首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yoshimitsu Okazaki 《Materials》2012,5(8):1439-1461
Zr, Nb, and Ta as alloying elements for Ti alloys are important for attaining superior corrosion resistance and biocompatibility in the long term. However, note that the addition of excess Nb and Ta to Ti alloys leads to higher manufacturing cost. To develop low-cost manufacturing processes, the effects of hot-forging and continuous-hot-rolling conditions on the microstructure, mechanical properties, hot forgeability, and fatigue strength of Ti-15Zr-4Nb-4Ta alloy were investigated. The temperature dependences with a temperature difference (ΔT) from β-transus temperature (Tβ) for the volume fraction of the α- and β-phases were almost the same for both Ti-15Zr-4Nb-4Ta and Ti-6Al-4V alloys. In the α-β-forged Ti-15Zr-4Nb-4Ta alloy, a fine granular α-phase structure containing a fine granular β-phase at grain boundaries of an equiaxed α-phase was observed. The Ti-15Zr-4Nb-4Ta alloy billet forged at Tβ-(30 to 50) °C exhibited high strength and excellent ductility. The effects of forging ratio on mechanical strength and ductility were small at a forging ratio of more than 3. The maximum strength (σmax) markedly increased with decreasing testing temperature below Tβ. The reduction in area (R.A.) value slowly decreased with decreasing testing temperature below Tβ. The temperature dependences of σmax for the Ti-15Zr-4Nb-4Ta and Ti-6Al-4V alloys show the same tendency and might be caused by the temperature difference (ΔT) from Tβ. It was clarified that Ti-15Zr-4Nb-4Ta alloy could be manufactured using the same manufacturing process as for previously approved Ti-6Al-4V alloy, taking into account the difference (ΔT) between Tβ and heat treatment temperature. Also, the manufacturing equivalency of Ti-15Zr-4Nb-4Ta alloy to obtain marketing approval of implants was established. Thus, it was concluded that continuous hot rolling is useful for manufacturing α-β-type Ti alloy.  相似文献   

2.
We studied the effect of the addition of Hf, Sn, or Ta on the density, macrosegregation, microstructure, hardness and oxidation of three refractory metal intermetallic composites based on Nb (RM(Nb)ICs) that were also complex concentrated alloys (i.e., RM(Nb)ICs/RCCAs), namely, the alloys TT5, TT6, and TT7, which had the nominal compositions (at.%) Nb-24Ti-18Si-5Al-5B-5Cr-6Ta, Nb-24Ti-18Si-4Al-6B-5Cr-4Sn and Nb-24Ti-17Si-5Al-6B-5Cr-5Hf, respectively. The alloys were compared with B containing and B free RM(Nb)ICs. The macrosegregation of B, Ti, and Si was reduced with the addition, respectively of Hf, Sn or Ta, Sn or Ta, and Hf or Sn. All three alloys had densities less than 7 g/cm3. The alloy TT6 had the highest specific strength in the as cast and heat-treated conditions, which was also higher than that of RCCAs and refractory metal high entropy alloys (RHEAs). The bcc solid solution Nbss and the tetragonal T2 and hexagonal D88 silicides were stable in the alloys TT5 and TT7, whereas in TT6 the stable phases were the A15-Nb3Sn and the T2 and D88 silicides. All three alloys did not pest at 800 °C, where only the scale that was formed on TT5 spalled off. At 1200 °C, the scale of TT5 spalled off, but not the scales of TT6 and TT7. Compared with the B free alloys, the synergy of B with Ta was the least effective regarding oxidation at 800 and 1200 °C. Macrosegregation of solutes, the chemical composition of phases, the hardness of the Nbss and the alloys, and the oxidation of the alloys at 800 and 1200 °C were considered from the perspective of the Niobium Intermetallic Composite Elaboration (NICE) alloy design methodology. Relationships between properties and the parameters VEC, δ, and Δχ of alloy or phase and between parameters were discussed. The trends of parameters and the location of alloys and phases in parameter maps were in agreement with NICE.  相似文献   

3.
Electron beam directed energy deposition (EB-DED) is a promising manufacturing process for the fabrication of large-scale, fully dense and near net shape metallic components. However, limited knowledge is available on the EB-DED process of titanium alloys. In this study, a near-α high-temperature titanium alloy Ti60 (Ti-5.8Al-4Sn-4Zr-0.7Nb-1.5Ta-0.4Si) was fabricated via EB-DED. The chemical composition, microstructure, tensile property (at room temperature and 600 °C), and creep behavior of the fabricated alloy were investigated and compared with those of the conventional wrought lamellar and bimodal counterparts. Results indicated that the average evaporation loss of Al and Sn was 10.28% and 5.01%, respectively. The microstructure of the as-built alloy was characterized by coarse columnar grains, lamellar α, and the precipitated elliptical silicides at the α/β interfaces. In terms of tensile properties, the vertical specimens exhibited lower strength but higher ductility than the horizontal specimens at both room temperature and 600 °C. Furthermore, the tensile creep strain of the EB-DED Ti60 alloy measured at 600 °C and 150 MPa for 100 h under as-built and post-deposition STA conditions was less than 0.15%, which meets the standard requirements for the wrought Ti60 alloy. The creep resistance of the EB-DED Ti60 alloy was superior to that of its wrought bimodal counterpart.  相似文献   

4.
Cp-Ti is the most common material used for dental implants, but its elastic modulus is around five times higher than that of bone. Recently, promising alloys that add Nb, Ta, Zr and Mo to Ti have been developed. The mechanical properties of these alloys are directly related to its microstructure and the presence of interstitial elements, such as oxygen, carbon, nitrogen and hydrogen. In this study, the in vitro cytotoxicity of Ti-35Nb-7Zr-5Ta (TNZT) alloys was analyzed in the as-received condition and after being doped with several small quantities of oxygen on a cultured osteogenic cell. The cell’s morphology was also examined by scanning electron microscopy (SEM). The TNZT alloy presented no cytotoxic effects on osteoblastic cells in the studied conditions.  相似文献   

5.
Ti-6Al-2Sn-4Zr-6Mo is one of the most important titanium alloys characterised by its high strength, fatigue, and toughness properties, making it a popular material for aerospace and biomedical applications. However, no studies have been reported on processing this alloy using laser powder bed fusion. In this paper, a deep learning neural network (DLNN) was introduced to rationalise and predict the densification and hardness due to Laser Powder Bed Fusion of Ti-6Al-2Sn-4Zr-6Mo alloy. The process optimisation results showed that near-full densification is achieved in Ti-6Al-2Sn-4Zr-6Mo alloy samples fabricated using an energy density of 77–113 J/mm3. Furthermore, the hardness of the builds was found to increase with increasing the laser energy density. Porosity and the hardness measurements were found to be sensitive to the island size, especially at high energy density. Hot isostatic pressing (HIP) was able to eliminate the porosity, increase the hardness, and achieve the desirable α and β phases. The developed model was validated and used to produce process maps. The trained deep learning neural network model showed the highest accuracy with a mean percentage error of 3% and 0.2% for the porosity and hardness. The results showed that deep learning neural networks could be an efficient tool for predicting materials properties using small data.  相似文献   

6.
Sodium titanate formed on Ti metal by NaOH and heat treatments induces apatite formation on its surface in a body environment and bonds to living bone. These treatments have been applied to porous Ti metal in artificial hip joints, and have been used clinically in Japan since 2007. Calcium titanate formed on Ti-15Zr-4Nb-4Ta alloy by NaOH, CaCl2, heat, and water treatments induces apatite formation on its surface in a body environment. Titanium oxide formed on porous Ti metal by NaOH, HCl, and heat treatments exhibits osteoinductivity as well as osteoconductivity. This is now under clinical tests for application to a spinal fusion device.  相似文献   

7.
In this study, a Ti-32.9Nb-4.2Zr-7.5Ta (wt%) titanium alloy was produced by melting in a cold crucible induction in a levitation furnace, and then deforming by cold rolling, with progressive deformation degrees (thickness reduction), from 15% to 60%, in 15% increments. The microstructural characteristics of the specimens in as-received and cold-rolled conditions were determined by XRD and SEM microscopy, while the mechanical characteristics were obtained by tensile and microhardness testing. It was concluded that, in all cases, the Ti-32.9Nb-4.2Zr-7.5Ta (wt%) showed a bimodal microstructure consisting of Ti-β and Ti-α″ phases. Cold deformation induced significant changes in the microstructural and the mechanical properties, leading to grain-refinement, crystalline cell distortions and variations in the weight-fraction ratio of both Ti-β and Ti-α″ phases, as the applied degree of deformation increased from 15% to 60%. Changes in the mechanical properties were also observed: the strength properties (ultimate tensile strength, yield strength and microhardness) increased, while the ductility properties (fracture strain and elastic modulus) decreased, as a result of variations in the weight-fraction ratio, the crystallite size and the strain hardening induced by the progressive cold deformation in the Ti-β and Ti-α″ phases.  相似文献   

8.
This paper is about metallic ultra-high temperature materials, in particular, refractory metal intermetallic composites based on Nb, i.e., RM(Nb)ICs, with the addition of boron, which are compared with refractory metal high entropy alloys (RHEAs) or refractory metal complex concentrated alloys (RCCAs). We studied the effect of B addition on the density, macrosegregation, microstructure, hardness and oxidation of four RM(Nb)IC alloys, namely the alloys TT2, TT3, TT4 and TT8 with nominal compositions (at.%) Nb-24Ti-16Si-5Cr-7B, Nb-24Ti-16Si-5Al-7B, Nb-24Ti-18Si-5Al-5Cr-8B and Nb-24Ti-17Si-3.5Al-5Cr-6B-2Mo, respectively. The alloys made it possible to compare the effect of B addition on density, hardness or oxidation with that of Ge or Sn addition. The alloys were made using arc melting and their microstructures were characterised in the as cast and heat-treated conditions. The B macrosegregation was highest in TT8. The macrosegregation of Si or Ti increased with the addition of B and was lowest in TT8. The alloy TT8 had the lowest density of 6.41 g/cm3 and the highest specific strength at room temperature, which was also higher than that of RCCAs and RHEAs. The Nbss and T2 silicide were stable in the alloys TT2 and TT3, whereas in TT4 and TT8 the stable phases were the Nbss and the T2 and D88 silicides. Compared with the Ge or Sn addition in the same reference alloy, the B and Ge addition was the least and most effective at 800 °C (i.e., in the pest regime), when no other RM was present in the alloy. Like Ge or Sn, the B addition in TT2, TT3 and TT4 did not suppress scale spallation at 1200 °C. Only the alloy TT8 did not pest and its scales did not spall off at 800 and 1200 °C. The macrosegregation of Si and Ti, the chemical composition of Nbss and T2, the microhardness of Nbss and the hardness of alloys, and the oxidation of the alloys at 800 and 1200 °C were also viewed from the perspective of the alloy design methodology NICE and relationships with the alloy or phase parameters VEC, δ and Δχ. The trends of these parameters and the location of alloys and phases in parameter maps were found to be in agreement with NICE.  相似文献   

9.
The United States Air Force (USAF) Guidelines for the Durability and Damage Tolerance (DADT) certification of Additive Manufactured (AM) parts states that the most difficult challenge for the certification of an AM part is to establish an accurate prediction of its DADT. How to address this challenge is the focus of the present paper. To this end this paper examines the variability in crack growth in tests on additively manufactured (AM) Ti-6Al-4V specimens built using selective layer melting (SLM). One series of tests analysed involves thirty single edge notch tension specimens with five build orientations and two different post heat treatments. The other test program analysed involved ASTM standard single edge notch specimens with three different build directions. The results of this study highlight the ability of the Hartman–Schijve crack growth equation to capture the variability and the anisotropic behaviour of crack growth in SLM Ti-6Al-4V. It is thus shown that, despite the large variability in crack growth, the intrinsic crack growth equation remains unchanged and that the variability and the anisotropic nature of crack growth in this test program is captured by allowing for changes in both the fatigue threshold and the cyclic fracture toughness.  相似文献   

10.
Titanium alloys have high specific strength and excellent corrosion resistance and have been applied in deep-sea engineering fields. However, stress corrosion cracking may become one of the biggest threats to the service safety of a high-strength titanium alloy, as well as its weldment. In this work, stress corrosion cracking of a gas-tungsten-arc-welded Ti-6Al-3Nb-2Zr-1Mo (Ti6321) alloy influenced by the applied potentials in simulated deep-sea and shallow-sea environments was investigated by combining slow strain rate testing with electrochemical measurements. The results showed that the service environment and applied potential have a substantial effect on the stress corrosion cracking behavior of the Ti6321 welded joint. The Ti6321 welded joint exhibited higher stress corrosion susceptibility in a simulated deep-sea environment and at a strong polarization level owing to the diminishing protection of the passive film under passivation inhibition and the enhancement of the hydrogen effect. The fracture of a Ti6321 welded joint in the weld material could be attributed to the softening effect of the thick secondary α within the coarse-grained martensite. The electrochemical evaluation model of stress corrosion cracking susceptibility of a Ti6321 welded joint in a simulated marine environment was established by adding the criterion in the passivation region based on the literature model, and four potential regions corresponding to different stress corrosion cracking mechanisms were classified and discussed. Our study provides useful guidance for the deep-sea engineering applications of Ti6321 alloys and a rapid assessment method of stress corrosion risk.  相似文献   

11.
Selective laser melting (SLM) is an additive manufacturing process for producing metallic components with complex geometries. A drawback of this process is the process-inherent poor surface finish, which is highly detrimental in materials submitted to fatigue loading situations. The goal of this work is to analyze the fatigue behavior of Ti-6Al-4V specimens with internal axial channels under the following different conditions: hole drilled, hole as manufactured, and hole threaded M4 × 0.7. All the cases studied showed a lower fatigue performance as compared with solid samples due to the surface roughness and geometry effect that produced a surface stress concentration leading to a reduction in fatigue strength. The fractography revealed that crack initiation occurred from the internal surface in all specimens with internal channel mostly from defects as unfused particles and lack of fusion zones, while for the solid specimens crack initiation was observed from the external surface due to insufficient fusion defect. The application of the Smith-Watson-Topper energy-based parameter was revealed to be a good tool for fatigue life prediction of the different series studied.  相似文献   

12.
Titanium alloys, especially β alloys, are favorable as implant materials due to their promising combination of low Young’s modulus, high strength, corrosion resistance, and biocompatibility. In particular, the low Young’s moduli reduce the risk of stress shielding and implant loosening. The processing of Ti-24Nb-4Zr-8Sn through laser powder bed fusion is presented. The specimens were heat-treated, and the microstructure was investigated using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The mechanical properties were determined by hardness and tensile tests. The microstructures reveal a mainly β microstructure with α″ formation for high cooling rates and α precipitates after moderate cooling rates or aging. The as-built and α″ phase containing conditions exhibit a hardness around 225 HV5, yield strengths (YS) from 340 to 490 MPa, ultimate tensile strengths (UTS) around 706 MPa, fracture elongations around 20%, and Young’s moduli about 50 GPa. The α precipitates containing conditions reveal a hardness around 297 HV5, YS around 812 MPa, UTS from 871 to 931 MPa, fracture elongations around 12%, and Young’s moduli about 75 GPa. Ti-24Nb-4Zr-8Sn exhibits, depending on the heat treatment, promising properties regarding the material behavior and the opportunity to tailor the mechanical performance as a low modulus, high strength implant material.  相似文献   

13.
The effect of ternary alloying elements (Mo and Ta) on the mechanical and superelastic properties of binary Ti-14Nb alloy fabricated by the mechanical alloying and spark plasma sintering was investigated. The materials were prepared in two ways: (i) by substituting Nb in base Ti-14Nb alloy by 2 at.% of the ternary addition, giving the following compositions: Ti-8Nb-2Mo and Ti-12Nb-2Ta and (ii) by adding 2 at.% of the ternary element to the base alloy. The microstructures of the materials consisted of the equiaxed β-grains and fine precipitations of TiC. The substitution of Nb by both Mo and Ta did not significantly affect the mechanical properties of the base Ti-14Nb alloy, however, their addition resulted in a decrease of yield strength and increase of plasticity. This was associated with the occurrence of the {332} <113> twinning that was found during the in-situ observations. The elevated concentration of interstitial elements (oxygen and carbon) lead to the occurrence of stress-induced martensitic transformation and twinning mechanisms at lower concentration of β-stabilizers in comparison to the conventionally fabricated materials. The substitution of Nb by Mo, and Ta caused the slight improvement of the superelastic properties of the base Ti-14Nb alloy, whereas their addition deteriorated the superelasticity.  相似文献   

14.
The conventional processing route of TNM (Ti-Nb-Mo) alloys combines casting and Hot Isostatic Pressing (HIP) followed by forging and multiple heat treatments to establish optimum properties. This is a time-consuming and costly process. In this study we present an advanced alternative TNM alloy processing route combining HIP and heat treatments into a single process, which we refer to as IHT (integrated HIP heat treatment), applied to a modified TNM alloy with 1.5B. A Quintus HIP lab unit with a quenching module was used, achieving fast and controlled cooling, which differs from the slow cooling rates of conventional HIP units. A Ti-42.5Al-3.5Nb-1Mo-1.5B (at.%) was subjected to an integrated two HIP steps at 200 MPa, one at 1250 °C for 3 h and another at 1260 °C for 1 h, both under a protective Ar atmosphere and followed by cooling at 30 K/min down to room temperature. The results were compared against the Ti-43.5Al-3.5Nb-1Mo-0.8B (at.%) thermomechanically processed in a conventional way. Applying IHT processing to the 1.5B alloy does indeed achieve good creep strength, and the secondary creep rate of the IHT processed materials is similar to that of conventionally forged TNM alloys. Thus, the proposed advanced IHT processing route could manufacture more cost-effective TiAl components.  相似文献   

15.
The electrochemical behavior of commercially pure titanium (CP Ti) and Ti-6Al-4V (Grade 5) alloy in phosphate buffered saline solution (PBS, pH = 7.4) at 37 °C (i.e., in simulated physiological solution in the human body) was examined using open circuit potential measurements, linear and potentiodynamic polarization and electrochemical impedance spectroscopy methods. After the impedance measurements and after potentiodynamic polarization measurements, the surface of the samples was investigated by scanning electron microscopy, while the elemental composition of oxide film on the surface of each sample was determined by EDS analysis. The electrochemical and corrosion behavior of CP Ti and Ti-6Al-4V alloys is due to forming a two-layer model of surface oxide film, consisting of a thin barrier-type inner layer and a porous outer layer. The inner barrier layer mainly prevents corrosion of CP Ti and Ti-6Al-4V alloy, whose thickness and resistance increase sharply in the first few days of exposure to PBS solution. With longer exposure times to the PBS solution, the structure of the barrier layer subsequently settles, and its resistance increases further. Compared to Ti-6Al-4V alloy, CP Ti shows greater corrosion stability.  相似文献   

16.
Ceramic coatings were prepared by plasma electrolytic oxidation (PEO) on four different surface roughness’ of Ti-6Al-4V alloys. The effects of substrate roughness on the microstructure and fatigue behavior were investigated. Microstructural characterization was carried out by scanning electron microscopy (SEM) and a laser scanning confocal microscope. In addition, an X-ray diffractometer (XRD) and a U-X360 stress meter were used to analyze the phase composition and residual stress properties of the coatings. The microstructure of coatings revealed the growth mechanism of the coatings. The larger and deeper grooves of the substrate promoted the nucleation and growth of the PEO coating, but the defects (cracks and pores) of the oxide layer became more serious. The fatigue test indicated a significant influence of substrate roughness on the fatigue life under low cyclic stress. The fatigue damage of PEO coatings decreases as the surface roughness of substrates decreases because of the synergistic effect of the coating surface defects and coating/substrate interface roughness. Substrate roughness influences the quality and fatigue performance of the oxide layer.  相似文献   

17.
This paper presents the microstructural characteristics and mechanical properties of linear friction-welded (LFWed) Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Ti-6242) in as-welded (AWed) and stress relief-annealed (SRAed) conditions. The weld center (WC) of the AWed Ti-6242 consisted of recrystallized prior-β grains with α’ martensite that were tempered during SRA at 800 °C for 2 h and transformed into an acicular α + β microstructure. The peak hardness values, obtained in the AWed joints at the WC, sharply decreased through the thermomechanically affected zones (TMAZs) to the heat-affected zone (HAZ) of the Ti-6242 parent metal (PM). The SRA lowered the peak hardness values at the WC slightly and fully recovered the observed softening in the HAZ. The tensile mechanical properties of the welds in the AWed and SRAed conditions surpassed the minimum requirements in the AMS specifications for the Ti-6242 alloy. Fatigue tests, performed on the SRAed welds, indicated a fatigue limit of 468 MPa at 107 cycles, just slightly higher than that of the Ti-6242 PM (434 MPa). During tensile and fatigue testing, the welds failed in the PM region, which confirms the high mechanical integrity of the joints. Both the tensile and fatigue fracture surfaces exhibited characteristic features of ductile Ti-6242 PM.  相似文献   

18.
In this paper, rotating bending fatigue tests of 2024-T4 Al alloy with different oxide coatings were carried out. Compared to the uncoated and previously reported oxide coatings of aluminum alloys, the fatigue strength is able to be enhanced by using a novel oxide coating with sealing pore technology. These results indicate that the better the coating surface quality is, the more excellent the fatigue performance under rotating bending fatigue loading is. The improvement on the fatigue performance is mainly because the fatigue crack initiation and the early stage of fatigue crack growth at the coating layer can be delayed after PEO coating with pore sealing. Therefore, it is a so-called synergistic coating technology for various uses, including welding thermal cracks and filling micro-pores. The effects of different oxide coatings on surface hardness, compressive residual stress, morphology and fatigue fracture morphology are discussed. A critical compressive residual stress of about 95–100 MPa is proposed.  相似文献   

19.
20.
This work focuses on the effect of different heat treatments on the Ti-6Al-4V alloy processed by means of electron beam melting (EBM). Super β-transus annealing was conducted at 1050 °C for 1 h on Ti-6Al-4V samples, considering two different cooling paths (furnace cooling and water quenching). This heat treatment induces microstructural recrystallization, thus reducing the anisotropy generated by the EBM process (columnar prior-β grains). Subsequently, the annealed furnace-cooled and water-quenched samples were aged at 540 °C for 4 h. The results showed the influence of the aging treatment on the microstructure and the mechanical properties of the annealed EBM-produced Ti-6Al-4V. A comparison with the traditional processed heat-treated material was also conducted. In the furnace-cooled specimens consisting of lamellar α+β, the aging treatment improved ductility and strength by inducing microstructural thickening of the α laths and reducing the β fraction. The effect of the aging treatment was also more marked in the water-quenched samples, characterized by high tensile strengths but limited ductility due to the presence of martensite. In fact, the aging treatment was effective in the recovery of the ductility loss, maintaining high tensile strength properties due to the variation in the relative number of α/α’ interfaces resulting from α’ decomposition. This study, therefore, offers an in-depth investigation of the potential beneficial effects of the aging treatment on the microstructure and mechanical properties of the EBM-processed super β-transus heat-treated Ti-6Al-4V alloy under different cooling conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号