首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
A型链球菌是一类革兰氏阳性病原菌,其产生的多种毒素因子是导致人体多重感染的重要原因.这些菌毒素因子的表达直接或间接地受多个毒素调控系统调控,各个调控系统之间存在相互关联并对病原菌与宿主的相互作用产生影响.干扰毒素的产生或调控通路对于发展特异的抗A型链球菌感染药物具有重要的意义.  相似文献   

5.
6.
Staphylococcus aureus is a Gram-positive pathogen that causes a diverse range of bacterial infections. Invasive S. aureus strains secrete an extensive arsenal of hemolysins, immunomodulators, and exoenzymes to cause disease. Our studies have focused on the secreted enzyme hyaluronidase (HysA), which cleaves the hyaluronic acid polymer at the β-1,4 glycosidic bond. In the study described in this report, we have investigated the regulation and contribution of this enzyme to S. aureus pathogenesis. Using the Nebraska Transposon Mutant Library (NTML), we identified eight insertions that modulate extracellular levels of HysA activity. Insertions in the sigB operon, as well as in genes encoding the global regulators SarA and CodY, significantly increased HysA protein levels and activity. By altering the availability of branched-chain amino acids, we further demonstrated CodY-dependent repression of HysA activity. Additionally, through mutation of the CodY binding box upstream of hysA, the repression of HysA production was lost, suggesting that CodY is a direct repressor of hysA expression. To determine whether HysA is a virulence factor, a ΔhysA mutant of a community-associated methicillin-resistant S. aureus (CA-MRSA) USA300 strain was constructed and found to be attenuated in a neutropenic, murine model of pulmonary infection. Mice infected with this mutant strain exhibited a 4-log-unit reduction in bacterial burden in their lungs, as well as reduced lung pathology and increased levels of pulmonary hyaluronic acid, compared to mice infected with the wild-type, parent strain. Taken together, these results indicate that S. aureus hyaluronidase is a CodY-regulated virulence factor.  相似文献   

7.
8.
9.
10.
11.
Background. Snail is a key regulator of epithelial-mesenchymal transition of tumor cells. Several studies have shown nuclear Snail expression to be a negative prognostic factor in human cancer, where it is generally associated with more aggressive tumor behavior and worse survival. Objectives and Methods. To further explore the role of Snail expression in breast cancer, we conducted a study on a tissue microarray, encompassing 1043 breast cancer cases. Results. A total of 265 (25.4%) breast cancers were positive for Snail. Snail expression was significantly associated with greater tumor size, higher tumor stage and grade, positive lymph node status, and hormone receptor negative status and was differently expressed in the intrinsic subtypes of breast cancer, being the highest in the basal-like subtype and the lowest in the luminal A subtype. In multivariate analysis, Snail proved to be an independent negative prognostic factor for OS. In the intrinsic subtypes, Snail expression was a negative prognostic factor for OS in the luminal B HER2, the luminal B HER2+, and the basal-like subtype. Conclusions. This is the first study demonstrating that nuclear Snail expression is an independent negative predictor of prognosis in breast cancer, thus suggesting that it may represent a potential therapeutic target.  相似文献   

12.
Legionella pneumophila is a bacterial pathogen that thrives in alveolar macrophages, causing a severe pneumonia. The virulence of L. pneumophila depends on its Dot/Icm type IV secretion system (T4SS), which delivers more than 300 effector proteins into the host, where they rewire cellular signaling to establish a replication-permissive niche, the Legionella-containing vacuole (LCV). Biogenesis of the LCV requires substantial redirection of vesicle trafficking and remodeling of intracellular membranes. In order to achieve this, several T4SS effectors target regulators of membrane trafficking, while others resemble lipases. Here, we characterized LpdA, a phospholipase D effector, which was previously proposed to modulate the lipid composition of the LCV. We found that ectopically expressed LpdA was targeted to the plasma membrane and Rab4- and Rab14-containing vesicles. Subcellular targeting of LpdA required a C-terminal motif, which is posttranslationally modified by S-palmitoylation. Substrate specificity assays showed that LpdA hydrolyzed phosphatidylinositol, -inositol-3- and -4-phosphate, and phosphatidylglycerol to phosphatidic acid (PA) in vitro. In HeLa cells, LpdA generated PA at vesicles and the plasma membrane. Imaging of different phosphatidylinositol phosphate (PIP) and organelle markers revealed that while LpdA did not impact on membrane association of various PIP probes, it triggered fragmentation of the Golgi apparatus. Importantly, although LpdA is translocated inefficiently into cultured cells, an L. pneumophila ΔlpdA mutant displayed reduced replication in murine lungs, suggesting that it is a virulence factor contributing to L. pneumophila infection in vivo.  相似文献   

13.
14.
15.
16.
Streptococcus agalactiae (group B Streptococcus [GBS]) is a leading cause of neonatal sepsis and meningitis, peripartum infections in women, and invasive infections in chronically ill or elderly individuals. GBS can be isolated from the gastrointestinal or genital tracts of up to 30% of healthy adults, and infection is thought to arise from invasion from a colonized mucosal site. Accordingly, bacterial surface components that mediate attachment of GBS to host cells or the extracellular matrix represent key factors in the colonization and infection of the human host. We identified a conserved GBS gene of unknown function that was predicted to encode a cell wall-anchored surface protein. Deletion of the gene and a cotranscribed upstream open reading frame (ORF) in GBS strain 515 reduced bacterial adherence to VK2 vaginal epithelial cells in vitro and reduced GBS binding to fibronectin-coated microtiter wells. Expression of the gene product in Lactococcus lactis conferred the ability to adhere to VK2 cells, to fibronectin and laminin, and to fibronectin-coated ME-180 cervical epithelial cells. Expression of the recombinant protein in L. lactis also markedly increased biofilm formation. The adherence function of the protein, named bacterial surface adhesin of GBS (BsaB), depended both on a central BID1 domain found in bacterial intimin-like proteins and on the C-terminal portion of the BsaB protein. Expression of BsaB in GBS, like that of several other adhesins, was regulated by the CsrRS two-component system. We conclude that BsaB represents a newly identified adhesin that participates in GBS attachment to epithelial cells and the extracellular matrix.  相似文献   

17.
18.
Autotransporters (AT) are widespread in Gram-negative bacteria, and many of them are involved in virulence. An open reading frame (APECO1_O1CoBM96) encoding a novel AT was located in the pathogenicity island of avian pathogenic Escherichia coli (APEC) O1''s virulence plasmid, pAPEC-O1-ColBM. This 3.5-kb APEC autotransporter gene (aatA) is predicted to encode a 123.7-kDa protein with a 25-amino-acid signal peptide, an 857-amino-acid passenger domain, and a 284-amino-acid β domain. The three-dimensional structure of AatA was also predicted by the threading method using the I-TASSER online server and then was refined using four-body contact potentials. Molecular analysis of AatA revealed that it is translocated to the cell surface, where it elicits antibody production in infected chickens. Gene prevalence analysis indicated that aatA is strongly associated with E. coli from avian sources but not with E. coli isolated from human hosts. Also, AatA was shown to enhance adhesion of APEC to chicken embryo fibroblast cells and to contribute to APEC virulence.The autotransporter (AT) proteins are a large and diverse family of extracellular virulence proteins of Gram-negative bacteria. All ATs share the same general structure and are comprised of three domains: an amino-terminal signal peptide; an α or passenger domain, which confers the function of the secreted protein; and a C-terminal β domain that mediates secretion through the outer membrane. The cardinal feature of conventional ATs is a long C-terminal translocator domain consisting of about 300 amino acids, in contrast to the very short C-terminal translocator domain (about 70 amino acids) of trimeric ATs that form highly stable trimers in the outer membrane (8). While all trimeric AT proteins identified so far display adhesive activity mediating bacterial interactions with either host cells or extracellular matrix (ECM) proteins, the conventional ATs that have been characterized to date have diverse functions, including adhesion, cytotoxicity, and lipase or protease activity (3, 6, 7, 46, 49, 54).Temperature-sensitive hemagglutinin (Tsh) was the first AT described in avian pathogenic Escherichia coli (APEC), a pathogen which causes extraintestinal infections in turkeys, layers, and broilers (44). This conventional AT, which is encoded by a virulence plasmid, occurs as a 106-kDa extracellular protein and a 33-kDa outer membrane protein. Its passenger domain contains a 7-amino-acid serine protease motif that includes the active-site serine (S259), which has also been found in the secreted domain of IgA1 protease. Although Tsh did not show any IgA protease activity in vitro (51), it was involved in virulence through mediation of APEC''s adherence to the air sacs of chickens (11). The gene encoding a second serine protease AT, termed the vacuolating autotransporter or Vat, was identified in a pathogenicity island (PAI) adjacent to the thrW tRNA gene in APEC (42). Vat has vacuolating cytotoxic activity similar to that of VacA of Helicobacter pylori and contributes to APEC virulence (48). Both tsh and vat are present in E. coli from avian sources and are also found in E. coli isolated from human hosts. In the present study, we identified and characterized a novel AT that is strongly associated with avian E. coli. This AT is encoded by the APEC autotransporter gene (aatA), which has been localized to the PAI found in the virulence plasmid (pAPEC-O1-ColBM; accession number NC_009837) of APEC O1, the first APEC strain to be completely sequenced (25, 26).  相似文献   

19.
20.
Despite the public health challenges associated with the emergence of new pathogenic bacterial strains and/or serotypes, there is a dearth of information regarding the molecular mechanisms that drive this variation. Here, we began to address the mechanisms behind serotype-specific variation between serotype M1 and M3 strains of the human pathogen Streptococcus pyogenes (the group A Streptococcus [GAS]). Spatially diverse contemporary clinical serotype M3 isolates were discovered to contain identical inactivating mutations within genes encoding two regulatory systems that control the expression of important virulence factors, including the thrombolytic agent streptokinase, the protease inhibitor-binding protein-G-related α2-macroglobulin-binding (GRAB) protein, and the antiphagocytic hyaluronic acid capsule. Subsequent analysis of a larger collection of isolates determined that M3 GAS, since at least the 1920s, has harbored a 4-bp deletion in the fasC gene of the fasBCAX regulatory system and an inactivating polymorphism in the rivR regulator-encoding gene. The fasC and rivR mutations in M3 isolates directly affect the virulence factor profile of M3 GAS, as evident by a reduction in streptokinase expression and an enhancement of GRAB expression. Complementation of the fasC mutation in M3 GAS significantly enhanced levels of the small regulatory RNA FasX, which in turn enhanced streptokinase expression. Complementation of the rivR mutation in M3 GAS restored the regulation of grab mRNA abundance but did not alter capsule mRNA levels. While important, the fasC and rivR mutations do not provide a full explanation for why serotype M3 strains are associated with unusually severe invasive infections; thus, further investigation is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号