首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Xishi Tai  Jinhe Jiang 《Materials》2012,5(9):1626-1634
A new trinuclear Cd (II) complex [Cd3(L)6(2,2-bipyridine)3] [L = N-phenylsulfonyl-L-leucinato] has been synthesized and characterized by elemental analysis, IR and X-ray single crystal diffraction analysis. The results show that the complex belongs to the orthorhombic, space group P212121 with a = 16.877(3) Å, b = 22.875(5) Å, c = 29.495(6) Å, α = β = γ = 90°, V = 11387(4) Å3, Z = 4, Dc= 1.416 μg·m−3, μ = 0.737 mm−1, F (000) = 4992, and final R1 = 0.0390, ωR2 = 0.0989. The complex comprises two seven-coordinated Cd (II) atoms, with a N2O5 distorted pengonal bipyramidal coordination environment and a six-coordinated Cd (II) atom, with a N2O4 distorted octahedral coordination environment. The molecules form one dimensional chain structure by the interaction of bridged carboxylato groups, hydrogen bonds and π-π interaction of 2,2-bipyridine. The luminescent properties of the Cd (II) complex and N-Benzenesulphonyl-L-leucine in solid and in CH3OH solution also have been investigated.  相似文献   

2.
The benzimidazole-based ligand containing polymerizable styrene group has been prepared via condensation of picolinaldehyde derivative containing styrene moiety and benzimidazole-based hydrazine. The ligand reacted with iron(II) tetrafluoroborate and iron(II) trifluoromethanesulfonate giving red-brown complexes of Fe(II) ions of formula [FeL2]X2, where X = CF3SO3 (1) or BF4 (2). Reductive electropolymerization was used to obtain a thin layer of the polymeric complex, poly-1. Further investigation of electrochemical properties of the compound by cyclic voltammetry showed two quasi-reversible redox processes assigned to electrooxidation and electroreduction of the polymer. Spectroelectrochemical measurements confirmed that the polymer undergoes the color changes during oxidation and reduction process. The polymer in its neutral state (Fe(II)) is yellow and it exhibits absorption band at 370 nm, after oxidation to Fe(III) state absorption band shifts to 350 nm and the polymer is almost colorless. While the metal ions are reduced to Fe(I) absorption band at around 410 nm has been observed and the polymer changed its color to intense yellow. The stability of the polymer during multiple oxidation/reduction cycles has also been investigated.  相似文献   

3.
Two kinds of 3-hydroxypyridine-2(1H)-thiones were synthesized. The visible (VIS) spectroscopic analysis indicated that 3-hydroxy-1-methylpyridine-2(1H)-thione (4a) and 3-hydroxy-1-(2-hydroxyethyl)pyridine-2(1H)-thione (4b) formed stable 3:1 Fe(III) complexes. The stability constant of the 4b-Fe(III) complex was estimated from the competitive reaction with EDTA and was found to be 36.7 in logβ3. Treatment of compound 4b with Ga(acac)3 in D2O:CD3OD (9:1) solution afforded 3:1 Ga(III) complex, which was assigned by means of 1H nuclear magnetic resonance (1H NMR) spectroscopy. Treatment of compound 4b with Pb(NO3)2 gave 4b-Pb(II) complex. The Pb(II) selectivity over biologically relevant Mg(II) and Ca(II) was remarkably improved by adopting N-hydroxyethyl functionality instead of N-methyl group.  相似文献   

4.
Kew-Yu Chen  Che-Wei Chang 《Materials》2014,7(11):7548-7565
Three symmetric alkylamino-substituted perylene bisimides with different n-alkyl chain lengths (n = 6, 12, or 18), 1,7-bis-(N,N-dialkylamino)perylene bisimides (1a–1c), were synthesized under mild condition and were characterized by 1H NMR, 13C NMR and high resolution mass spectroscopy. Their optical and electrochemical properties were measured using UV-Vis and emission spectroscopic techniques as well as cyclic voltammetry (CV). These compounds show deep green color in both solution and solid state, and are highly soluble in dichloromethane and even in nonpolar solvents such as hexane. The shapes of the absorption spectra of 1a–1c in the solution and solid state were found to be almost the same, indicating that the long alkyl chains could efficiently prevent intermolecular contact and aggregation. They show a unique charge transfer emission in the near-infrared region, of which the peak wavelengths exhibit strong solvatochromism. The dipole moments of the molecules have been estimated using the Lippert–Mataga equation, and upon excitation, they show larger dipole moment changes than that of 1,7-diaminoperylene bisimide (2). Moreover, all the dyes exhibit two irreversible one-electron oxidations and two quasi-reversible one-electron reductions in dichloromethane at modest potentials. Complementary density functional theory calculations performed on these chromophores are reported in order to rationalize their electronic structure and optical properties.  相似文献   

5.
Copper (II) complexes containing mixed ligands were synthesized in dimethyl formamide (DMF). The intense cyan emission at an ambient temperature is observed for solid copper (II) complexes with salicylic acid and a 12% quantum yield with a fluorescent lifetime of approximately 10 ms. Hence, copper (II) complexes with salicylic acid are excellent candidates for photoactive materials. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) reveal that the divalent copper metal centers coordinate with the nitrogen and oxygen lone pairs of conjugate ligands. XPS binding energy trends for core electrons in lower-lying orbitals are similar for all three copper (II) complexes: nitrogen 1s and oxygen 1s binding energies increase relative to those for undiluted ligands, and copper 2p3/2 binding energies decrease relative to that for CuCl2. The thermal behavior of these copper complexes reveals that the thermal stability is characterized by the following pattern: Cu(1,10-phenanthroline)(salicylic acid) > Cu(1,10-phenanthroline)(2,2’-bipyridine) > Cu(1,10-phenanthroline)(1-benzylimidazole)2.  相似文献   

6.
The coloration of butterflies that exhibit human visible iridescence from violet to green has been elucidated. Highly tilted multilayers of cuticle on the ridges, which were found in the scales of male S. charonda and E. mulciber butterflies, produce a limited-view, selective wavelength iridescence (ultraviolet (UV)~green) as a result of multiple interference between the cuticle-air layers. The iridescence from C. ataxus originates from multilayers in the groove plates between the ridges and ribs. The interference takes place between the top and bottom surfaces of each layer and incoherently between different layers. Consequently, the male with the layers that are ~270 nm thick reflects light of UV~560 nm (green) and the female with the layers that are ~191 nm thick reflects light of UV~400 nm (violet). T. aeacus does not produce the iridescent sheen which T. magellanus does. No iridescent sheen is ascribed to microrib layers, which are perpendicular to the scale plane, so that they cannot reflect any backscattering. The structures of these butterflies would provide us helpful hints to manipulate light in photoelectric devices, such as blue or UV LEDs.  相似文献   

7.
Three asymmetric amino-substituted perylene bisimide dyes with different n-alkyl chain lengths (n = 6, 12, or 18), 1-(N,N-dialkylamino)perylene bisimides (1a–1c), were synthesized under mild condition in high yields and were characterized by 1H NMR, 13C NMR (nuclear magnetic resonance), HRMS (High Resolution Mass Spectrometer), UV-Vis and fluorescence spectra, as well as cyclic voltammetry (CV). These molecules show intense green color in both solution and solid state and are highly soluble in dichloromethane and even in nonpolar solvents, such as hexane. The shapes of the absorption spectra of 1a–1c in solid state and in solution were found to be virtually the same, indicating that the long alkyl chains could efficiently prevent aggregation. They exhibit a unique charge transfer emission in the near-infrared region, of which the peak wavelengths show strong solvatochromism. The dipole moments of the compounds have been estimated using the Lippert-Mataga equation, and upon excitation, they show larger dipole moment changes than that of 1-aminoperylene bisimide (2). Furthermore, all of the compounds exhibit two quasi-reversible one-electron oxidations and two quasi-reversible one-electron reductions in dichloromethane at modest potentials. Complementary density functional theory (DFT) calculations performed on these dyes are reported in order to rationalize their molecular structures and electronic properties.  相似文献   

8.
For the initiation of DNA replication, dsDNA is unwound by helicases. Primases then recognize specific sequences on the template DNA strands and synthesize complementary oligonucleotide primers that are elongated by DNA polymerases in leading- and lagging-strand mode. The bacterial plasmid RSF1010 provides a model for the initiation of DNA replication, because it encodes the smallest known primase RepB′ (35.9 kDa), features only 1 single-stranded primase initiation site on each strand (ssiA and ssiB, each 40 nt long with 5′- and 3′-terminal 6 and 13 single-stranded nucleotides, respectively, and nucleotides 7–27 forming a hairpin), and is replicated exclusively in leading strand mode. We present the crystal structure of full-length dumbbell-shaped RepB′ consisting of an N-terminal catalytic domain separated by a long α-helix and tether from the C-terminal helix-bundle domain and the structure of the catalytic domain in a specific complex with the 6 5′-terminal single-stranded nucleotides and the C7–G27 base pair of ssiA, its single-stranded 3′-terminus being deleted. The catalytic domains of RepB′ and the archaeal/eukaryotic family of Pri-type primases share a common fold with conserved catalytic amino acids, but RepB′ lacks the zinc-binding motif typical of the Pri-type primases. According to complementation studies the catalytic domain shows primase activity only in the presence of the helix-bundle domain. Primases that are highly homologous to RepB′ are encoded by broad-host-range IncQ and IncQ-like plasmids that share primase initiation sites ssiA and ssiB and high sequence identity with RSF1010.  相似文献   

9.
Quickly updatable hologram images using photorefractive (PR) polymer composite based on poly(N-vinyl carbazole) (PVCz) is presented. PVCz is one of the pioneer materials of photoconductive polymers. PR polymer composite consists of 44 wt % of PVCz, 35 wt % of 4-azacycloheptylbenzylidene-malonitrile (7-DCST) as a nonlinear optical dye, 20 wt % of carbazolylethylpropionate (CzEPA) as a photoconductive plasticizer and 1 wt % of 2,4,7-trinitro-9-fluorenone (TNF) as a sensitizer. PR composite gives high diffraction efficiency of 68% at E = 45 V μm−1. Response speed of optical diffraction is the key parameter for real-time 3D holographic display. The key parameter for obtaining quickly updatable holographic images is to control the glass transition temperature lower enough to enhance chromophore orientation. Object image of the reflected coin surface recorded with reference beam at 532 nm (green beam) in the PR polymer composite is simultaneously reconstructed using a red probe beam at 642 nm. Instead of using a coin object, an object image produced by a computer was displayed on a spatial light modulator (SLM) and used for the hologram. The reflected object beam from an SLM was interfered with a reference beam on PR polymer composite to record a hologram and simultaneously reconstructed by a red probe beam.  相似文献   

10.
Siphoviridae is the most abundant viral family on earth which infects bacteria as well as archaea. All known siphophages infecting gram+ Lactococcus lactis possess a baseplate at the tip of their tail involved in host recognition and attachment. Here, we report analysis of the p2 phage baseplate structure by X-ray crystallography and electron microscopy and propose a mechanism for the baseplate activation during attachment to the host cell. This ∼1 MDa, Escherichia coli-expressed baseplate is composed of three protein species, including six trimers of the receptor-binding protein (RBP). RBPs host-recognition domains point upwards, towards the capsid, in agreement with the electron-microscopy map of the free virion. In the presence of Ca2+, a cation mandatory for infection, the RBPs rotated 200° downwards, presenting their binding sites to the host, and a channel opens at the bottom of the baseplate for DNA passage. These conformational changes reveal a novel siphophage activation and host-recognition mechanism leading ultimately to DNA ejection.  相似文献   

11.

Background

In previous work, we described viscosity and permittivity microelectromechanical systems (MEMS) sensors for continuous glucose monitoring (CGM) using poly[acrylamide-ran-3-acrylamidophenylboronic acid (PAA-ran-PAAPBA). In order to enhance our MEMS device antifouling properties, a novel, more hydrophilic polymer-sensing fluid was developed.

Method

To optimize sensing performance, we synthesized biocompatible copolymers poly(N-hydroxyethyl acrylamide)-ran-3-acrylamidophenylboronic acid (PHEAA-ran-PAAPBA) and developed its sensing fluid for viscosity-based glucose sensing. Key factors such as polymer composition and molecular weight were investigated in order to optimize viscometric responses.

Results

Compared with PAA-ran-PAAPBA fluid of a similar binding moiety percentage, PHEAA-ran-PAAPBA showed comparable high binding specificity to glucose in a reversible manner and even better performance in glucose sensing in terms of glucose sensing range (27–468 mg/ml) and sensitivity (within 3% standard error of estimate). Preliminary experiment on a MEMS viscometer demonstrated that the polymer fluid was able to sense the glucose concentration.

Conclusions

Our MEMS systems using PHEAA-ran-PAAPBA will possess enhanced implantable traits necessary to enable CGM in subcutaneous tissues.  相似文献   

12.
A mononuclear complex [MoOCl4(H2O)] readily forms a metal−metal bonded {Mo2O4}2+ core. A high content of pyridine in the reaction mixture prevents further aggregation of dinuclear cores into larger clusters and a neutral, dinuclear complex with the [Mo2O4Cl2(Py)4] composition is isolated as a product. Solid state structures of two compounds containing this complex, [Mo2O4Cl2(Py)4]·2.25Py (1) and [Mo2O4Cl2(Py)4]·1.5PyHCl (2), were investigated by X-ray crystallography.  相似文献   

13.
Xishi Tai  Wenhua Zhao 《Materials》2013,6(8):3547-3555
A novel Ca(II) coordination polymer, [CaL(4,4′-bipyridyl)(H2O)4]n (L = 1,6-naphthalenedisulfonate), was synthesized by reaction of calcium perchlorate with 1,6-naphthalenedisulfonic acid disodium salt and 4,4′-bipyridyl in CH3CH2OH/H2O. It was characterized by elemental analysis, IR, molar conductivity and thermogravimetric analysis. X-ray crystallography reveals that the Ca(II) coordination polymer belongs to the orthorhombic system, with space group P212121. The geometry of the Ca(II) ion is a distorted CaNO6 pengonal bipyramid, arising from its coordination by four water molecules, one nitrogen atom of 4,4′-bipyridyl molecule, and two oxygen atoms from two L ligands. The complex molecules form a helical chain by self-assembly. The antitumor activity of 1,6-naphthalenedisulfonic acid disodium salt and the Ca(II) coordination polymer against human hepatoma smmc-7721 cell line and human lung adenocarcinoma A549 cell line reveals that the Ca(II) coordination polymer inhibits cell growth of human lung adenocarcinoma A549 cell line with IC50 value of 27 μg/mL, and is more resistive to human lung adenocarcinoma A549 cell line as compared to 1,6-naphthalenedisulfonic acid disodium salt.  相似文献   

14.
We investigated H2O molecule adsorption that had an effect on the luminescence properties of the CsI(Na) crystal using experiments and first-principle calculations. We measured the emission spectra of the CsI(Na) crystal at different exposure times under gamma ray excitation. The experimental results showed that the energy resolution of the CsI(Na) crystal was worse when the crystal surface adsorbed more H2O molecules, and the crystal surface deliquescence decreased the luminescence efficiency of the CsI(Na) crystal. We studied the band structure, density of states, and optical properties changes caused by H2O molecule adsorption on the CsI(Na) (010) surface. The generalized gradient approximation (GGA) was used to describe the exchange and correlation potential between the electrons. Our calculation results showed that the band gap width of the CsI(Na) (010) surface decreased after adsorbing H2O molecules, while three new peaks appeared in the valence band, and the absorption coefficient decreased from 90,000 cm−1 to 65,000 cm−1, and the reflection coefficient decreased from 0.195 to 0.105. Further, the absorption coefficient was reduced by at least 25% because of H2O molecule adsorption, which led to the luminescence degradation of the CsI(Na) crystal.  相似文献   

15.
Magnesium hydroxide (Mg(OH)2) thin films were deposited by the drop-dry deposition (DDD) method using an aqueous solution containing Mg(NO3)2 and NaOH. DDD was performed by dropping the solution on a substrate, heating-drying, and rinsing in water. Effects of different deposition conditions on the surface morphology and optical properties of Mg(OH)2 thin films were researched. Films with a thickness of 1−2 μm were successfully deposited, and the Raman peaks of Mg(OH)2 were observed for them. Their transmittance in the visible range was 95% or more, and the bandgap was about 5.8 eV. It was found that the thin films have resistivity of the order of 105 Ωcm. Thus, the transparent and semiconducting Mg(OH)2 thin films were successfully prepared by DDD.  相似文献   

16.
In this study, an electroactive polymer (EAP), poly(2,5-bis(N-methyl-N-hexylamino)phenylene vinylene) (BAM-PPV) was investigated as a potential alternative surface pretreatment for hexavalent chromium (Cr(VI))-based aerospace coatings. BAM-PPV was tested as a pretreatment coating on an aerospace aluminum alloy (AA2024-T3) substrate in combination with a non-Cr(VI) epoxy primer and a polyurethane Advanced Performance Coating (APC) topcoat. This testing was undertaken to determine BAM-PPV’s adhesion, corrosion-inhibition, compatibility and survivability in laboratory testing and during outdoor field-testing. BAM-PPV showed excellent adhesion and acceptable corrosion performance in laboratory testing. The BAM-PPV aerospace coating system (BAM-PPV, non-Cr(VI) epoxy primer and polyurethane APC topcoat) was field tested for one year on the rear hatch door of the United States Air Force C-5 cargo plane. After one year of field testing there was no evidence of delamination or corrosion of the BAM-PPV aerospace coating system.  相似文献   

17.
The wide bandgap of 2D Mg(OH)2 inhibits its applications in visible-light photocatalytic applications. Besides, its mismatched band alignment to the redox potential of O2/H2O, brings about low efficacy of water-splitting performance. Therefore, to release the powder of 2D Mg(OH)2 in photocatalytic research, we explore anion doping strategies to engineer its electronic structure. Here, anion doping effects on electronic properties of 2D Mg(OH)2 are investigated by using DFT calculations for seven dopants (F, Cl, S, N, P, SO4, and PO4). We found (1) S, N and P doping remarkably reduces its band gap from 4.82 eV to 3.86 eV, 3.79 eV and 2.69 eV, respectively; (2) the band gap reduction is induced by the electron transfer to the dopant atoms; (3) F, Cl, SO4, and PO4 doping shifts its valence band to be lower than the oxidation potential of O2/H2O to render its band structure appropriate for photocatalytic water splitting. These results suggest that not only electrical conductivity of 2D Mg(OH)2 can be increased but also their band structure be aligned by using the proposed anion doping strategy. These results enable a new photocatalytic materials design approach while offering exciting possibilities in applications of high-current electrolysis, chemical gas sensing, and photocatalysis.  相似文献   

18.
VO2, as a promising material for smart windows, has attracted much attention, and researchers have been continuously striving to optimize the performance of VO2-based materials. Herein, nitrogen-incorporated VO2 (M1) thin films, using a polyvinylpyrrolidone (PVP)-assisted sol–gel method followed by heat treatment in NH3 atmosphere, were synthesized, which exhibited a good solar modulation efficiency (ΔTsol) of 4.99% and modulation efficiency of 37.6% at 2000 nm (ΔT2000 nm), while their visible integrated transmittance (Tlum) ranged from 52.19% to 56.79% after the phase transition. The crystallization, microstructure, and thickness of the film could be regulated by varying PVP concentrations. XPS results showed that, in addition to the NH3 atmosphere-N doped into VO2 lattice, the pyrrolidone-N introduced N-containing groups with N–N, N–O, or N–H bonds into the vicinity of the surface or void of the film in the form of molecular adsorption or atom (N, O, and H) filling. According to the Tauc plot, the estimated bandgap of N-incorporated VO2 thin films related to metal-to-insulator transition (Eg1) was 0.16–0.26 eV, while that associated with the visible transparency (Eg2) was 1.31–1.45 eV. The calculated Eg1 and Eg2 from the first-principles theory were 0.1–0.5 eV and 1.4–1.6 eV, respectively. The Tauc plot estimation and theoretical calculations suggested that the combined effect of N-doping and N-adsorption with the extra atom (H, N, and O) decreased the critical temperature (τc) due to the reduction in Eg1.  相似文献   

19.
Asparagine-linked glycosylation is a common posttranslational modification of diverse secretory and membrane proteins in eukaryotes, where it is catalyzed by the multiprotein complex oligosaccharyltransferase. The functions of the protein subunits of oligoasccharyltransferase, apart from the catalytic Stt3p, are ill defined. Here we describe functional and structural investigations of the Ost3/6p components of the yeast enzyme. Genetic, biochemical and structural analyses of the lumenal domain of Ost6p revealed oxidoreductase activity mediated by a thioredoxin-like fold with a distinctive active-site loop that changed conformation with redox state. We found that mutation of the active-site cysteine residues of Ost6p and its paralogue Ost3p affected the glycosylation efficiency of a subset of glycosylation sites. Our results show that eukaryotic oligosaccharyltransferase is a multifunctional enzyme that acts at the crossroads of protein modification and protein folding.  相似文献   

20.
The absorption of CO2 on MgO is being studied in depth in order to enhance carbon engineering. Production of carbonate on MgO surfaces, such as MgCO3, for example, has been shown to hinder further carbon lattice transit and lower CO2 collecting efficiency. To avoid the carbonate blocking effect, we mimic the water harvesting nano-surface systems of desert beetles, which use alternate hydrophobic and hydrophilic surface domains to collect liquid water and convey condensed droplets down to their mouths, respectively. We made CO2-philic MgO and CO2-phobic Mg(OH)2 nanocomposites from electrospun nano-MgO by vapor steaming for 2–20 min at 100 °C. The crystal structure, morphology, and surface properties of the produced samples were instrumentally characterized using XRD, SEM, XPS, BET, and TGA. We observed that (1) fiber morphology shifted from hierarchical particle and sheet-like structures to flower-like structures, and (2) CO2 capture capacity shifted by around 25%. As a result, the carbonate production and breakdown processes may be managed and improved using vapor steaming technology. These findings point to a new CO2 absorption technique and technology that might pave the way for more CO2 capture, mineralization, and fuel synthesis options.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号