首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osteoblast (bone-forming cell) and chondrocyte (cartilage-synthesizing cell) adhesion on novel nanostructured polylactic/glycolic acid (PLGA) and titania composites were investigated in the present in vitro study. Nanostructured polymers were created by chemically treating micron-structured PLGA with select concentrations of NaOH for various periods of time. Dimensions of ceramics were controlled by utilizing either micron or nanometer grain size titania. Compared with surfaces with conventional or micron surface roughness dimensions, results provided the first evidence of increased osteoblast and chondrocyte adhesion on 100 wt% PLGA films with nanometer polymer surface roughness dimensions. Results also confirmed other literature reports of enhanced osteoblast adhesion on 100 wt% nanometer compared with conventional grain size titania compacts; however, the present study provided the first evidence that decreasing titania grain size into the nanometer range did not influence chondrocyte adhesion. Finally, osteoblast and chondrocyte adhesion increased on 70/30 wt% PLGA/titania composites formulated to possess nanosurface rather than conventional surface feature dimensions. The present study, thus, provided evidence that these nanostructured PLGA/titania composites may possess the ability to simulate surface and/or chemical properties of bone and cartilage, respectively, to allow for exciting alternatives in the design of prostheses with greater efficacy.  相似文献   

2.
Nanotechnology creates materials that potentially outperform, at several boundaries, existing materials in terms of mechanical, electrical, catalytic, and optical properties. However, despite their promise to mimic the surface roughness cells experience in vivo, the use of nanophase materials in biological applications remains to date largely unexplored. The objective of the present in vitro study was, therefore, to determine whether when added to a polymer scaffold, nanophase compared to conventional ceramics enhance functions of osteoblasts (or bone-forming cells). Results from this study provided the first evidence that functions (specifically, adhesion, synthesis of alkaline phosphatase, and deposition of calcium-containing mineral) of osteoblasts increased on poly-lactic-co-glycolic acid (PLGA) scaffolds containing nanophase compared to conventional grain size titania with greater weight percentage (from 10-30 wt %). Because the chemistry, material phase, porosity (%), and pore size of the composites were similar, this study implies that the surface features created by adding nanophase compared to conventional titania was a key parameter that enhanced functions of osteoblasts. In this manner, the study adds another novel property of nanophase ceramics: their ability to promote osteoblast functions in vitro when added to a polymer scaffold. For this reason, nanophase ceramics (and nanomaterials in general) deserve further attention as orthopedic tissue engineering materials.  相似文献   

3.
Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo   总被引:11,自引:0,他引:11  
Webster TJ  Ejiofor JU 《Biomaterials》2004,25(19):4731-4739
Previous studies have demonstrated increased functions of osteoblasts (bone-forming cells) on nanophase compared to conventional ceramics (specifically, alumina, titania, and hydroxyapatite), polymers (such as poly lactic-glycolic acid and polyurethane), carbon nanofibers/nanotubes, and composites thereof. Nanophase materials are unique materials that simulate dimensions of constituent components of bone since they possess particle or grain sizes less than 100 nm. However, to date, interactions of osteoblasts on nanophase compared to conventional metals remain to be elucidated. For this reason, the objective of the present in vitro study was to synthesize, characterize, and evaluate osteoblast adhesion on nanophase metals (specifically, Ti, Ti6Al4V, and CoCrMo alloys). Such metals in conventional form are widely used in orthopedic applications. Results of this study provided the first evidence of increased osteoblast adhesion on nanophase compared to conventional metals. Interestingly, osteoblast adhesion occurred preferentially at surface particle boundaries for both nanophase and conventional metals. Since more particle boundaries are present on the surface of nanophase compared to conventional metals, this may be an explanation for the measured increased osteoblast adhesion. Lastly, material characterization studies revealed that nanometal surfaces possessed similar chemistry and only altered in degree of nanometer surface roughness when compared to their respective conventional counterparts. Because osteoblast adhesion is a necessary prerequisite for subsequent functions (such as deposition of calcium-containing mineral), the present study suggests that nanophase metals should be further considered for orthopedic implant applications.  相似文献   

4.
Savaiano JK  Webster TJ 《Biomaterials》2004,25(7-8):1205-1213
Chondrocyte (cartilage-synthesizing cells) cell density and synthesis of select intracellular proteins by chondrocytes were investigated on novel nanophase poly-lactic/glycolic acid (PLGA) and titania composites in the present in vitro study. Nanophase PLGA films were created by chemically treating conventional (or micron-structured) PLGA films with 10N NaOH for 1h. Titania particle dimensions in ceramic compacts were controlled by utilizing either conventional (i.e., micron) or nanometer grain size titania. Composites of either conventional or nanophase PLGA with either conventional or nanophase titania at 70/30wt% were also created. Compared to surfaces with a conventional or micron topography, results provided the first evidence of stagnant confluent cell densities on nanostructured surfaces at time points between 1 and 7 days. Moreover, compared to surfaces with a conventional topography, increased chondrocyte intracellular synthesis of alkaline phosphatase and chondrocyte expressed protein-68 (proteins that have been correlated with the functions of chondrocytes) were observed on nanophase PLGA/nanophase titania composites. The present study, thus, provided the first evidence of different chondrocyte responses to nanostructured PLGA/nanophase titania composites; in light of other reports demonstrating increased functions of bone cells on the same materials, such data indicates that further investigation of these materials at the bone-cartilage interface should be conducted.  相似文献   

5.
In an attempt to simulate the microstructure and mechanical properties of natural bone, novel nanoceramic/polymer composite formulations were fabricated and characterized with respect to their cytocompatibility and mechanical properties. The bending moduli of nanocomposite samples of either poly(L-lactic acid) (PLA) or poly(methyl methacrylate) (PMMA) with 30, 40, and 50 wt % of nanophase (<100 nm) alumina, hydroxyapatite, or titania loadings were significantly (p < 0.05) greater than those of pertinent composite formulations with conventional, coarser grained ceramics. The nanocomposite bending moduli were 1-2 orders of magnitude larger than those of the homogeneous, respective polymer. For example, compared with 0.06 GPa for the 100% PLA, the bending modulus of 50/50 nanophase alumina/PLA composites was 3.5 GPa. Osteoblast adhesion on the surfaces of the nanophase alumina/PLA composites increased as a function of the nanophase ceramic content. Most importantly, osteoblast adhesion on the 50/50 nanophase alumina/PLA substrates was similar to that observed on the 100% nanophase ceramic substrates. Similar trends of osteoblast adhesion were observed on the surfaces of the nanophase titania/polymer and nanophase hydroxyapaptite/polymer composites that were tested. In contrast, fibroblast adhesion on the nanophase composites was either similar or lower than that observed on the conventional composites with either PLA or PMMA and minimum on all tested neat nanophase substrates. The calcium content in the extracellular matrix of cultured osteoblasts was also enhanced on the nanoceramic/PLA composite substrates tested as a function of the nanophase ceramic loading and duration of cell culture. The results of the present in vitro study provide evidence that nanoceramic/polymer composite formulations are promising alternatives to conventional materials because they can potentially be designed to match the chemical, structural, and mechanical properties of bone tissue in order to overcome the limitations of the biomaterials currently used as bone prostheses.  相似文献   

6.
Osteoblast adhesion on nanophase ceramics.   总被引:26,自引:0,他引:26  
T J Webster  R W Siegel  R Bizios 《Biomaterials》1999,20(13):1221-1227
Osteoblast adhesion on nanophase alumina (Al2O3) and titania (TiO2) was investigated in vitro. Osteoblast adhesion to nanophase alumina and titania in the absence of serum from Dulbecco's modified Eagle medium (DMEM) was significantly (P < 0.01) less than osteoblast adhesion to alumina and titania in the presence of serum. In the presence of 10% fetal bovine serum in DMEM osteoblast adhesion on nanophase alumina (23 nm grain size) and titania (32 nm grain size) was significantly (P < 0.05) greater than on conventional alumina (177 nm grain size) and titania (2.12 microm grain size), respectively, after 1, 2, and 4 h. Further investigation of the dependence of osteoblast adhesion on alumina and titania grain size indicated the presence of a critical grain size for osteoblast adhesion between 49 and 67 nm for alumina and 32 and 56 nm for titania. The present study provides evidence of the ability of nanophase alumina and titania to simulate material characteristics (such as surface grain size) of physiological bone that enhance protein interactions (such as adsorption, configuration, bioactivity, etc.) and subsequent osteoblast adhesion.  相似文献   

7.
Carbon nanofibers have exceptional theoretical mechanical properties (such as low weight-to-strength ratios) that, along with possessing nanoscale fiber dimensions similar to crystalline hydroxyapatite found in bone, suggest strong possibilities for use as an orthopedic/dental implant material. To determine, for the first time, cytocompatibility properties pertinent for bone prosthetic applications, osteoblast (bone-forming cells), fibroblast (cells contributing to callus formation and fibrous encapsulation events that result in implant loosening), chondrocyte (cartilage-forming cells), and smooth muscle cell (for comparison purposes) adhesion were determined on carbon nanofibers in the present in vitro study. Results provided evidence that, compared to conventional carbon fibers, nanometer dimension carbon fibers promoted select osteoblast adhesion. Moreover, adhesion of other cells was not influenced by carbon fiber dimensions. In fact, smooth muscle cell, fibroblast, and chondrocyte adhesion decreased with an increase in either carbon nanofiber surface energy or simultaneous change in carbon nanofiber chemistry. To determine properties that selectively enhanced osteoblast adhesion, similar cell adhesion assays were performed on polymer (specifically, poly-lactic-co-glycolic; PLGA) casts of carbon fiber compacts previously tested. Compared to PLGA casts of conventional carbon fibers, results provided the first evidence of enhanced select osteoblast adhesion on PLGA casts of nanophase carbon fibers. The summation of these results demonstrate that due to a high degree of nanometer surface roughness, carbon fibers with nanometer dimensions may be optimal materials to selectively increase osteoblast adhesion necessary for successful orthopedic/dental implant applications.  相似文献   

8.
Many engineers and surgeons trace implant failure to poor osseointegration (or the bonding of an orthopedic implant to juxtaposed bone) and/or bacteria infection. By using novel nanotopographies, researchers have shown that nanostructured ceramics, carbon fibers, polymers, metals, and composites enhance osteoblast adhesion and calcium/phosphate mineral deposition. However, the function of bacteria on materials with nanostructured surfaces remains largely uninvestigated. This is despite the fact that during normal surgical insertion of an orthopedic implant, bacteria from the patient's own skin and/or mucosa enters the wound site. These bacteria (namely, Staphylococcus epidermidis) irreversibly adhere to an implant surface while various physiological stresses induce alterations in the bacterial growth rate leading to biofilm formation. Because of their integral role in determining the success of orthopedic implants, the objective of this in vitro study was to examine the functions of (i) S. epidermidis and (ii) osteoblasts (or bone-forming cells) on ZnO and titania (TiO(2)), which possess nanostructured compared to microstructured surface features. ZnO is a well-known antimicrobial agent and TiO(2) readily forms on titanium once implanted. Results of this study provided the first evidence of decreased S. epidermidis adhesion on ZnO and TiO(2) with nanostructured when compared with microstructured surface features. Moreover, compared with microphase formulations, results of this study showed increased osteoblast adhesion, alkaline phosphatase activity, and calcium mineral deposition on nanophase ZnO and TiO(2). In this manner, this study suggests that nanophase ZnO and TiO(2) may reduce S. epidermidis adhesion and increase osteoblast functions necessary to promote the efficacy of orthopedic implants.  相似文献   

9.
Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics   总被引:32,自引:0,他引:32  
Osteoblast, fibroblast, and endothelial cell adhesion on nanophase (that is, materials with grain sizes less than 100 nm) alumina, titania, and hydroxyapatite (HA) was investigated using in vitro cellular models. Osteoblast adhesion was significantly (p < 0.01) greater after 4 h on nanophase alumina, titania, and HA than it was on conventional formulations of the same ceramics. In contrast, compared to conventional alumina, titania, and HA, after 4 h fibroblast adhesion was significantly (p < 0.01) less on nanophase ceramics. Examination of the underlying mechanism(s) of cell adhesion on nanophase ceramics revealed that these ceramics adsorbed significantly (p < 0.01) greater quantities of vitronectin, which, subsequently, may have contributed to the observed select enhanced adhesion of osteoblasts. Select enhanced osteoblast adhesion was independent of surface chemistry and material phase but was dependent on the surface topography (specifically on grain and pore size) of nanophase ceramics. The capability of synthesizing and processing nanomaterials with tailored (through, for example, specific grain and pore size) structures and topographies to control select subsequent cell functions provides the possibility of designing the novel proactive biomaterials (that is, materials that elicit specific, timely, and desirable responses from surrounding cells and tissues) necessary for improved implant efficacy.  相似文献   

10.
Enhanced functions of osteoblasts on nanophase ceramics   总被引:56,自引:0,他引:56  
Select functions of osteoblasts (bone-forming cells) on nanophase (materials with grain sizes less than 100 nm) alumina, titania, and hydroxyapatite (HA) were investigated using in vitro cellular models. Compared to conventional ceramics, surface occupancy of osteoblast colonies was significantly less on all nanophase ceramics tested in the present study after 4 and 6 days of culture. Osteoblast proliferation was significantly greater on nanophase alumina, titania, and HA than on conventional formulations of the same ceramic after 3 and 5 days. More importantly, compared to conventional ceramics, synthesis of alkaline phosphatase and deposition of calcium-containing mineral was significantly greater by osteoblasts cultured on nanophase than on conventional ceramics after 21 and 28 days. The results of the present study provided the first evidence of enhanced long-term (on the order of days to weeks) functions of osteoblasts cultured on nanophase ceramics; in this manner, nanophase ceramics clearly represent a unique and promising class of orthopaedic/dental implant formulations with improved osseointegrative properties.  相似文献   

11.
Modification of the chemistry and surface topography of nanophase ceramics was used to provide biomaterial formulations designed to direct the adhesion and proliferation of human mesenchymal stem cells (HMSCs). HMSC adhesion was dependent upon both the substrate chemistry and grain size, but not on surface roughness or crystal phase. Specifically, cell adhesion on alumina and hydroxyapatite was significantly reduced on the 50 and 24 nm surfaces, as compared with the 1500 and 200 nm surfaces, but adhesion on titania substrates was independent of grain size. HMSC proliferation was minimal on the 50 and 24 nm substrates of any chemistry tested, and thus significantly lower than the densities observed on either the 1500 or 200 nm surfaces after 3 or more consecutive days of culture. Furthermore, HMSC proliferation was enhanced on the 200 nm substrates, compared with results obtained on the 1500 nm substrates after 7 or more days of culture. HMSC proliferation was independent of both substrate surface roughness and crystal phase. Rat osteoblast and fibroblast adhesion and proliferation exhibited similar trends to that of HMSCs on all substrates tested. These results demonstrated the potential of nanophase ceramic surfaces to modulate functions of HMSCs, which are pertinent to biomedical applications such as implant materials and devices.  相似文献   

12.
Gutwein LG  Webster TJ 《Biomaterials》2004,25(18):4175-4183
In the present in vitro study, osteoblast (bone-forming cells) viability and cell density were investigated when cultured in the presence of nanophase compared to conventional (i.e. micron) alumina and titania particles at various concentrations (from 10,000 to 100 microg/ml of cell culture media) for up to 6h. Results confirmed previous studies of the detrimental influences of all ceramic particulates on osteoblast viability and cell densities. For the first time, however, results provided evidence of increased apoptotic cell death when cultured in the presence of conventional compared to nanophase alumina and titania particles. Moreover, since material characterization studies revealed that the only difference between respective ceramic particles was nanometer- and conventional-dimensions (specifically, phase and chemical properties were similar between respective nanophase and conventional alumina as well as titania particles), these results indicated that osteoblast viability and densities were influenced solely by particle size. Such nanometer particulate wear debris may result from friction between articulating components of orthopedic implants composed of novel nanophase ceramic materials. Results of a less detrimental effect of nanometer--as compared to conventional-dimensioned particles on the functions of osteoblasts provide additional evidence that nanophase ceramics may become the next generation of bone prosthetic materials with increased efficacy and, thus, deserve further testing.  相似文献   

13.
Nano-structured polymers enhance bladder smooth muscle cell function   总被引:5,自引:0,他引:5  
It is the hypothesis of the present study that a biocompatible material which mimics the nanometer topography of native bladder tissue will enhance cellular responses and lead to better tissue integration in vivo. Previous in vitro studies have verified the ability to successfully reduce the surface feature dimensions of poly(lactic-co-glycolic acid) (PLGA) and poly(ether urethane) (PU) films into the nanometer regime via chemical etching procedures. Results from these studies also provided the first evidence that bladder smooth muscle cell adhesion was enhanced on chemically treated nano-structured polymeric surfaces compared to their conventional counterparts. Although cell adhesion is necessary for a biomaterial's success, subsequent cell functions (such as long-term cell growth and proliferation) are also critical for tissue ingrowth and long-term implant survival. The present in vitro study, therefore, investigated the function of bladder smooth muscle cells on these novel, nano-structured polymers over the expanded periods of 1, 3 and 5 days. Results indicated that cell number was influenced by both surface roughness and surface chemistry changes; the important contributor, however, was increased nanometer surface roughness. This claim is supported by the fact that cell number was enhanced on nano-structured compared to conventional PLGA and PU once chemistry changes were eliminated using casting techniques.  相似文献   

14.
Yao J  Radin S  S Leboy P  Ducheyne P 《Biomaterials》2005,26(14):1935-1943
Tissue engineering offers a promising new approach to bone tissue grafting. One material that has received attention in this regard is the polymer poly (lactic-co-glycolic acid) (PLGA). It has the advantage of controllable bioresorption and ease of processing. Another material of interest is bioactive glass (BG), which shows the ability to stimulate osteoblastic differentiation of osteoprogenitor cells. In this study, we reported on the optimal synthesis parameters and the kinetics of formation of calcium phosphate (Ca-P) phase at the surface of PLGA/BG composites. The formation of calcium phosphate layer was confirmed using scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDXA). PLGA-30%BG microspheres based porous scaffolds for bone tissue engineering were examined for their ability to promote osteogenesis of marrow stromal cells (MSC). This porous scaffold supported both MSC proliferation and promoted MSC differentiation into cells expressing the osteoblast phenotype. It therefore demonstrates significant potential as a bone replacement material.  相似文献   

15.
Biodegradable polymer/bioceramic composites scaffold can overcome the limitation of conventional ceramic bone substitutes such as brittleness and difficulty in shaping. To better mimic the mineral component and the microstructure of natural bone, novel nano-hydroxyapatite (NHA)/polymer composite scaffolds with high porosity and well-controlled pore architectures as well as high exposure of the bioactive ceramics to the scaffold surface is developed for efficient bone tissue engineering. In this article, regular and highly interconnected porous poly(lactide-co-glycolide) (PLGA)/NHA scaffolds are fabricated by thermally induced phase separation technique. The effects of solvent composition, polymer concentration, coarsening temperature, and coarsening time as well as NHA content on the micro-morphology, mechanical properties of the PLGA/NHA scaffolds are investigated. The results show that pore size of the PLGA/NHA scaffolds decrease with the increase of PLGA concentration and NHA content. The introduction of NHA greatly increase the mechanical properties and water absorption ability which greatly increase with the increase of NHA content. Mesenchymal stem cells are seeded and cultured in three-dimensional (3D) PLGA/NHA scaffolds to fabricate in vitro tissue engineering bone, which is investigated by adhesion rate, cell morphology, cell numbers, and alkaline phosphatase assay. The results display that the PLGA/NHA scaffolds exhibit significantly higher cell growth, alkaline phosphatase activity than PLGA scaffolds, especially the PLGA/NHA scaffolds with 10 wt.% NHA. The results suggest that the newly developed PLGA/NHA composite scaffolds may serve as an excellent 3D substrate for cell attachment and migration in bone tissue engineering.  相似文献   

16.
Despite their indisputable clinical value, current tissue engineering strategies face major challenges in recapitulating the natural nano-structural and morphological features of native bone. The aim of this study is to take a step forward by developing a porous scaffold with appropriate mechanical strength and controllable surface roughness for bone repair. This was accomplished by homogenous dispersion of carbon nanotubes (CNTs) in a poly(lactide-co-glycolide) (PLGA) solution followed by a solvent casting/particulate leaching scaffold fabrication. Our results demonstrated that CNT/PLGA composite scaffolds possessed a significantly higher mechanical strength as compared to PLGA scaffolds. The incorporation of CNTs led to an enhanced surface roughness and resulted in an increase in the attachment and proliferation of MC3T3-E1 osteoblasts. Most interestingly, the in vitro osteogenesis studies demonstrated a significantly higher rate of differentiation on CNT/PLGA scaffolds compared to the control PLGA group. These results all together demonstrate the potential of CNT/PLGA scaffolds for bone tissue engineering as they possess the combined effects of mechanical strength and osteogenicity.  相似文献   

17.
Calcium phosphate (Ca-P) cements are injectable, self-setting ceramic pastes generally known for their favorable bone response. Ingrowth of bone and subsequent degradation rates can be enhanced by the inclusion of macropores. Initial porosity can be induced by CO(2) foaming during setting of the cement, whereas secondary porosity can develop after hydrolysis of incorporated poly(DL-lactic- co-glycolic acid) (PLGA) microparticles. In this study, we focused on the biological response to porous PLGA/Ca-P cement composites. Pre-set composite discs of four formulations (4 wt% or 15 wt% PLGA microparticles and low or high CO(2) induced porosity) were implanted subcutaneously and in cranial defects in rats for 12 weeks. Histological analysis of the explanted composites revealed that bone and fibrous tissue ingrowth was facilitated by addition of PLGA microparticles (number average diameter of 66 +/- 25 microm). No adverse tissue reaction was observed in any of the composites. Significant increases in composite density due to bone ingrowth in cranial implants were found in all formulations. The results suggest that the PLGA pores are suitable for bone ingrowth and may be sufficient to enable complete tissue ingrowth without initial CO(2) induced porosity. Finally, bone-like mineralization in subcutaneous implants suggests that, under appropriate conditions and architecture, porous PLGA/Ca-P cement composites can exhibit osteoinductive properties. These PLGA/Ca-P composites are a promising scaffolding material for bone regeneration and bone tissue engineering.  相似文献   

18.
成骨细胞与骨基质材料间的相互作用是骨组织工程研究的主要领域,其中细胞与材料的黏附是基础,细胞必须与材料发生适当的黏附,才能进行迁移、增殖和分化。综述了与成骨细胞黏附有关的蛋白质、生物活性复合材料的表面特征和表面修饰对成骨细胞黏附性能的影响,为骨组织工程的研究提供一定的依据,尤其为组织工程新材料的研制提供参考。  相似文献   

19.
Highly porous scaffolds of poly(lactide-co-glycolide) (PLGA) were prepared by solution-casting/salt-leaching method. The in vitro degradation behavior of PLGA scaffold was investigated by measuring the change of normalized weight, water absorption, pH, and molecular weight during degradation period. Mesenchymal stem cells (MSCs) were seeded and cultured in three-dimensional PLGA scaffolds to fabricate in vitro tissue engineering bone, which was investigated by cell morphology, cell number and deposition of mineralized matrix. The proliferation of seeded MSCs and their differentiated function were demonstrated by experimental results. To compare the reconstructive functions of different groups, mandibular defect repair of rabbit was made with PLGA/MSCs tissue engineering bone, control PLGA scaffold, and blank group without scaffold. Histopathologic methods were used to estimate the reconstructive functions. The result suggests that it is feasible to regenerate bone tissue in vitro using PLGA foams with pore size ranging from 100-250 microm as scaffolding for the transplantation of MSCs, and the PLGA/MSCs tissue engineering bone can greatly promote cell growth and have better healing functions for mandibular defect repair. The defect can be completely recuperated after 3 months with PLGA/MSCs tissue engineering bone, and the contrastive experiments show that the defects could not be repaired with blank PLGA scaffold. PLGA/MSCs tissue engineering bone has great potential as appropriate replacement for successful repair of bone defect.  相似文献   

20.
Peptide sequences such as lysine-arginine-serine-arginine (KRSR) selectively bind transmembrane proteoglycans (e.g. heparin sulfate) of osteoblasts (bone-forming cells) and are, therefore, actively being investigated for orthopedic applications. Further, nanophase materials (or materials with grain or particle sizes less than 100 nm) are promising new materials that promote new bone growth more than compared to conventional (that is, micron grain or particle size) materials. To combine the above two promising approaches for improving orthopedic implants, the objective of this in vitro study was to functionalize titanium (Ti) surfaces (both nanophase and conventional) with KRSR peptides and study their osteoblast cell adhesive properties. Materials were characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy. Results of this in vitro study provided evidence of increased osteoblast adhesion on nanophase compared to conventional Ti whether functionalized with KRSR or not. Results further showed that the immobilization of KRSR onto Ti (both nanophase and conventional) increased osteoblast adhesion compared to respective nonfunctionalized Ti and those functionalized with the negative control peptide KSRR. Most importantly, osteoblast adhesion on nonfunctionalized nanophase Ti increased compared to conventional Ti functionalized with KRSR. Further, select initial osteoblast adhesion was observed to occur at particle boundaries for any type of nanophase and conventional Ti formulated in this study. In summary, results provided evidence that not only should nonfunctionalized nanophase Ti be further studied for improved orthopedic applications but so should nanophase Ti functionalized with KRSR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号