首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies examining combination therapy for invasive pulmonary aspergillosis (IPA) have revealed conflicting results, including antagonism, indifference, and enhanced effects. The most commonly employed combination for this infection includes a mold-active triazole and echinocandin. Few studies have evaluated combination therapy from a pharmacodynamic (PD) perspective, and even fewer have examined combination therapy against both wild-type and azole-resistant Cyp51 mutant isolates. The current studies aim to fill this gap in knowledge. Four Aspergillus fumigatus isolates were utilized, including a wild-type strain, an Fks1 mutant (posaconazole susceptible and caspofungin resistant), and two Cyp51 mutants (posaconazole resistant). A neutropenic murine model of IPA was used for the treatment studies. The dosing design included monotherapy with posaconazole, monotherapy with caspofungin, and combination therapy with both. Efficacy was determined using quantitative PCR, and results were normalized to known quantities of conidia (conidial equivalents [CE]). The static dose, 1-log kill dose, and associated PD target area under the curve (AUC)/MIC ratio were determined for monotherapy and combination therapy. Monotherapy experiments revealed potent activity for posaconazole, with reductions of 3 to 4 log10 Aspergillus CE/ml with the two “low”-MIC isolates. Posaconazole alone was less effective for the two isolates with higher MICs. Caspofungin monotherapy did not produce a significant decrease in fungal burden for any strain. Combination therapy with the two antifungals did not enhance efficacy for the two posaconazole-susceptible isolates. However, the drug combination produced synergistic activity against both posaconazole-resistant isolates. Specifically, the combination resulted in a 1- to 2-log10 decline in burden that would not have been predicted based on the monotherapy results for each drug. This corresponded to a reduction in the free-drug posaconazole AUC/MIC ratio needed for stasis of up to 17-fold. The data suggest that combination therapy using a triazole and an echinocandin may be a beneficial treatment strategy for triazole-resistant isolates.  相似文献   

2.
Invasive pulmonary aspergillosis (IPA) continues to rise in concert with increasing numbers of immune suppression techniques to treat other medical conditions and transplantation. Despite these advances, morbidity and mortality rates remain unacceptably high. One strategy used to optimize outcomes is antifungal pharmacodynamic (PD) examination. We explored the pharmacodynamics of a new triazole in development, isavuconazole, in a murine neutropenic IPA model. Ten A. fumigatus isolates were used, including four wild-type isolates and six cyp51 mutants. The MIC range was 0.125 to 8 mg/liter. Following infection, groups of mice were treated orally with the prodrug (BAL8557) at 40 to 640 mg/kg/12 h for 7 days. Efficacy was determined by quantitative PCR of lung homogenates. At the start of therapy, mice had 4.97 log10 conidial equivalents (CE)/ml of lung homogenate, and this increased to 6.82 log10 CE/ml of lung homogenate in untreated animals. The infection model was uniformly lethal in untreated control mice. The PD target endpoints examined included the static-dose AUC/MIC ratio and the 1-log10 killing AUC/MIC ratio. A stasis endpoint was achieved for all isolates with an MIC of ≤1 mg/liter and 1-log10 killing in all isolates with an MIC of ≤0.5 mg/liter, regardless of the presence or absence of the cyp51 mutation. The static-dose range was 65 to 617 mg/kg/12 h. The corresponding median free-drug AUC/MIC ratio was near 5. The 1-log10 killing dose range was 147 to 455 mg/kg/12 h, and the corresponding median free-drug AUC/MIC ratio was 11.1. These values are similar to those previously reported for other triazoles.  相似文献   

3.
We used two established neutropenic murine models of pulmonary aspergillosis and mucormycosis to explore the association between the posaconazole area under the concentration-time curve (AUC)-to-MIC ratio (AUC/MIC) and treatment outcome. Posaconazole serum pharmacokinetics were verified in infected mice to ensure that the studied doses reflected human exposures with the oral suspension, delayed-release tablet, and intravenous formulations of posaconazole. Sinopulmonary infections were then induced in groups of neutropenic mice with Aspergillus fumigatus strain 293 (posaconazole MIC, 0.5 mg/liter) or Rhizopus oryzae strain 969 (posaconazole MIC, 2 mg/liter) and treated with escalating daily dosages of oral posaconazole, which was designed to achieve AUCs ranging from 1.10 to 392 mg · h/liter. After 5 days of treatment, lung fungal burden was analyzed by quantitative real-time PCR. The relationships of the total drug AUC/MIC and the treatment response were similar in both models, with 90% effective concentrations (EC90s) corresponding to an AUC/MIC threshold of 76 (95% confidence interval [CI], 46 to 102) for strain 293 versus 87 (95% CI, 66 to 101) for strain 969. Using a provisional AUC/MIC target of >100, these exposures correlated with minimum serum posaconazole concentrations (Cmins) of 1.25 mg/liter for strain 293 and 4.0 mg/liter for strain 969. The addition of deferasirox, but not liposomal amphotericin or caspofungin, improved the activity of a suboptimal posaconazole regimen (AUC/MIC, 33) in animals with pulmonary mucormycosis. However, no combination was as effective as the high-dose posaconazole monotherapy regimen (AUC/MIC, 184). Our analysis suggests that posaconazole pharmacodynamics are similar for A. fumigatus and R. oryzae when indexed to pathogen MICs.  相似文献   

4.
Echinocandins inhibit the synthesis of β-1,3-d-glucan in Candida and are the first-line therapy in numerous clinical settings. Their use is limited by poor oral bioavailability, and they are available only as intravenous therapies. Derivatives of enfumafungin are novel orally bioavailable glucan synthase inhibitors. We performed an in vivo pharmacodynamic (PD) evaluation with a novel enfumafungin derivative, SCY-078 (formerly MK-3118), in a well-established neutropenic murine model of invasive candidiasis against C. albicans, C. glabrata, and C. parapsilosis. The SCY-078 MICs varied 8-fold. Oral doses of 3.125 to 200 mg/kg SCY-078 salt in sterile water produced peak levels of 0.04 to 2.66 μg/ml, elimination half-lives of 5.8 to 8.5 h, areas under the concentration-time curve from 0 to 24 h (AUC0–24 h) of 0.61 to 41.10 μg · h/ml, and AUC from 0 to infinity (AUC0—∞) values of 0.68 to 40.31 μg · h/ml. The pharmacokinetics (PK) were approximately linear over the dose range studied. Maximum response (Emax) and PK/PD target identification studies were performed with 4 C. albicans, 4 C. glabrata, and 3 C. parapsilosis isolates. The PD index AUC/MIC was explored by using total (tAUC) and free (fAUC) drug concentrations. The maximum responses were 4.0, 4.0, and 4.3 log10 CFU/kidney reductions for C. albicans, C. glabrata, and C. parapsilosis, respectively. The AUC/MIC was a robust predictor of efficacy (R2, 0.53 to 0.91). The 24-h PD targets were a static dose of 63.5 mg/kg, a tAUC/MIC of 500, and an fAUC/MIC of 1.0 for C. albicans; a static dose of 58.4 mg/kg, a tAUC/MIC of 315, and an fAUC/MIC of 0.63 for C. glabrata; and a static dose of 84.4 mg/kg, a tAUC/MIC of 198, and an fAUC/MIC of 0.40 for C. parapsilosis. The mean fAUC/MIC values associated with a 1-log kill endpoint against these species were 1.42, 1.26, and 0.91 for C. albicans, C. glabrata, and C. parapsilosis, respectively. The static and 1-log kill endpoints were measured relative to the burden at the start of therapy. The static and 1-log kill doses, as well as the total and free drug AUC/MIC PD targets, were not statistically different between species but were numerically lower than those observed for echinocandins. SCY-078 is a promising novel oral glucan synthase inhibitor against Candida species, and further investigation is warranted.  相似文献   

5.
Pharmacodynamic (PD) studies with triazoles in the neutropenic murine disseminated candidiasis model have been performed extensively for Candida albicans. They have consistently shown that the pharmacodynamic index most closely correlated with efficacy is the ratio of the 24-h area under the concentration-time curve (AUC) to the MIC, and a target 24-h free-drug AUC/MIC ratio near 25 is associated with 50% of maximal microbiologic efficacy. We utilized this model to investigate the pharmacodynamics of isavuconazole. Isavuconazole pharmacokinetics were linear over the dose range studied. Oral-gastric doses of 640, 160, 40, and 10 mg of prodrug/kg of body weight produced peak levels of 0.51 to 25.4 mg/liter, an elimination half-life of 1 to 5 h, and an AUC from 0 h to infinity (AUC0-∞) of 0.9 to 287 mg · h/liter. The AUC/MIC ratio was the pharmacodynamic index that correlated best with efficacy (R2, 0.84). Pharmacodynamic target studies were performed using 4 C. albicans isolates with both a 24-h and a 96-h treatment duration. The strains were chosen to include previously characterized fluconazole-resistant strains. The mean 50% effective doses (ED50) (expressed in mg/kg of body weight/12 h) and associated 24-h free-drug AUC/MIC ratios were 89.3 ± 46.7 and 67.7 ± 35 for the 24-h treatment and 59.6 ± 22 and 33.3 ± 25.5 for the 96-h treatment. These differences were not statistically significant. Pharmacodynamic targets for two non-albicans Candida species were also explored. The mean ED50 (expressed in mg/kg/12 h) and associated 24-h free-drug AUC/MIC ratios were 31.2 and 6.2 for Candida tropicalis (n = 1) and 50.5 and 1.6 for Candida glabrata (n = 2). These PD targets were significantly different from C. albicans targets (P, 0.04). Isavuconazole PD targets for C. albicans are similar to those observed in this model with other triazoles. However, the PD targets for non-albicans Candida species were more than 10-fold lower than those for C. albicans (P, 0.04). This difference is similar to the species-specific PD relationships for the echinocandins. The lower PD targets for these species in this model will be important to consider in the analysis of clinical trial data and during the development of susceptibility breakpoints.  相似文献   

6.
NAI-107 is a novel lantibiotic compound with potent in vitro activity against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). The purpose of this study was to examine the activity of NAI-107 against S. aureus strains, including MRSA, in the neutropenic murine thigh infection model. Serum pharmacokinetics were determined and time-kill studies were performed following administration of single subcutaneous doses of 5, 20, and 80 mg/kg body weight. The dose fractionation included total doses ranging from 1.56 to 400 mg/kg/72 h, divided into 1, 2, 3, or 6 doses. Studies of treatment effects against 9 S. aureus strains (4 methicillin-susceptible Staphylococcus aureus [MSSA] and 5 MRSA) using a 12-h dosing interval and total dose range of 1.56 to 400 mg/kg/72 h were also performed. A maximum effect (Emax) model was used to determine the pharmacokinetic/pharmacodynamic (PK/PD) index that best described the dose-response data and to estimate the doses required to achieve a net bacteriostatic dose (SD) and a 1-log reduction in CFU/thigh. The pharmacokinetic studies demonstrated an area under the concentration-time curve (AUC) range of 26.8 to 276 mg · h/liter and half-lives of 4.2 to 8.2 h. MICs ranged from 0.125 to 0.5 μg/ml. The 2 highest single doses produced more than a 2-log kill and prolonged postantibiotic effects (PAEs) ranging from 36 to >72 h. The dose fractionation-response curves were similar, and the AUC/MIC ratio was the most predictive PD index (AUC/MIC, coefficient of determination [R2] = 0.89; maximum concentration of drug in serum [Cmax]/MIC, R2 = 0.79; time [T] > MIC, R2 = 0.63). A ≥2-log kill was observed against all 9 S. aureus strains. The total drug 24-h AUC/MIC values associated with stasis and a 1-log kill for the 9 S. aureus strains were 371 ± 130 and 510 ± 227, respectively. NAI-107 demonstrated concentration-dependent killing and prolonged PAEs. The AUC/MIC ratio was the predictive PD index. Extensive killing was observed for S. aureus organisms, independent of the MRSA status. The AUC/MIC target should be useful for the design of clinical dosing regimens.  相似文献   

7.
We investigated the efficacy of posaconazole prophylaxis in preventing invasive aspergillosis due to azole-resistant Aspergillus fumigatus isolates. Using a neutropenic murine model of pulmonary infection, posaconazole prophylaxis was evaluated using three isogenic clinical isolates, with posaconazole MICs of 0.063 mg/liter (wild type), 0.5 mg/liter (F219I mutation), and 16 mg/liter. A fourth isolate harboring TR34/L98H (MIC of 0.5 mg/liter) was also tested. Posaconazole prophylaxis was effective in A. fumigatus with posaconazole MICs of ≤0.5 mg/liter, where 100% survival was reached. However, breakthrough infection was observed in mice infected with the isolate for which the posaconazole MIC was >16 mg/liter.  相似文献   

8.
The relationships between antituberculosis drug exposure and treatment effects on humans receiving multidrug therapy are complex and nonlinear. In patients on treatment, an analysis of the rate of decline in the sputum bacillary burden reveals two slopes. The first is the α-slope, which is thought to reflect bactericidal effect, followed by a β-slope, which is thought to reflect sterilizing activity. We sought to characterize the effects of standard first-line treatment on sterilizing activity. Fifty-four patients receiving combination therapy for pulmonary tuberculosis in a clinical trial had drug concentrations measured and Mycobacterium tuberculosis isolates available for MIC identification. Sputum sample cultures were performed at baseline and weekly for 8 weeks. A time-to-event model based on the days to positivity in the liquid cultures was used to estimate the β-slope. The pharmacokinetic parameters of rifampin, isoniazid, ethambutol, and pyrazinamide were determined for each patient. Multivariate adaptive regression splines analyses, which simultaneously perform linear and nonlinear analyses, were used to identify the relationships between the predictors and the β-slope. The potential predictors examined included HIV status, lung cavitation, 24-h area under the concentration-time curve (AUC), peak drug concentration (Cmax), AUC/MIC ratio, Cmax/MIC ratio, and the time that that concentration persisted above MIC. A rifampin Cmax of >8.2 mg/liter and a pyrazinamide AUC/MIC of >11.3 were key predictors of the β-slope and interacted positively to increase the β-slope. In patients with a rifampin AUC of <35.4 mg · h/liter, an increase in the pyrazinamide AUC/MIC and/or ethambutol Cmax/MIC increased the β-slope, while increasing isoniazid Cmax decreased it, suggesting isoniazid antagonism. Antibiotic concentrations and MICs interact in a nonlinear fashion as the main drivers of a sterilizing effect. The results suggest that faster speeds of sterilizing effect might be achieved by omitting isoniazid and by increasing rifampin, pyrazinamide, and ethambutol exposures. However, isoniazid and ethambutol exposures may only be of importance when rifampin exposure is low. These findings need confirmation in larger studies. (This study has been registered at controlled-trials.com under registration no. ISRCTN80852505.)  相似文献   

9.
GSK1322322 is a novel inhibitor of peptide deformylase (PDF) with good in vitro activity against bacteria associated with community-acquired pneumonia and skin infections. We have characterized the in vivo pharmacodynamics (PD) of GSK1322322 in immunocompetent animal models of infection with Streptococcus pneumoniae and Haemophilus influenzae (mouse lung model) and with Staphylococcus aureus (rat abscess model) and determined the pharmacokinetic (PK)/PD index that best correlates with efficacy and its magnitude. Oral PK studies with both models showed slightly higher-than-dose-proportional exposure, with 3-fold increases in area under the concentration-time curve (AUC) with doubling doses. GSK1322322 exhibited dose-dependent in vivo efficacy against multiple isolates of S. pneumoniae, H. influenzae, and S. aureus. Dose fractionation studies with two S. pneumoniae and S. aureus isolates showed that therapeutic outcome correlated best with the free AUC/MIC (fAUC/MIC) index in S. pneumoniae (R2, 0.83), whereas fAUC/MIC and free maximum drug concentration (fCmax)/MIC were the best efficacy predictors for S. aureus (R2, 0.9 and 0.91, respectively). Median daily fAUC/MIC values required for stasis and for a 1-log10 reduction in bacterial burden were 8.1 and 14.4 for 11 S. pneumoniae isolates (R2, 0.62) and 7.2 and 13.0 for five H. influenzae isolates (R2, 0.93). The data showed that for eight S. aureus isolates, fAUC correlated better with efficacy than fAUC/MIC (R2, 0.91 and 0.76, respectively), as efficacious AUCs were similar for all isolates, independent of their GSK1322322 MIC (range, 0.5 to 4 μg/ml). Median fAUCs of 2.1 and 6.3 μg · h/ml were associated with stasis and 1-log10 reductions, respectively, for S. aureus.  相似文献   

10.
The efficacy of anidulafungin is driven by the area under the concentration-time curve (AUC)/MIC ratio. Patients in intensive care may be at risk for underexposure. In critically ill patients with an invasive Candida infection, the anidulafungin exposure and a possible correlation with disease severity or plasma protein levels were explored. Concentration-time curves were therefore obtained at steady state. Anidulafungin concentrations were measured with a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The MIC values of the Candida species were determined with the Etest. The target AUC/MIC ratio was based on European Committee on Antimicrobial Susceptibility Testing (EUCAST) data. Twenty patients were included. The patients received a maintenance dose of 100 mg once daily after a loading dose of 200 mg on the first day. The mean (±standard deviation) AUC, maximum concentration of drug in plasma (Cmax), and minimum concentration of drug in plasma (Cmin) were 69.8 ± 24.1 mg · h/liter, 4.7 ± 1.4 mg/liter, and 2.2 ± 0.8 mg/liter, respectively. The MIC values of all cultured Candida species were below the EUCAST MIC breakpoints. The exposure to anidulafungin in relation to the MIC that was determined appeared sufficient in all patients. The anidulafungin exposure was low in our critically ill patients. However, combined with the low MICs of the isolated Candida strains, the lower exposure observed in comparison to the exposure in the general patient population resulted in favorable AUC/MIC ratios, based on EUCAST data. No correlation was observed between anidulafungin exposure and disease severity or plasma protein concentrations. In patients with less-susceptible Candida albicans or glabrata strains, we recommend considering determining the anidulafungin exposure to ensure adequate exposure. (This trial has been registered at ClinicalTrials.gov under registration no. NCT01047267.)  相似文献   

11.
GSK2140944 is a novel bacterial type II topoisomerase inhibitor with in vitro activity against key causative respiratory pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). We described the pharmacodynamics of GSK2140944 against MRSA in the neutropenic murine lung infection model. MICs of GSK2140944 were determined by broth microdilution. Plasma and epithelial lining fluid (ELF) pharmacokinetics were evaluated to allow determination of pulmonary distribution. Six MRSA isolates were tested. GSK2140944 doses of 1.56 to 400 mg/kg of body weight every 6 h (q6h) were utilized. Efficacy as the change in log10 CFU at 24 h compared with 0 h controls and the area under the concentration-time curve for the free, unbound fraction of a drug (fAUC)/MIC required for various efficacy endpoints were determined. GSK2140944 MICs were 0.125 to 0.5 mg/liter against the six MRSA isolates. ELF penetration ratios ranged from 1.1 to 1.4. Observed maximal decreases were 1.1 to 3.1 log10 CFU in neutropenic mice. The mean fAUC/MIC ratios required for stasis and 1-log-unit decreases were 59.3 ± 34.6 and 148.4 ± 83.3, respectively. GSK2140944 displayed in vitro and in vivo activity against MRSA. The pharmacodynamic profile of GSK2140944, as determined, supports its further development as a potential treatment option for pulmonary infections, including those caused by MRSA.  相似文献   

12.
Invasive fungal infections (IFIs) are common among lung transplant recipients (LTRs). Posaconazole is an important antifungal agent for both prophylaxis and treatment of IFIs; however, detailed pharmacokinetic data are limited among LTRs, particularly those with cystic fibrosis (CF). Our objective was to conduct a pharmacokinetic study of posaconazole oral suspension among LTRs, with particular attention to patients with CF. We enrolled 20 LTRs, 7 with CF and 13 with other underlying lung diseases. Average daily doses in CF and non-CF patients were 829 and 862 mg, respectively. After ≥5 days of treatment, only 4 patients had average plasma concentrations of >0.7 μg/ml. Average steady-state plasma concentrations were 61% lower in CF patients (0.233 μg/ml) than in non-CF LTRs (0.594 μg/ml; P = 0.03). The average dose-normalized plasma area-under-the-curve (AUC) values were also lower in CF (0.007 h·μg/ml) than in non-CF LTRs (0.02 h·μg/ml; P = 0.02). The weight-normalized apparent oral clearance values were 2.51 and 0.74 liters/h/kg among CF and non-CF LTRs, respectively (P = 0.005). Despite significant interpatient variability, plasma trough concentrations were strongly correlated with posaconazole AUC across all LTRs (r2 = 0.95, P < 0.0001). Taken together, our study highlights a critical need to incorporate new formulations of posaconazole into prophylaxis and treatment strategies for LTRs, particularly those with CF. Future pharmacokinetic studies of both tablet and intravenous formulations must consider LTR-specific factors and incorporate a therapeutic drug monitoring plan in this patient population.  相似文献   

13.
Antibiotics with novel mechanisms of action are urgently needed. Processes of cellular division are attractive targets for new drug development. FtsZ, an integral protein involved in cell cytokinesis, is a representative example. In the present study, the pharmacodynamic (PD) activity of an FtsZ inhibitor, TXA-709, and its active metabolite, TXA-707, was evaluated in the neutropenic murine thigh infection model against 5 Staphylococcus aureus isolates, including both methicillin-susceptible and methicillin-resistant isolates. The pharmacokinetics (PK) of the TXA-707 active metabolite were examined after oral administration of the TXA-709 prodrug at 10, 40, and 160 mg/kg of body weight. The half-life ranged from 3.2 to 4.4 h, and the area under the concentration-time curve (AUC) and maximum concentration of drug in serum (Cmax) were relatively linear over the doses studied. All organisms exhibited an MIC of 1 mg/liter. Dose fractionation demonstrated the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC ratio) to be the PD index most closely linked to efficacy (R2 = 0.72). Dose-dependent activity was demonstrated against all 5 isolates, and the methicillin-resistance phenotype did not alter the pharmacokinetic/pharmacodynamic (PK/PD) targets. Net stasis was achieved against all isolates and a 1-log10 kill level against 4 isolates. PD targets included total drug 24-h AUC/MIC values of 122 for net stasis and 243 for 1-log10 killing. TXA-709 and TXA-707 are a promising novel antibacterial class and compound for S. aureus infections. These results should prove useful for design of clinical dosing regimen trials.  相似文献   

14.
The antibacterial effects of moxifloxacin against Bacteroides fragilis, Clostridium perfringens, and gram-positive anaerobic cocci (GPAC) were studied in an in vitro pharmacokinetic model. Initially, a dose-ranging study with area under the concentration-time curve (AUC)/MIC ratios of 6.7 to 890 was used to investigate the effect of anaerobic conditions on the AUC/MIC antibacterial effect (ABE) relationship with Escherichia coli. The AUC/MIC ratios for 50% and 90% effects, using a log CFU drop at 24 h as the antibacterial effect measure, were 34 and 59, respectively, aerobic and 54 and 96, respectively, anaerobic. These values are not significantly different. Dose ranging at AUC/MIC ratios of 9 to 216 against the anaerobes indicated a differing AUC/MIC ABE pattern, and the AUC/MICs for 50% and 90% effects were lower: for B. fragilis, they were 10.5 and 25.7, respectively; for C. perfringens, they were 8.6 and 16.2; and for GPAC, they were 7.3 and 17.4. The maximum-effect log drops were as follows: for B. fragilis, −3.2 ± 0.2 logs; for C. perfringens, −3.7 ± 0.1 logs; and for GPAC, −2.5 ± 0.1 logs. Although the anaerobes were not eradicated, there was no emergence of resistance. Comparison of the ABE of moxifloxacin to that of ertapenem against B. fragilis indicated that moxifloxacin was superior at 24 h and 48 h. In contrast, ertapenem was superior to moxifloxacin against GPAC at 24 h and 48 h and against C. perfringens at 48 h. Both drugs performed equivalently against C. perfringens at 24 h. Monte Carlo simulations using human serum AUC data and an AUC/MIC anaerobe target of 7.5 suggests a >90% target achievement at MICs of <2 mg/liter. This divides the B. fragilis wild-type MIC distribution. The pharmacodynamic properties of moxifloxacin against anaerobes are different than those against aerobic species. The clinical implications of these differences need further exploration.  相似文献   

15.
MK7655 is a newly developed beta-lactamase inhibitor of class A and class C carbapenemases. Pharmacokinetics (PK) of imipenem-cilastatin (IMP/C) and MK7655 were determined for intraperitoneal doses of 4 mg/kg to 128 mg/kg of body weight. MIC and pharmacodynamics (PD) studies of MK7655 were performed against several beta-lactamase producing Pseudomonas aeruginosa and Klebsiella pneumoniae strains to determine its effect in vitro and in vivo. Neutropenic mice were infected in each thigh 2 h before treatment with an inoculum of approximately 5 × 106 CFU. They were treated with IMP/C alone (every 2 hours [q2h], various doses) or in combination with MK7655 in either a dose fractionation study or q2h for 24 h and sacrificed for CFU determinations. IMP/MK7655 decreased MICs regarding IMP MIC. The PK profiles of IMP/C and MK7655 were linear over the dosing range studied and comparable with volumes of distribution (V) of 0.434 and 0.544 liter/kg and half-lives (t1/2) of 0.24 and 0.25 h, respectively. Protein binding of MK7655 was 20%. A sigmoidal maximum effect (Emax) model was fit to the PK/PD index responses. The effect of the inhibitor was not related to the maximum concentration of drug in serum (Cmax)/MIC, and model fits for T>MIC and area under the concentration-time curve (AUC)/MIC were comparable (R2 of 0.7 and 0.75), but there appeared to be no significant relationship of effect with dose frequency. Escalating doses of MK7655 and IMP/C showed that the AUC of MK7655 required for a static effect was dependent on the dose of IMP/C and the MIC of the strain, with a mean area under the concentration-time curve for the free, unbound fraction of the drug (fAUC) of 26.0 mg · h/liter. MK7655 shows significant activity in vivo and results in efficacy of IMP/C in otherwise resistant strains. The exposure-response relationships found can serve as a basis for establishing dosing regimens in humans.  相似文献   

16.
AZD5847, a novel oxazolidinone with an MIC of 1 μg/ml, exhibits exposure-dependent killing kinetics against extracellular and intracellular Mycobacterium tuberculosis. Oral administration of AZD5847 to mice infected with M. tuberculosis H37Rv in a chronic-infection model resulted in a 1.0-log10 reduction in the lung CFU count after 4 weeks of treatment at a daily area under the concentration-time curve (AUC) of 105 to 158 μg · h/ml. The pharmacokinetic-pharmacodynamic parameter that best predicted success in an acute-infection model was an AUC for the free, unbound fraction of the drug/MIC ratio of ≥20. The percentage of time above the MIC in all of the efficacious regimens was 25% or greater.  相似文献   

17.
Time-kill studies, even those performed with in vitro dynamic models, often do not provide definitive comparisons of different antimicrobial agents. Also, they do not allow determinations of equiefficient doses or predictions of area under the concentration-time curve (AUC)/MIC breakpoints that might be related to antimicrobial effects (AMEs). In the present study, a wide range of single doses of trovafloxacin (TR) and twice-daily doses of ciprofloxacin (CI) were mimicked in an in vitro dynamic model. The AMEs of TR and CI against gram-negative bacteria with similar susceptibilities to both drugs were related to AUC/MICs that varied over similar eight-fold ranges [from 54 to 432 and from 59 to 473 (μg · h/ml)/(μg/ml), respectively]. The observation periods were designed to include complete bacterial regrowth, and the AME was expressed by its intensity (the area between the control growth in the absence of antibiotics and the antibiotic-induced time-kill and regrowth curves up to the point where viable counts of regrowing bacteria equal those achieved in the absence of drug [IE]). In each experiment monoexponential pharmacokinetic profiles of TR and CI were simulated with half-lives of 9.2 and 4.0 h, respectively. Linear relationships between IE and log AUC/MIC were established for TR and CI against three bacteria: Escherichia coli (MIC of TR [MICTR] = 0.25 μg/ml; MIC of CI [MICCI] = 0.12 μg/ml), Pseudomonas aeruginosa (MICTR = 0.3 μg/ml; MICCI = 0.15 μg/ml), and Klebsiella pneumoniae (MICTR = 0.25 μg/ml; MICCI = 0.12 μg/ml). The slopes and intercepts of these relationships differed for TR and CI, and the IE-log AUC/MIC plots were not superimposed, although they were similar for all bacteria with a given antibiotic. By using the relationships between IE and log AUC/MIC, TR was more efficient than CI. The predicted value of the AUC/MIC breakpoint for TR [mean for all three bacteria, 63 (μg · h/ml)/(μg/ml)] was approximately twofold lower than that for CI. Based on the IE-log AUC/MIC relationships, the respective dose (D)-response relationships were reconstructed. Like the IE-log AUC/MIC relationships, the IE-log D plots showed TR to be more efficient than CI. Single doses of TR that are as efficient as two 500-mg doses of CI (500 mg given every 12 h) were similar for the three strains (199, 226, and 203 mg). This study suggests that in vitro evaluation of the relationships between IE and AUC/MIC or D might be a reliable basis for comparing different fluoroquinolones and that the results of such comparative studies may be highly dependent on their experimental design and datum quantitation.  相似文献   

18.
Ceftolozane plus tazobactam is an antipseudomonal cephalosporin combined with tazobactam, an established beta-lactamase inhibitor, and has in vitro potency against a range of clinically important β-lactamase-producing bacteria, including most extended-spectrum-β-lactamase (ESBL)-positive Enterobacteriaceae. The pharmacodynamics of β-lactam–β-lactamase inhibitor combinations presents a number of theoretical and practical challenges, including modeling different half-lives of the compounds. In this study, we studied the pharmacodynamics of ceftolozane plus tazobactam against Escherichia coli and Pseudomonas aeruginosa using an in vitro pharmacokinetic model of infection. Five strains of E. coli, including three clinical strains plus two CTX-M-15 (one high and one moderate) producers, and five strains of P. aeruginosa, including two with OprD overexpression and AmpC β-lactamases, were employed. Ceftolozane MICs (E. coli, 0.12 to 0.25 mg/liter, and P. aeruginosa, 0.38 to 8 mg/liter) were determined in the presence of 4 mg/liter tazobactam. Dose ranging of ceftolozane (percentage of time in which the free-drug concentration exceeds the MIC [fT>MIC], 0 to 100%) plus tazobactam (human pharmacokinetics) was simulated every 8 hours, with half-lives (t1/2) of 2.5 and 1 h, respectively. Ceftolozane and tazobactam concentrations were confirmed by high-performance liquid chromatography (HPLC). The ceftolozane-plus-tazobactam fT>MIC values at 24 h for a static effect and a 1-log and 2-log drop in initial inoculum for E. coli were 27.8% ± 5.6%, 33.0% ± 5.6%, and 39.6% ± 8.5%, respectively. CTX-M-15 production did not affect the 24-h fT>MIC for E. coli strains. The ceftolozane-plus-tazobactam fT>MIC values for a 24-h static effect and a 1-log and 2-log drop for P. aeruginosa were 24.9% ± 3.0%, 26.6% ± 3.9%, and 31.2% ± 3.6%. Despite a wide range of absolute MICs, the killing remained predictable as long as the MICs were normalized to the corresponding fT>MIC. Emergence of resistance on 4× MIC plates and 8× MIC plates occurred maximally at an fT>MIC of 10 to 30% and increased as time of exposure increased. The fT>MIC for a static effect for ceftolozane plus tazobactam is less than that observed with other cephalosporins against E. coli and P. aeruginosa and is more similar to the fT>MIC reported for carbapenems.  相似文献   

19.
Daptomycin is the first antibacterial agent of the cyclic lipopeptides with in vitro bactericidal activity against gram-positive organisms, including vancomycin-resistant enterococci, methicillin-resistant staphylococci, and glycopeptide-resistant Staphylococcus aureus. The pharmacokinetics of daptomycin were determined in 29 adult oncology patients with neutropenic fever. Serial blood samples were drawn at 0, 0.5, 1, 2, 4, 8, 12, and 24 h after the initial intravenous infusion of 6 mg/kg of body weight daptomycin. Daptomycin total and free plasma concentrations were determined by high-pressure liquid chromatography. Concentration-time data were analyzed by noncompartmental methods. The results (presented as means ± standard deviations and ranges, unless indicated otherwise) were as follows: the maximum concentration of drug in plasma (Cmax) was 49.04 ± 12.42 μg/ml (range, 21.54 to 75.20 μg/ml), the 24-h plasma concentration was 6.48 ± 5.31 μg/ml (range, 1.48 to 29.26 μg/ml), the area under the concentration-time curve (AUC) from time zero to infinity was 521.37 ± 523.53 μg·h/ml (range, 164.64 to 3155.11 μg·h/ml), the volume of distribution at steady state was 0.18 ± 0.05 liters/kg (range, 0.13 to 0.36 liters/kg), the clearance was 15.04 ± 6.09 ml/h/kg (range, 1.90 to 34.76 ml/h/kg), the half-life was 11.34 ± 14.15 h (range, 5.17 to 83.92 h), the mean residence time was 15.67 ± 20.66 h (range, 7.00 to 121.73 h), and the median time to Cmax was 0.6 h (range, 0.5 to 2.5 h). The fraction unbound in the plasma was 0.06 ± 0.02. All patients achieved Cmax/MIC and AUC from time zero to 24 h (AUC0-24)/MIC ratios for a bacteriostatic effect against Streptococcus pneumoniae. Twenty-seven patients (93%) achieved a Cmax/MIC ratio for a bacteriostatic effect against S. aureus, and 28 patients (97%) achieved an AUC0-24/MIC ratio for a bacteriostatic effect against S. aureus. Free plasma daptomycin concentrations were above the MIC for 50 to 100% of the dosing interval in 100% of patients for S. pneumoniae and 90% of patients for S. aureus. The median time to defervescence was 3 days from the start of daptomycin therapy. In summary, a 6-mg/kg intravenous infusion of daptomycin every 24 h was effective and well tolerated in neutropenic cancer patients.  相似文献   

20.
NZ2114 is a novel plectasin derivative with potent activity against gram-positive bacteria, including multiply drug-resistant strains. We used the neutropenic murine thigh infection model to characterize the time course of antimicrobial activity of NZ2114 and determine which pharmacokinetic/pharmacodynamic (PK/PD) index and magnitude best correlated with efficacy. Serum drug levels following administration of three fourfold-escalating single-dose levels of NZ2114 were measured by microbiologic assay. Single-dose time-kill studies following doses of 10, 40, and 160 mg/kg of body weight demonstrated concentration-dependent killing over the dose range (0.5 to 3.7 log10 CFU/thigh) and prolonged postantibiotic effects (3 to 15 h) against both Staphylococcus aureus and Streptococcus pneumoniae. Mice had 106.3 to 106.8 CFU/thigh of strains of S. pneumoniae or S. aureus at the start of therapy when treated for 24 h with 0.625 to 160 mg/kg/day of NZ2114 fractionated for 4-, 6-, 12-, and 24-h dosing regimens. Nonlinear regression analysis was used to determine which PK/PD index best correlated with microbiologic efficacy. Efficacies of NZ2114 were similar among the dosing intervals (P = 0.99 to 1.0), and regression with the 24-h area under the concentration-time curve (AUC)/MIC index was strong (R2, 0.90) for both S. aureus and S. pneumoniae. The maximum concentration of drug in serum/MIC index regression was also strong for S. pneumoniae (R2, 0.96). Studies to identify the PD target for NZ2114 utilized eight S. pneumoniae and six S. aureus isolates and an every-6-h regimen of drug (0.156 to 160 mg/kg/day). Treatment against S. pneumoniae required approximately twofold-less drug for efficacy in relationship to the MIC than did treatment against S. aureus. The free drug 24-h AUCs/MICs necessary to produce a stasis effect were 12.3 ± 6.7 and 28.5 ± 11.1 for S. pneumoniae and S. aureus, respectively. The 24-h AUC/MIC associated with a 1-log killing endpoint was only 1.6-fold greater than that needed for stasis. Resistance to other antimicrobial classes did not impact the magnitude of the PD target required for efficacy. The PD target in this model should be considered in the design of clinical trials with this novel antibiotic.The epidemic of antimicrobial resistance is a growing public health threat. Unfortunately, few drug classes have been identified and brought to market in the last decade (15). One recently reported novel antibacterial compound is from the plectasin class (12). Plectasin antibiotics are defensin-like peptide antibiotics of fungal origin. These compounds exhibit broad-spectrum activity against gram-positive bacteria, including potency against multiply drug-resistant strains. The plectasins specifically bind a target molecule and interfere with bacterial biosynthesis, resulting in rapid cell death (T. Schneider et al., submitted for publication). Recent studies suggested the potential for both in vitro and in vivo efficacy with one derivative, NZ2114 (12).Preclinical pharmacodynamic investigations have proven to be predictive of outcome in therapy of patients and thus important in the design of dosing regimens in the development of antimicrobial clinical trials (1, 2, 3, 5, 8, 10). The goals of the current experiments were to characterize the in vivo pharmacodynamic characteristics of this drug against Streptococcus pneumoniae and Staphylococcus aureus in order to identify the pharmacodynamic target for future clinical development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号