and leads to changes in immune function that can enhance the effects of airway sensitization to antigen after infection. In both situations, airway hyperresponsiveness is closely associated with pulmonary eosinophilic inflammation. This model provides a means for further analyzing the influence of viral respiratory infections on airway sensitization and the development of altered airway responsiveness.  相似文献   

8.
9.
10.
Allergen-induced airway hyperresponsiveness, an animal model of asthma in humans, may respond to immunotherapy with Th1 cytokines. For example, local administration of recombinant IL-12 or IFN-gamma, or intratracheal delivery of the genes for these cytokines, has been shown to reduce the severity of allergen-induced airway hyperresponsiveness (AHR) in rodent models. We reasoned that systemic cytokine gene delivery to the lungs by intravenous injection of lipid-DNA complexes might also be an effective approach to treatment of allergen-induced AHR. Therefore, the effects of either systemic or local pulmonary IFN-gamma gene delivery were evaluated in mice with allergen-induced AHR. The effects of treatment on AHR, airway eosinophilia and cytokine production, and serum IgE concentrations were evaluated in mice that were first sensitized to ovalbumin and then subjected to aerosol ovalbumin challenge. Intravenous IFN-gamma gene delivery significantly inhibited development of AHR and airway eosinophilia and decreased serum IgE levels, compared with control mice or mice treated with noncoding DNA. Intratracheal IFN-gamma gene delivery also significantly inhibited AHR and airway eosinophilia, but did not affect serum IgE levels. Treatment with recombinant IFN-gamma was much less effective than IFN-gamma gene delivery by either route. We conclude that either systemic or local pulmonary delivery of a Th1 cytokine gene such as IFN-gamma may be an effective approach for treatment of allergen-induced asthma.  相似文献   

11.
《Molecular therapy》2003,7(2):155-162
The clinical manifestations of allergic asthma are believed to result from a dysregulated, T helper 2 lymphocyte (Th2)-biased response to antigen. Although asthma symptoms can be controlled acutely, there is a need for a therapy that will address the underlying immune dysfunction and provide continuous control of chronic airway inflammation. The Th2-type cytokines, IL-13 and IL-4, have been demonstrated to play a crucial role in asthma pathogenesis and their selective neutralization results in the alleviation of asthmatic symptoms in mouse models. The activity of both of these cytokines can be inhibited by a mutant IL-4 protein, IL-4 receptor antagonist (IL-4RA), and thus, continual IL-4RA therapy might be beneficial in treatment of chronic asthma. To explore the potential utility of long-term gene therapy for the treatment of asthma we used a recombinant adeno-associated virus (AAV) vector to deliver and provide sustained expression of IL-4RA in vivo. We show that AAV-mediated delivery of IL-4RA to the airways of mice reduces airway hyperresponsiveness (AHR) and airway eosinophilia triggered by either IL-13 or IL-4. Furthermore, AAV-delivered IL-4RA, expressed either systemically or in the airways of mice following allergen sensitization, significantly inhibited development of airway eosinophilia and mucus production and reduced the levels of asthma-associated Th2 cytokines and AHR in the experimental mouse model of allergic asthma. Thus, gene therapy can be a potential therapeutic option to treat and control chronic airway inflammation and asthmatic symptoms.  相似文献   

12.
Phosphoinositide 3-kinase (PI3K) is thought to contribute to the pathogenesis of asthma by effecting the recruitment, activation, and apoptosis of inflammatory cells. We examined the role of class IA PI3K in antigen-induced airway inflammation and hyperresponsiveness by i.p. administration into mice of Deltap85 protein, a dominant negative form of the class IA PI3K regulatory subunit, p85alpha, which was fused to HIV-TAT (TAT-Deltap85). Intraperitoneal administration of TAT-Deltap85 caused time-dependent transduction into blood leukocytes, and inhibited activated phosphorylation of protein kinase B (PKB), a downstream target of PI3K, in lung tissues in mice receiving intranasal FMLP. Antigen challenge elicited pulmonary infiltration of lymphocytes, eosinophils and neutrophils, increase in mucus-containing epithelial cells, and airway hyperresponsiveness to methacholine. Except for modest airway neutrophilia, these effects all were blocked by treatment with 3-10 mg/kg of TAT-Deltap85. There was also significant reduction in IL-5 and IL-4 secretion into the BAL. Intranasal administration of IL-5 caused eosinophil migration into the airway lumen, which was attenuated by systemic pretreatment with TAT-Deltap85. We conclude that PI3K has a regulatory role in Th2-cell cytokine secretion, airway inflammation, and airway hyperresponsiveness in mice.  相似文献   

13.
Interleukin (IL)-9, a pleiotropic cytokine produced by the Th2 subset of T lymphocytes has been proposed as product of a candidate gene responsible for asthma. Its wide range of biological functions on many cell types involved in the allergic immune response suggests a potentially important role in the complex pathogenesis of asthma. To investigate the contributions of IL-9 to airway inflammation and airway hyperresponsiveness in vivo, we created transgenic mice in which expression of the murine IL-9 cDNA was regulated by the rat Clara cell 10 protein promoter. Lung selective expression of IL-9 caused massive airway inflammation with eosinophils and lymphocytes as predominant infiltrating cell types. A striking finding was the presence of increased numbers of mast cells within the airway epithelium of IL-9–expressing mice. Other impressive pathologic changes in the airways were epithelial cell hypertrophy associated with accumulation of mucus-like material within nonciliated cells and increased subepithelial deposition of collagen. Physiologic evaluation of IL-9–expressing mice demonstrated normal baseline airway resistance and markedly increased airway hyperresponsiveness to inhaled methacholine. These findings strongly support an important role for IL-9 in the pathogenesis of asthma.  相似文献   

14.
The human leukocyte antigen (HLA) restriction of the IgE response to different allergens in humans has been a subject of numerous published studies. However, the role and contribution of specific HLA class II molecules in the pathogenesis of allergic airway inflammation are unknown and difficult to assess. HLA-DQ6 and HLA-DQ8 transgenic mice lacking endogenous mouse class II gene expression were actively immunized and later challenged intranasally with short ragweed (SRW) allergenic extract. The HLA-DQ transgenic mice developed pulmonary eosinophilia and lung tissue damage. We also found an increase in total protein (TP) level and IL-5 production in bronchoalveolar lavage (BAL) fluid and an increase in SRW-specific Th2-type immunoglobulins (IgG1, IgG2b) and total serum IgE levels. Under similar treatment, DQ-negative full-sib control mice were normal. The allergic response could be significantly inhibited or abrogated in HLA-DQ mice by systemic treatment with anti-DQ mAb. The in vivo responses of HLA-DQ6 and HLA-DQ8 mice showed differences in terms of levels of eosinophilia, BAL protein, IL-5 concentration, and lung hyperreactivity to inhaled methacholine. These findings demonstrate the crucial role for specific HLA-DQ molecules in SRW-specific CD4(+) T-cell activation and resulting recruitment of eosinophils into the airways.  相似文献   

15.
Allergic asthma is characterized by airway hyperresponsiveness, inflammation, and a cellular infiltrate dominated by eosinophils. Numerous epidemiological studies have related the exacerbation of allergic asthma with an increase in ambient inhalable particulate matter from air pollutants. This is because inhalable particles efficiently deliver airborne allergens deep into the airways, where they can aggravate allergic asthma symptoms. However, the cellular mechanisms by which inhalable particulate allergens (pAgs) potentiate asthmatic symptoms remain unknown, in part because most in vivo and in vitro studies exploring the pathogenesis of allergic asthma use soluble allergens (sAgs). Using a mouse model of allergic asthma, we found that, compared with their sAg counterparts, pAgs triggered markedly heightened airway hyperresponsiveness and pulmonary eosinophilia in allergen-sensitized mice. Mast cells (MCs) were implicated in this divergent response, as the differences in airway inflammatory responses provoked by the physical nature of the allergens were attenuated in MC-deficient mice. The pAgs were found to mediate MC-dependent responses by enhancing retention of pAg/IgE/FcεRI complexes within lipid raft–enriched, CD63(+) endocytic compartments, which prolonged IgE/FcεRI-initiated signaling and resulted in heightened cytokine responses. These results reveal how the physical attributes of allergens can co-opt MC endocytic circuitry and signaling responses to aggravate pathological responses of allergic asthma in mice.  相似文献   

16.
Allergic asthma is strongly associated with the airway inflammation caused by the dysregulated production of cytokines secreted by the allergen-specific type-2 T helper (Th2) cells. Interleukin (IL)-12 is a heterodimeric cytokine, which strongly promotes the differentiation of naive CD4(+) T cells to the type-1 T helper (Th1) phenotype and suppresses the expression of Th2 cytokines. Therefore, immunotherapy with IL-12 has been suggested as a possible therapy for asthma. In previous studies, we developed a murine model of airway inflammation based on the purified, house dust-mite allergen Der p 1 (Dermatophagodies pteronyssinus) as a clinically relevant allergen. We hypothesized that the expression of IL-12 in the airway may represent an effective therapy for allergic airway diseases. In this study, we investigate whether the local transfer of the IL-12 gene to respiratory tissues modifies allergic inflammation and airway hyper-responsiveness (AHR) in our disease model. To enhance the in vivo delivery of the IL-12 gene, we expressed the murine single-chain IL-12 protein from a nonviral vector to which the two IL-12 subunits (p35 and p40) were linked by a 14- to 18-amino-acid linker. One of these single-chain IL-12s, containing an 18 amino-acid polypeptide linker, was stably expressed and had a high level of biological activity comparable to that of native IL-12 in vitro. In mice with Der p 1-induced asthma, the local administration of this IL-12 fusion gene into the lungs significantly prevented the development of AHR, abrogated airway eosinophilia, and inhibited type-2 cytokine production. These findings indicate that the local transfer of the single-chain IL-12 gene is effective in modulating pulmonary allergic responses and may be a convenient method for future applications of DNA vaccination.  相似文献   

17.
In vivo models have demonstrated that interleukin-13 (IL-13) plays an important role in asthma; however, few studies have evaluated the effect of inhibition of IL-13 on established and persistent disease. In the present study, we have investigated the effect of a therapeutic dosing regimen with an anti-IL-13 monoclonal antibody (mAb) in a chronic mouse model of persistent asthma. BALB/c mice were sensitized to allergen [ovalbumin (OVA); on days 1 and 8] and challenged with OVA weekly from day 22. Anti-IL-13 mAb or vehicle dosing was initiated following two OVA challenges when disease was established. At this time, mice exhibited airway hyperresponsiveness (AHR), increased mucus production, inflammation, and initiation of subepithelial fibrosis compared with saline-challenged mice. Mice received four additional OVA challenges. Treatment with anti-IL-13 mAb inhibited AHR and prevented the further development of subepithelial fibrosis and progression of inflammation. Furthermore, mAb treatment reversed the mucus hyperplasia to basal levels. These effects were associated with an inhibition of cytokines, chemokines, and matrix metalloproteinase-9. These data demonstrate that neutralization of IL-13 can inhibit the progression of established disease in the presence of repeated allergen exposures.  相似文献   

18.
We have proposed previously that hemopoietic myeloid progenitors contribute to the ongoing recruitment of proinflammatory cells, namely eosinophils, to sites of allergen challenge in allergic diseases such as asthma. In this study, we investigated the involvement of bone marrow-derived progenitors in the development of allergen-induced pulmonary inflammation in mild asthmatic subjects. By flow cytometry, we enumerated the level of expression of CD34, a hemopoietic progenitor cell marker, on bone marrow aspirates taken before and 24 h after allergen challenge. In addition, the coexpression of the alpha-subunits of IL-3 receptor (IL-3R) and IL-5 receptor (IL-5R) on CD34+ cells was investigated. After allergen-challenge, although no significant change in total BM CD34+ cell numbers was observed, a significant increase in the proportion of CD34+ cells expressing IL-5R alpha, but not IL-3R alpha, was detected in the 24-h post-allergen, compared with the pre-allergen bone marrow. This was associated with a significant blood and sputum eosinophilia and increased methacholine airway responsiveness, 24 h post-allergen. Using simultaneous in situ hybridization and immunocytochemistry, we colocalized the expression of messenger RNA for membrane-bound IL-5R alpha to CD34+ cells. In summary, our data suggest that increased expression of IL-5R alpha on CD34+ cells favors eosinophilopoiesis and may thus contribute to the subsequent development of blood and tissue eosinophilia, a hallmark of allergic inflammation.  相似文献   

19.
The role of natural CD4+CD25+ regulatory T (T reg) cells in the control of allergic asthma remains poorly understood. We explore the impact of T reg cell depletion on the allergic response in mice susceptible (A/J) or comparatively resistant (C3H) to the development of allergen-induced airway hyperresponsiveness (AHR). In C3H mice, anti-CD25-mediated T reg cell depletion before house dust mite treatment increased several features of the allergic diathesis (AHR, eosinophilia, and IgE), which was concomitant with elevated T helper type 2 (Th2) cytokine production. In similarly T reg cell-depleted A/J mice, we observed a moderate increase in airway eosinophilia but no effects on AHR, IgE levels, or Th2 cytokine synthesis. As our experiments suggested that T reg cell depletion in C3H mice before sensitization was sufficient to enhance the allergic phenotype, we characterized dendritic cells (DCs) in T reg cell-depleted C3H mice. T reg cell-depleted mice had increased numbers of pulmonary myeloid DCs with elevated expression of major histocompatibility complex class II, CD80, and CD86. Moreover, DCs from T reg cell-depleted mice demonstrated an increased capacity to stimulate T cell proliferation and Th2 cytokine production, which was concomitant with reduced IL-12 expression. These data suggest that resistance to allergen-driven AHR is mediated in part by CD4+CD25+ T reg cell suppression of DC activation and that the absence of this regulatory pathway contributes to susceptibility.  相似文献   

20.
Exposure to ozone, which is a major component of air pollution, induces a form of asthma that occurs in the absence of adaptive immunity. Although ozone-induced asthma is characterized by airway neutrophilia, and not eosinophilia, it is nevertheless associated with airway hyperreactivity (AHR), which is a cardinal feature of asthma. Because AHR induced by allergens requires the presence of natural killer T (NKT) cells, we asked whether ozone-induced AHR had similar requirements. We found that repeated exposure of wild-type (WT) mice to ozone induced severe AHR associated with an increase in airway NKT cells, neutrophils, and macrophages. Surprisingly, NKT cell-deficient (CD1d(-/-) and Jalpha18(-/-)) mice failed to develop ozone-induced AHR. Further, treatment of WT mice with an anti-CD1d mAb blocked NKT cell activation and prevented ozone-induced AHR. Moreover, ozone-induced, but not allergen-induced, AHR was associated with NKT cells producing interleukin (IL)-17, and failed to occur in IL-17(-/-) mice nor in WT mice treated with anti-IL-17 mAb. Thus, ozone exposure induces AHR that requires the presence of NKT cells and IL-17 production. Because NKT cells are required for the development of two very disparate forms of AHR (ozone- and allergen-induced), our results strongly suggest that NKT cells mediate a unifying pathogenic mechanism for several distinct forms of asthma, and represent a unique target for effective asthma therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号