首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Friction and wear properties of hot working die steel at above 800 °C are of particular interest for high temperature applications. Here, novel AlCoCrFeNiWx high-entropy alloy (HEA) coatings have been fabricated on the surface of hot working die steel by laser cladding. The effects of the as-prepared AlCoCrFeNiWx HEA coatings on the microstructure and high temperature friction and wear behavior of hot working die steel are investigated through scanning electron microscopy (SEM), electron probe microanalysis (EPMA), X-ray diffraction (XRD), and X-ray absorption fine structure (XAFS). Having benefited from the formation of W-rich intermetallic compounds after the addition of W elements, the high temperature wear resistance of the coatings is obviously improved, and friction coefficient shows a large fluctuation. The microstructural characteristics of the AlCoCrFeNiWx HEA coatings after the high temperature wear resistance test shows a highly favorable impact on microstructure stability and wear resistance, due to its the strong lattice distortion effect of W element on BCC solid solutions and the second phase strengthening of the W-rich intermetallic compounds. These findings may provide a method to design the high temperature wear resistant coatings.  相似文献   

2.
In this study, laser cladding technology was used to prepare Fe-based alloy coating on a 27SiMn hydraulic support, and a turning treatment was used to obtain samples of the upper and middle regions of the cladding layer. The influence of microstructure, phase composition, hardness, and wear resistance in different areas of the cladding layer was studied through scanning electron microscopy (SEM), X-ray diffractometry (XRD), friction and wear tests, and microhardness. The results show that the bcc phase content in the upper region of the cladding layer is less than that in the middle region of the cladding layer, and the upper region of the cladding layer contains more metal compounds. The hardness of the middle region of the cladding layer is higher than that of the upper region of the cladding layer. At the same time, the main wear mechanism of the upper region of the cladding layer is adhesive wear and abrasive wear. The wear mechanism of the middle region of the cladding layer is mainly abrasive wear, with better wear resistance than the upper region of the cladding layer.  相似文献   

3.
This study aims to explore the wear performance of maraging 18Ni-300 steel, fabricated via laser powder bed fusion (LPBF). The building direction dependence of wear resistance was investigated with various wear loads and in terms of ball-on-disk wear tests. The effect of direct aging heat treatment, i.e., aging without solution heat treatment, on the wear performance was investigated by comparing the wear rates of directly aged samples, followed by solution heat treatment. The effect of counterpart material on the wear performance of the maraging steel was studied using two counterpart materials of bearing steel and ZrO2 balls. When the bearing steel ball was used as the counterpart material, both the as-built and heat-treated maraging steel produced by the LPBF showed pronounced building direction dependence on their wear performance when the applied wear load was sufficiently high. However, when the ZrO2 ball was used as the counterpart material, isotropic wear resistance was reported. The maraging steel produced by the LPBF demonstrated excellent wear resistance, particularly when it was aging heat-treated and the counterpart material was ZrO2. The directly aged sample showed wear performance almost the same as the sample solution heat-treated and then aged, indicating that direct aging can be used as an alternative post heat treatment for tribological applications of the maraging steels produced by LPBF.  相似文献   

4.
Wear-resistant coatings development is progressively increasing steeply due to their advantages when applied to mechanical components subjected to abrasive and destructive environments. Titanium nitride (TiN) coating is typically used to enlarge tools and components’ service life and improve their surface quality. On the other hand, AlTiSiN coating intends to be applied to more aggressive environments such as spatial satellites components exposed to solar radiation, extremely high temperatures, and random particles impact. In this work, specimens of Inconel 718 (IN718) were fabricated via laser powder bed fusion (LPBF), and physical vapour deposition (PVD)-deposited with TiN and AlTiSiN as coatings to mechanically and chemically characterise their surface. In this respect, microhardness testing and chemical analysis via glow discharge optical emission spectroscopy (GDOES) were performed. Later, roughness and wear behaviour analyses were carried out to evaluate the mechanical performance of both coatings and their surface and morphological features. The experimental observations allowed the analysis of both studied coatings by comparing them with the substrate processed via LPBF.  相似文献   

5.
In this study, the Ti-Al-Si + xTiC (x = 0, 2, 6, 10 wt.%) composite coatings, each with a different content of TiC were fabricated on a Ti-6Al-4V alloy by laser surface cladding. The microstructure of the prepared coatings was analyzed by the scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The microhardness and the wear resistance of these coatings were also evaluated. The results show that α-Ti, Ti3Al, Ti5Si3, TiAl3, TiAl, Ti3AlC2 and TiC particles can be found in the composites. The microstructure can obviously be refined by increasing the content of TiC particles, while the microhardness increases and the coefficient of friction decreases. The Ti-Al-Si-6TiC composite shows the best wear resistance, owing to its relatively fine microstructure and high content of TiC particles. The microhardness of this coating is 5.3 times that of the substrate, while the wear rate is only 0.43 times. However, when the content of TiC was up to 10 wt.%, the original TiC could not be dissolved completely during the laser cladding process, leading to formation of cracks on the coatings.  相似文献   

6.
In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.  相似文献   

7.
The present work aimed to investigate the dry sliding wear behaviors of hybrid polymer matrix composites made up of Kevlar, bamboo, palm, and Aloe vera as reinforcement materials of varying stacking sequences, along with epoxy as the matrix material. Three combinations of composite laminates with different stacking sequences such as AB, BC, and CA were fabricated by a vacuum-assisted compression molding process. The influence of composite laminates fabricated through various stacking sequences and dry sliding wear test variables such as load, sliding distance, and sliding velocity on the specific wear rate and co-efficient of friction were investigated. Experiments were designed and statistical validation was performed through response surface methodology-based D-optimal design and analysis of variance. The optimization was performed using grey relational analysis (GRA) to identify the optimal parameters to enhance the wear resistance of hybrid polymer composites under dry sliding conditions. The optimal parameters, such as composite combinations of CA, a load of 5 N, a sliding velocity of 3 m/s, and a sliding distance of 1500 m, were obtained. Furthermore, the morphologies of worn-out surfaces were investigated using SEM analysis.  相似文献   

8.
In this study, the wear behavior of a heat-treatable Al-7Si-0.5Mg-0.5Cu alloy fabricated by selective laser melting was investigated systematically. Compared with the commercial homogenized AA2024 alloy, the fine secondary phase of the SLM Al-Cu-Mg-Si alloy leads to a low specific wear rate (1.8 ± 0.11 × 10−4 mm3(Nm)−1) and a low average coefficient of friction (0.40 ± 0.01). After the T6 heat treatment, the SLM Al-Cu-Mg-Si alloy exhibits a lower specific wear rate (1.48 ± 0.02 × 10−4 mm3(Nm)−1), but a similar average coefficient of friction (0.34 ± 0.01) as the heat-treated AA2024 alloy. Altogether, the SLM Al-3.5Cu-1.5Mg-1Si alloy is suitable for the achievement of not only superior mechanical performance, but also improved tribological properties.  相似文献   

9.
The lungs are a common site of metastases from malignant tumors. Their removal with a minimal but safe tissue margin is essential for the long-term survival of patients. The aim of this study was to evaluate the usefulness of a 1940 nm thulium-doped fiber laser (TDFL) and a 1470 nm diode laser (DL) in a pig model of lung surgery that involved the incision and excision of lung tissue. Histopathological analysis was performed on days 0 and 7 after surgery. Neither TDFL nor DL caused significant perioperative or postoperative bleeding. Histological analysis revealed the presence of carbonized necrotic tissue, mixed fibrin–cellular exudate in the superficial zone of thermal damage and bands of deeper thermal changes. The mean total width of thermal damage on day 0 was 499.46 ± 61.44 and 937.39 ± 109.65 µm for TDFL and DL, respectively. On day 7, cell activation and repair processes were visible. The total width of thermal damage was 2615.74 ± 487.17 µm for TDFL vs. 6500.34 ±1118.02 µm for DL. The superficial zone of thermal damage was narrower for TDFL on both days 0 and 7. The results confirm the effectiveness of both types of laser in cutting and providing hemostasis in the lungs. TDFL caused less thermal damage to the lung parenchyma than DL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号