首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vancomycin, linezolid, and daptomycin are very active against staphylococci, but isolates with decreased susceptibility to these antimicrobial agents are isolated sporadically. A total of 19,350 Staphylococcus aureus isolates (51% methicillin resistant [MRSA]) and 3,270 coagulase-negative staphylococci (CoNS) were collected consecutively from 82 U.S. medical centers from January 2008 to December 2011 and tested for susceptibility against ceftaroline and comparator agents by the reference broth microdilution method. Among S. aureus strains, 14 isolates (0.07%) exhibited decreased susceptibility to linezolid (MIC, ≥8 μg/ml), 18 (0.09%) to daptomycin (MIC, ≥2 μg/ml), and 369 (1.9%) to vancomycin (MIC, ≥2 μg/ml; 368 isolates at 2 μg/ml and 1 at 4 μg/ml). Fifty-one (1.6%) CoNS were linezolid resistant (MIC, ≥8 μg/ml), and four (0.12%) were daptomycin nonsusceptible (MIC, ≥2 μg/ml). Ceftaroline was very active against S. aureus overall (MIC50/90, 0.5/1 μg/ml; 98.5% susceptible), including MRSA (MIC50/90, 0.5/1 μg/ml; 97.2% susceptible). All daptomycin-nonsusceptible and 85.7% of linezolid-resistant S. aureus isolates were susceptible to ceftaroline. Against S. aureus isolates with a vancomycin MIC of ≥2 μg/ml, 91.9, 96.2, and 98.9% were susceptible to ceftaroline, daptomycin, and linezolid, respectively. CoNS strains were susceptible to ceftaroline (MIC50/90, 0.25/0.5 μg/ml; 99.1% inhibited at ≤1 μg/ml), including methicillin-resistant (MIC50/90, 0.25/0.5 μg/ml), linezolid-resistant (MIC50/90, 0.5/0.5 μg/ml), and daptomycin-nonsusceptible (4 isolates; MIC range, 0.03 to 0.12 μg/ml) strains. In conclusion, ceftaroline demonstrated potent in vitro activity against staphylococci with reduced susceptibility to linezolid, daptomycin, or vancomycin, and it may represent a valuable treatment option for infections caused by these multidrug-resistant staphylococci.  相似文献   

2.
Retapamulin, the first pleuromutilin antimicrobial agent approved for the topical treatment of skin infections in humans, was tested against 987 clinical isolates representing 30 species and/or resistance groups. MICs were determined along with disk diffusion zone diameters using a 2-μg disk. Population distribution and MIC versus disk zone diameter scattergrams were analyzed to determine microbiological MIC cutoff values and inhibition zone correlates. Minimum bactericidal concentrations were performed on a smaller subset of key species. The retapamulin MIC90 against 234 Staphylococcus aureus isolates and 110 coagulase-negative staphylococci was 0.12 μg/ml. Retapamulin MIC90s ranged from 0.03 to 0.06 μg/ml against beta-hemolytic streptococci including 102 Streptococcus pyogenes, 103 Streptococcus agalactiae, 59 group C Streptococcus, and 71 group G Streptococcus isolates. The MIC90 against 55 viridans group streptococci was 0.25 μg/ml. Retapamulin had very little activity against 151 gram-negative bacilli and most of the Enterococcus species tested. Based on the data from this study, for staphylococci, MICs of ≤0.5, 1, and ≥2 μg/ml with corresponding disk diffusion values of ≥20 mm, 17 to 19 mm, and ≤16 mm can be proposed for susceptible, intermediate, and resistant microbiological cutoffs, respectively. For beta-hemolytic streptococci, a susceptible-only MIC of ≤0.25 μg/ml with a corresponding disk diffusion value of ≥15 mm can be proposed for susceptible-only microbiological cutoffs.  相似文献   

3.
The in vitro activity of ceftazidime-avibactam was evaluated against 34,062 isolates of Enterobacteriaceae from patients with intra-abdominal, urinary tract, skin and soft-tissue, lower respiratory tract, and blood infections collected in the INFORM (International Network For Optimal Resistance Monitoring) global surveillance study (176 medical center laboratories in 39 countries) in 2012 to 2014. Overall, 99.5% of Enterobacteriaceae isolates were susceptible to ceftazidime-avibactam using FDA approved breakpoints (susceptible MIC of ≤8 μg/ml; resistant MIC of ≥16 μg/ml). For individual species of the Enterobacteriaceae, the ceftazidime-avibactam MIC inhibiting ≥90% of isolates (MIC90) ranged from 0.06 μg/ml for Proteus species to 1 μg/ml for Enterobacter spp. and Klebsiella pneumoniae. Carbapenem-susceptible isolates of Escherichia coli, K. pneumoniae, Klebsiella oxytoca, and Proteus mirabilis with a confirmed extended-spectrum β-lactamase (ESBL) phenotype, or a ceftazidime MIC of ≥16 μg/ml if the ESBL phenotype was not confirmed by clavulanic acid inhibition, were characterized further to identify the presence of specific ESBL- and plasmid-mediated AmpC β-lactamase genes using a microarray-based assay and additional PCR assays. Ceftazidime-avibactam demonstrated potent activity against molecularly confirmed ESBL-producing (n = 5,354; MIC90, 0.5 μg/ml; 99.9% susceptible), plasmid-mediated AmpC-producing (n = 246; MIC90, 0.5 μg/ml; 100% susceptible), and ESBL- and AmpC-producing (n = 152; MIC90, 1 μg/ml; 100% susceptible) isolates of E. coli, K. pneumoniae, K. oxytoca, and P. mirabilis. We conclude that ceftazidime-avibactam demonstrates potent in vitro activity against globally collected clinical isolates of Enterobacteriaceae, including isolates producing ESBLs and AmpC β-lactamases.  相似文献   

4.
We investigated the in vitro activity of voriconazole compared to those of fluconazole and itraconazole against 566 clinical isolates of Cryptococcus neoformans from Africa (164) and the United States (402). Isolates were obtained from cerebrospinal fluid (362), blood (139), and miscellaneous sites (65). Voriconazole (MIC at which 90% of the isolates are inhibited [MIC90], 0.12 to 0.25 μg/ml) was more active than either itraconazole (MIC90, 0.5 μg/ml) or fluconazole (MIC90, 8.0 to 16 μg/ml) against both African and U.S. isolates. Isolates inhibited by ≥16 μg of fluconazole per ml were almost all (99%) inhibited by ≤1 μg of voriconazole per ml. These results suggest that voriconazole may be useful in the treatment of cryptococcosis.  相似文献   

5.
RX-P873 is a novel antibiotic from the pyrrolocytosine series which exhibits high binding affinity for the bacterial ribosome and broad-spectrum antibiotic properties. The pyrrolocytosines have shown in vitro activity against multidrug-resistant Gram-negative and Gram-positive strains of bacteria known to cause complicated urinary tract, skin, and lung infections, as well as sepsis. Enterobacteriaceae (657), Pseudomonas aeruginosa (200), and Acinetobacter baumannii (202) isolates from North America and Europe collected in 2012 as part of a worldwide surveillance program were tested in vitro by broth microdilution using Clinical and Laboratory Standards Institute (CLSI) methodology. RX-P873 (MIC90, 0.5 μg/ml) was >32-fold more active than ceftazidime and inhibited 97.1% and 99.5% of Enterobacteriaceae isolates at MIC values of ≤1 and ≤4 μg/ml, respectively. There were only three isolates with an MIC value of >4 μg/ml (all were indole-positive Protea). RX-P873 (MIC50/90, 2/4 μg/ml) was highly active against Pseudomonas aeruginosa isolates, including isolates which were nonsusceptible to ceftazidime or meropenem. RX-P873 was 2-fold less active against P. aeruginosa than tobramycin (MIC90, 2 μg/ml; 91.0% susceptible) and colistin (MIC90, 2 μg/ml; 99.5% susceptible) and 2-fold more potent than amikacin (MIC90, 8 μg/ml; 93.5% susceptible) and meropenem (MIC90, 8 μg/ml; 76.0% susceptible). RX-P873, the most active agent against Acinetobacter baumannii (MIC90, 1 μg/ml), was 2-fold more active than colistin (MIC90, 2 μg/ml; 97.0% susceptible) and 4-fold more active than tigecycline (MIC90, 4 μg/ml). This novel agent merits further exploration of its potential against multidrug-resistant Gram-negative bacteria.  相似文献   

6.
Ceftazidime-avibactam (MIC50/90, 0.12/0.25 μg/ml) inhibited 99.9% (20,698/20,709) of Enterobacteriaceae isolates at ≤8 μg/ml. This compound was active against resistant subsets, including ceftazidime-nonsusceptible Enterobacter cloacae (MIC50/90, 0.25/0.5 μg/ml) and extended-spectrum β-lactamase (ESBL) phenotype isolates. An ESBL phenotype was noted among 12.4% (1,696/13,692 isolates from targeted species) of the isolates, including 776 Escherichia coli (12.0% for this species; MIC50/90, 0.12/0.25 μg/ml), 721 Klebsiella pneumoniae (16.3%; MIC50/90, 0.12/0.25 μg/ml), 119 Klebsiella oxytoca (10.3%; MIC50/90, 0.06/0.25 μg/ml), and 80 Proteus mirabilis (4.9%; MIC50/90, 0.06/0.12 μg/ml) isolates. The most common enzymes detected among ESBL phenotype isolates from 2013 (n = 743) screened using a microarray-based assay were CTX-M-15-like (n = 307), KPC (n = 120), SHV ESBLs (n = 118), and CTX-M-14-like (n = 110). KPC producers were highly resistant to comparators, and ceftazidime-avibactam (MIC50/90, 0.5/2 μg/ml) and tigecycline (MIC50/90, 0.5/1 μg/ml; 98.3% susceptible) were the most active agents against these strains. Meropenem (MIC50/90, ≤0.06/≤0.06 μg/ml) and ceftazidime-avibactam (MIC50/90, 0.12/0.25 μg/ml) were active against CTX-M-producing isolates. Other enzymes were also observed, and ceftazidime-avibactam displayed good activity against the isolates producing less common enzymes. Among 11 isolates displaying ceftazidime-avibactam MIC values of >8 μg/ml, three were K. pneumoniae strains producing metallo-β-lactamases (all ceftazidime-avibactam MICs, >32 μg/ml), with two NDM-1 producers and one K. pneumoniae strain carrying the blaKPC-2 and blaVIM-4 genes. Therapeutic options for isolates producing β-lactamases may be limited, and ceftazidime-avibactam, which displayed good activity against strains, including those producing KPC enzymes, merits further study in infections where such organisms occur.  相似文献   

7.
Plazomicin is a next-generation aminoglycoside that is not affected by most clinically relevant aminoglycoside-modifying enzymes. The in vitro activities of plazomicin and comparator antimicrobials were evaluated against a collection of 5,015 bacterial isolates obtained from patients in Canadian hospitals between January 2011 and October 2012. Susceptibility testing was performed using the Clinical and Laboratory Standards Institute (CLSI) broth microdilution method, with MICs interpreted according to CLSI breakpoints, when available. Plazomicin demonstrated potent in vitro activity against members of the family Enterobacteriaceae, with all species except Proteus mirabilis having an MIC90 of ≤1 μg/ml. Plazomicin was active against aminoglycoside-nonsusceptible Escherichia coli, with MIC50 and MIC90 values identical to those for aminoglycoside-susceptible isolates. Furthermore, plazomicin demonstrated equivalent activities versus extended-spectrum β-lactamase (ESBL)-producing and non-ESBL-producing E. coli and Klebsiella pneumoniae, with 90% of the isolates inhibited by an MIC of ≤1 μg/ml. The MIC50 and MIC90 values for plazomicin against Pseudomonas aeruginosa were 4 μg/ml and 16 μg/ml, respectively, compared with 4 μg/ml and 8 μg/ml, respectively, for amikacin. Plazomicin had an MIC50 of 8 μg/ml and an MIC90 of 32 μg/ml versus 64 multidrug-resistant P. aeruginosa isolates. Plazomicin was active against methicillin-susceptible and methicillin-resistant Staphylococcus aureus, with both having MIC50 and MIC90 values of 0.5 μg/ml and 1 μg/ml, respectively. In summary, plazomicin demonstrated potent in vitro activity against a diverse collection of Gram-negative bacilli and Gram-positive cocci obtained over a large geographic area. These data support further evaluation of plazomicin in the clinical setting.  相似文献   

8.
More than 5 million Americans are bitten by animals, usually dogs, annually. Bite patients comprise ∼1% of all patients who visit emergency departments (300,000/year), and approximately 10,000 require hospitalization and intravenous antibiotics. Ceftaroline is the bioactive component of the prodrug ceftaroline fosamil, which is FDA approved for the treatment of acute bacterial skin and skin structure infections (ABSSSIs), including those containing methicillin-resistant Staphylococcus aureus (MRSA). There are no in vitro data about the activity of ceftaroline against Pasteurella multocida subsp. multocida and Pasteurella multocida subsp. septica, other Pasteurella spp., or other bite wound isolates. We therefore studied the in vitro activity of ceftaroline against 243 animal bite isolates. MICs were determined using the broth microdilution method according to CLSI guidelines. Comparator drugs included cefazolin, ceftriaxone, ertapenem, ampicillin-sulbactam, azithromycin, doxycycline, and sulfamethoxazole-trimethoprim (SMX-TMP). Ceftaroline was the most active agent against all 5 Pasteurella species, including P. multocida subsp. multocida and P. multocida subsp. septica, with a maximum MIC of ≤0.008 μg/ml; more active than ceftriaxone and ertapenem (MIC90s, ≤0.015 μg/ml); and more active than cefazolin (MIC90, 0.5 μg/ml) doxycycline (MIC90, 0.125 μg/ml), azithromycin (MIC90, 0.5 μg/ml), ampicillin-sulbactam (MIC90, 0.125 μg/ml), and SMX-TMP (MIC90, 0.125 μg/ml). Ceftaroline was also very active against all S. aureus isolates (MIC90, 0.125 μg/ml) and other Staphylococcus and Streptococcus species, with a maximum MIC of 0.125 μg/ml against all bite isolates tested. Ceftaroline has potential clinical utility against infections involving P. multocida, other Pasteurella species, and aerobic Gram-positive isolates, including S. aureus.  相似文献   

9.
Biapenem is a carbapenem being developed in combination with RPX7009, a new inhibitor of serine β-lactamases. Biapenem was tested alone and in combination with fixed concentrations of RPX7009 by agar dilution against 377 recent isolates of anaerobes. A separate panel of 27 isolates of Bacteroides spp. with decreased susceptibility or resistance to imipenem was also tested. Comparator drugs included meropenem, piperacillin-tazobactam, ampicillin-sulbactam, cefoxitin, ceftazidime, metronidazole, clindamycin, and tigecycline plus imipenem, doripenem, and ertapenem for the 27 selected strains. For recent consecutive strains of Bacteroides species, the MIC90 for biapenem-RPX7009 was 1 μg/ml, with a MIC90 of 4 μg/ml for meropenem. Other Bacteroides fragilis group species showed a MIC90 of 0.5 μg/ml for both agents. The MIC90s for biapenem-RPX7009 were 0.25 μg/ml for Prevotella spp., 0.125 μg/ml for Fusobacterium nucleatum and Fusobacterium necrophorum, 2 μg/ml for Fusobacterium mortiferum, 0.5 μg/ml for Fusobacterium varium, ≤0.5 μg/ml for Gram-positive cocci and rods, and 0.03 to 8 μg/ml for clostridia. Against 5 B. fragilis strains harboring a known metallo-beta-lactamase, biapenem-RPX7009 MICs were comparable to those of other carbapenems (≥32 μg/ml). Against Bacteroides strains with an imipenem MIC of 2 μg/ml, biapenem-RPX7009 had MICs of 0.5 to 2 μg/ml, with MICs of 0.5 to 32 μg/ml for meropenem, doripenem, and ertapenem. For strains with an imipenem MIC of 4 μg/ml, the MICs for biapenem-RPX7009 were 4 to 16 μg/ml, with MICs of 8 to >32 μg/ml for meropenem, doripenem, and ertapenem. The inhibitor RPX7009 had no antimicrobial activity when tested alone, and it showed little or no potentiation of biapenem versus anaerobes. Biapenem-RPX7009 showed activity comparable to that of imipenem and was superior to meropenem, doripenem, and ertapenem against imipenem-nonsusceptible Bacteroides spp.  相似文献   

10.
A total of 84,704 isolates were collected from 191 medical centers in 2009 to 2013 and tested for susceptibility to ceftaroline and comparator agents by broth microdilution methods. Ceftaroline inhibited all Staphylococcus aureus isolates at ≤2 μg/ml and was very active against methicillin-resistant strains (MIC at which 90% of the isolates tested are inhibited [MIC90], 1 μg/ml; 97.6% susceptible). Among Streptococcus pneumoniae isolates, the highest ceftaroline MIC was 0.5 μg/ml, and ceftaroline activity against the most common Enterobacteriaceae species (MIC50, 0.12 μg/ml; 78.9% susceptible) was similar to that of ceftriaxone (MIC50, ≤0.25 μg/ml; 86.8% susceptible).  相似文献   

11.
The comparative in vitro activity of SMT19969, a novel, narrow-spectrum, nonabsorbable agent, was studied against 50 ribotype-defined Clostridium difficile strains, 174 Gram-positive and 136 Gram-negative intestinal anaerobes, and 40 Gram-positive aerobes. SMT19969 was one dilution more active against C. difficile isolates (MIC range, 0.125 to 0.5 μg/ml; MIC90, 0.25 μg/ml), including ribotype 027 strains, than fidaxomicin (range, 0.06 to 1 μg/ml; MIC90, 0.5 μg/ml) and two to six dilutions lower than either vancomycin or metronidazole. SMT19969 and fidaxomicin were generally less active against Gram-negative anaerobes, especially the Bacteroides fragilis group species, than vancomycin and metronidazole, suggesting that SMT19969 has a lesser impact on the normal intestinal microbiota that maintain colonization resistance. SMT19969 showed limited activity against other Gram-positive anaerobes, including Bifidobacteria species, Eggerthella lenta, Finegoldia magna, and Peptostreptococcus anaerobius, with MIC90s of >512, >512, 64, and 64 μg/ml, respectively. Clostridium species showed various levels of susceptibility, with C. innocuum being susceptible (MIC90, 1 μg/ml) and C. ramosum and C. perfringens being nonsusceptible (MIC90, >512 μg/ml). Activity against Lactobacillus spp. (range, 0.06 to >512 μg/ml; MIC90, >512 μg/ml) was comparable to that of fidaxomicin and varied by species and strain. Gram-positive aerobic cocci (Staphylococcus aureus, Enterococcus faecalis, E. faecium, and streptococci) showed high SMT19969 MIC90 values (128 to >512 μg/ml).  相似文献   

12.
Telavancin had MIC50, MIC90, and MIC100 values of 0.03, 0.06, and 0.12 μg/ml, respectively, against methicillin-susceptible Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), and non-multidrug-resistant (non-MDR) and MDR subsets. MRSA with elevated MIC values for vancomycin (2 to 4 μg/ml) or daptomycin (1 to 2 μg/ml) had telavancin MIC50 (0.06 μg/ml) values 2-fold higher than those of isolates with lower MIC results (MIC50, 0.03 μg/ml). However, telavancin had MIC90 and MIC100 results of 0.06 and 0.12 μg/ml (100% susceptible), respectively, regardless of the MRSA subset.  相似文献   

13.
The activity of DC-159a, a novel orally administered fluorinated quinolone, was evaluated by reference broth microdilution or agar dilution methods against 1,149 recently collected clinical isolates from five continents. Against pathogens associated with community-acquired respiratory tract infections (CA-RTIs), the MIC90s were 0.12 μg/ml for Streptococcus pneumoniae, 0.015 to 0.03 μg/ml for Haemophilus influenzae, 0.03 μg/ml for Moraxella catarrhalis, and 0.12 μg/ml for beta-hemolytic streptococci. Similarly, DC-159a was potent against various types of staphylococci (MIC90 range, 0.03 to 2 μg/ml), Enterococcus faecalis (MIC90, 4 μg/ml), wild-type isolates of the family Enterobacteriaceae (MIC90 range, 0.06 to 2 μg/ml), wild-type Pseudomonas aeruginosa (MIC90, 2 μg/ml), and Acinetobacter spp. (MIC90, 0.12 μg/ml). Fluoroquinolone-nonsusceptible organism subsets usually had elevated DC-159a MICs, but the MICs were often two- to fourfold lower than those of levofloxacin and moxifloxacin. In conclusion, DC-159a appears to possess a balanced broad spectrum of activity that exceeds the activities of the currently marketed fluoroquinolones, especially against pathogens that cause CA-RTIs.  相似文献   

14.
Methicillin-resistant Staphylococcus aureus (MRSA) isolates have arisen with reduced susceptibility to several anti-MRSA agents. Telavancin (TLV), a novel anti-MRSA agent, retains low MICs against these organisms. Our objective was to determine the MICs for TLV, daptomycin (DAP), vancomycin (VAN), and linezolid (LZD) against daptomycin-nonsusceptible (DNS) S. aureus, vancomycin-intermediate S. aureus (VISA), heteroresistant VISA (hVISA), and linezolid-resistant (LZDr) S. aureus. We also evaluated these agents against each phenotype in pharmacokinetic/pharmacodynamic (PK/PD) models. Seventy DNS, 100 VISA, 180 hVISA, and 25 LZDr MRSA isolates were randomly selected from our library and tested to determine their MICs against TLV, DAP, VAN, and LZD via broth microdilution and a Trek panel. Four isolates were randomly selected for 168-h in vitro models to evaluate treatment with TLV at 10 mg/kg of body weight/day, DAP at 10 mg/kg/day, VAN at 1 g every 12 h (q12h), and LZD at 600 mg q12h. The MIC50/90 for TLV, DAP, VAN, and LZD against 70 DNS S. aureus isolates were 0.06/0.125 μg/ml, 2/4 μg/ml, 1/2 μg/ml, and 2/2 μg/ml, respectively. Against 100 VISA isolates, the MIC50/90 were 0.06/0.125 μg/ml, 1/1 μg/ml, 4/8 μg/ml, and 1/2 μg/ml, respectively. Against 170 hVISA isolates, the MIC50/90 were 0.06/0.125 μg/ml, 0.5/1 μg/ml, 1/2 μg/ml, and 1/2 μg/ml, respectively. Against 25 LZDr isolates, the MIC50/90 were 0.03/0.06 μg/ml, 1/1 μg/ml, 2/2 μg/ml, and 8/8 μg/ml, respectively. The TLV MIC was >0.125 μg/ml for 10/365 (2.7%) isolates. In PK/PD models, TLV was universally bactericidal at 168 h and statistically superior to all antibiotics against DNS S. aureus strain R2334. These data further establish the potency of TLV against resistant MRSA. The model data demonstrate in vitro bactericidal activity of TLV against hVISA, VISA, DNS S. aureus, and LZDr S. aureus strains. Further clinical research is warranted.  相似文献   

15.
Cryptococcal antigen screening is recommended among people living with AIDS when entering HIV care with a CD4 count of <100 cells/μl, and preemptive fluconazole monotherapy treatment is recommended for those with subclinical cryptococcal antigenemia. Yet, knowledge is limited of current antimicrobial resistance in Africa. We examined antifungal drug susceptibility in 198 clinical isolates collected from Kampala, Uganda, between 2010 and 2014 using the CLSI broth microdilution assay. In comparison with two previous studies from 1998 to 1999 that reported an MIC50 of 4 μg/ml and an MIC90 of 8 μg/ml prior to widespread human fluconazole and agricultural azole fungicide usage, we report an upward shift in the fluconazole MIC50 to 8 μg/ml and an MIC90 value of 32 μg/ml, with 31% of isolates with a fluconazole MIC of ≥16 μg/ml. We observed an amphotericin B MIC50 of 0.5 μg/ml and an MIC90 of 1 μg/ml, of which 99.5% of isolates (197 of 198 isolates) were still susceptible. No correlation between MIC and clinical outcome was observed in the context of amphotericin B and fluconazole combination induction therapy. We also analyzed Cryptococcus susceptibility to sertraline, with an MIC50 of 4 μg/ml, suggesting that sertraline is a promising oral, low-cost, available, novel medication and a possible alternative to fluconazole. Although the CLSI broth microdilution assay is ideal to standardize results, limit human bias, and increase assay capacity, such assays are often inaccessible in low-income countries. Thus, we also developed and validated an assay that could easily be implemented in a resource-limited setting, with similar susceptibility results (P = 0.52).  相似文献   

16.
Solithromycin, a fourth-generation macrolide (a fluoroketolide with enhanced activity against macrolide-resistant bacteria due to interaction with three ribosomal sites) and the first fluoroketolide, was tested against a 2014 collection of 6,115 isolates, including Streptococcus pneumoniae (1,713 isolates), Haemophilus influenzae (1,308), Moraxella catarrhalis (577), Staphylococcus aureus (1,024), and beta-hemolytic streptococci (1,493), by reference broth microdilution methods. The geographic samples included 2,748 isolates from the United States, 2,536 from Europe, 386 from Latin America, and 445 from the Asia-Pacific region. Solithromycin was observed to be very active against S. pneumoniae (MIC50/90, 0.008/0.12 μg/ml), demonstrating 2-fold greater activity than telithromycin (MIC50/90, 0.015/0.25 μg/ml) and 16- to >256-fold greater activity than azithromycin (MIC50/90, 0.12/>32 μg/ml), with all strains being inhibited at a solithromycin MIC of ≤1 μg/ml. Against H. influenzae, solithromycin showed potency identical to that of telithromycin (MIC50/90, 1/2 μg/ml), and both of these compounds were 2-fold less active than azithromycin (MIC50/90, 0.5/1 μg/ml). All but one of the M. catarrhalis isolates were inhibited by solithromycin at ≤0.25 μg/ml. Solithromycin inhibited 85.3% of S. aureus isolates at ≤1 μg/ml, and its activity was lower against methicillin-resistant (MIC50/90, 0.06/>32 μg/ml) than against methicillin-susceptible (MIC50/90, 0.06/0.06 μg/ml) isolates. Little variation in solithromycin activity was observed by geographic region for the species tested. Solithromycin was very active against beta-hemolytic streptococci (MIC50/90, 0.015/0.03 μg/ml), and all isolates were inhibited at MIC values of ≤0.5 μg/ml. In conclusion, solithromycin demonstrated potent activity against global and contemporary (2014) pathogens that represent the major causes of community-acquired bacterial pneumonia. These data support the continued clinical development of solithromycin for the treatment of this important indication.  相似文献   

17.
Ceftobiprole medocaril is a newly approved drug in Europe for the treatment of hospital-acquired pneumonia (HAP) (excluding patients with ventilator-associated pneumonia but including ventilated HAP patients) and community-acquired pneumonia in adults. The aim of this study was to evaluate the in vitro antimicrobial activity of ceftobiprole against prevalent Gram-positive and -negative pathogens isolated in Europe, Turkey, and Israel during 2005 through 2010. A total of 60,084 consecutive, nonduplicate isolates from a wide variety of infections were collected from 33 medical centers. Species identification was confirmed, and all isolates were susceptibility tested using reference broth microdilution methods. Ceftobiprole had high activity against methicillin-susceptible Staphylococcus aureus (MSSA) (100.0% susceptible), methicillin-susceptible coagulase-negative staphylococci (CoNS), beta-hemolytic streptococci, and Streptococcus pneumoniae (99.3% susceptible), with MIC90 values of 0.25, 0.12, ≤0.06, and 0.5 μg/ml, respectively. Ceftobiprole was active against methicillin-resistant S. aureus (MRSA) (98.3% susceptible) and methicillin-resistant CoNS, having a MIC90 of 2 μg/ml. Ceftobiprole was active against Enterococcus faecalis (MIC50/90, 0.5/4 μg/ml) but not against most Enterococcus faecium isolates. Ceftobiprole was very potent against the majority of Enterobacteriaceae (87.3% susceptible), with >80% inhibited at ≤0.12 μg/ml. The potency of ceftobiprole against Pseudomonas aeruginosa (MIC50/90, 2/>8 μg/ml; 64.6% at MIC values of ≤4 μg/ml) was similar to that of ceftazidime (MIC50/90, 2/>16 μg/ml; 75.4% susceptible), but limited activity was observed against Acinetobacter spp. and Stenotrophomonas maltophilia. High activity was also observed against all Haemophilus influenzae (MIC90, ≤0.06 μg/ml) and Moraxella catarrhalis (MIC50/90, ≤0.06/0.25 μg/ml) isolates. Ceftobiprole demonstrated a wide spectrum of antimicrobial activity against this very large longitudinal sample of contemporary pathogens.  相似文献   

18.
The in vitro activity of ceftolozane in combination with tazobactam (fixed concentration of 4 μg/ml) was evaluated against 2,435 Pseudomonas aeruginosa clinical isolates obtained from across Canada using Clinical and Laboratory Standards Institute broth microdilution methods. The MIC50 and MIC90 values for ceftolozane-tazobactam were 0.5 μg/ml and 1 μg/ml, respectively (a 32-fold-lower MIC90 than that for ceftazidime). Eighty-nine percent (141/158) of multidrug-resistant isolates were inhibited by ≤8 μg/ml of ceftolozane-tazobactam.  相似文献   

19.
Ceftolozane/tazobactam, a novel antimicrobial agent with activity against Pseudomonas aeruginosa (including drug-resistant strains) and other common Gram-negative pathogens (including most extended-spectrum-β-lactamase [ESBL]-producing Enterobacteriaceae strains), and comparator agents were susceptibility tested by a reference broth microdilution method against 7,071 Enterobacteriaceae and 1,971 P. aeruginosa isolates. Isolates were collected consecutively from patients in 32 medical centers across the United States during 2011 to 2012. Overall, 15.7% and 8.9% of P. aeruginosa isolates were classified as multidrug resistant (MDR) and extensively drug resistant (XDR), and 8.4% and 1.2% of Enterobacteriaceae were classified as MDR and XDR. No pandrug-resistant (PDR) Enterobacteriaceae isolates and only one PDR P. aeruginosa isolate were detected. Ceftolozane/tazobactam was the most potent (MIC50/90, 0.5/2 μg/ml) agent tested against P. aeruginosa and demonstrated good activity against 310 MDR strains (MIC50/90, 2/8 μg/ml) and 175 XDR strains (MIC50/90, 4/16 μg/ml). Ceftolozane/tazobactam exhibited high overall activity (MIC50/90, 0.25/1 μg/ml) against Enterobacteriaceae and retained activity (MIC50/90, 4/>32 μg/ml) against many 601 MDR strains but not against the 86 XDR strains (MIC50, >32 μg/ml). Ceftolozane/tazobactam was highly potent (MIC50/90, 0.25/0.5 μg/ml) against 2,691 Escherichia coli isolates and retained good activity against most ESBL-phenotype E. coli isolates (MIC50/90, 0.5/4 μg/ml), but activity was low against ESBL-phenotype Klebsiella pneumoniae isolates (MIC50/90, 32/>32 μg/ml), explained by the high rate (39.8%) of meropenem coresistance observed in this species phenotype. In summary, ceftolozane/tazobactam demonstrated high potency and broad-spectrum activity against many contemporary Enterobacteriaceae and P. aeruginosa isolates collected in U.S. medical centers. Importantly, ceftolozane/tazobactam retained potency against many MDR and XDR strains.  相似文献   

20.
The activities of HMR 3004 and HMR 3647 and comparator agents, especially macrolides, were determined by the agar dilution method against 262 aerobic and 120 anaerobic strains isolated from skin and soft tissue infections associated with human and animal bite wounds. HMR 3004 and HMR 3647 were active against almost all aerobic and fastidious facultative isolates (MIC at which 90% of the isolates are inhibited [MIC90], ≤0.5 and 1 μg/ml, respectively) and against all anaerobes [Bacteroides tectum, Porphyromonas macacae (salivosa), Prevotella heparinolytica, Porphyromonas sp., Prevotella sp., and peptostreptococci] at ≤0.25 and ≤0.5 μg/ml, respectively, except Fusobacterium nucleatum (HMR 3004, MIC90 = 16 μg/ml; HMR 3647, MIC90 = 8 μg/ml) and other Fusobacterium species (MIC90, 1 and 2 μg/ml, respectively). In general, HMR 3004 and HMR 3647 were more active than any of the macrolides tested. Azithromycin was more active than clarithromycin against all Pasteurella species, including Pasteurella multocida subsp. multocida, Eikenella corrodens, and Fusobacterium species, while clarithromycin was more active than azithromycin against Corynebacterium species, Weeksella zoohelcum, B. tectum, and P. heparinolytica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号