首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Rationale

Nitric oxide (NO) modulates the dopamine uptake and release processes and appears to be implicated in dopamine-related pathologies, such as schizophrenia. However, it is unclear whether there is excess or deficient NO synthesis in schizophrenia pathophysiology. Analyses of the intracellular pathways downstream of NO system activation have identified the cyclic nucleotide cyclic guanosine monophosphate (cGMP) as a possible target for drug development. Defects in the sensorimotor gating of the neural mechanism underlying the integration and processing of sensory information have been detected across species through prepulse inhibition (PPI).

Objectives

The aim of this study was to investigate the effects of NO/cGMP increase on sensorimotor gating modulation during dopamine hyperfunction.

Methods

Mice were treated with NO donors and subjected to the PPI test. Treatment with the NO donor sodium nitroprusside was preceded by pretreatment with a soluble guanylate cyclase (sGC) inhibitor. Additionally, the mice were treated with NO donors and phosphodiesterases inhibitors prior to amphetamine treatment.

Results

Pretreatment with the NO donors enhanced the PPI response and attenuated the amphetamine-disruptive effects on the PPI. The sGC inhibitor did not modify the sodium nitroprusside effects. Additionally, the cGMP increase induced by a specific phosphodiesterase inhibitor did not modify the amphetamine-disruptive effect.

Conclusions

This study provides the first demonstration that an increase in NO can improve the PPI response and block the amphetamine-disruptive effects on the PPI response. Our data are consistent with recent clinical results. However, these effects do not appear to be related to an increase in cGMP levels, and further investigation is thus required.  相似文献   

2.

Rationale

Inhibition of glycine transporter 1 (GlyT1) elevates extracellular glycine and can thus increase N-methyl-d-aspartate receptor (NMDAR) excitability in the brain. The potent GlyT1 inhibitor, SSR504734, has also been shown to potentiate the behavioral effects of direct and indirect dopamine agonists. Thus, an acute systemic dose of SSR504734 was sufficient to exacerbate the motor-stimulant effect of the dopamine releaser amphetamine in C57BL/6 mice, even though SSR504734 alone exerted no significant effect on motor activity.

Objectives

Here, we explore if SSR504734 might modulate dopamine-dependent sensory gating in the paradigm of prepulse inhibition (PPI) of the acoustic startle reflex.

Methods

Experiment 1 characterized the effect of SSR504734 (10 and 30 mg/kg i.p.) on PPI expression when administered alone. Experiments 2 and 3 investigated the impact of SSR504734 when administered in conjunction with the dopamine receptor agonist, apomorphine (1 and 2 mg/kg s.c.), which is known to reliably disrupt PPI.

Results

When administered alone, acute SSR504734 enhanced PPI only at 30 mg/kg—a dose that has been shown to improve cognitive functions including working memory, which has been linked to enhanced NMDAR function resulting from the elevation of extracellular glycine. However, this effect did not allow SSR504734 to antagonize the PPI-disruptive effect of apomorphine. At the lower dose of 10 mg/kg—that was insufficient to enhance PPI when administered alone—SSR504734 even exacerbated the deleterious effect of apomorphine on PPI.

Conclusions

The therapeutic potential of GlyT1 inhibition against distinct behavioral/cognitive deficiency might require different magnitudes of GlyT1 inhibition.  相似文献   

3.

Rationale

As enhanced corticotropin-releasing factor (CRF) transmission is associated with induction of sensorimotor gating deficits, CRF1 receptor antagonists may reverse disrupted prepulse inhibition (PPI), an operational measure of sensorimotor gating.

Objectives

To determine the effects of CRF1 receptor antagonists in pharmacological models of disrupted PPI and to determine if long-term elevated central CRF levels alter sensitivity towards PPI disrupting drugs.

Methods

CP154,526 (10–40 mg/kg), SSR125543 (3–30 mg/kg) and DMP695 (40 mg/kg) were tested on PPI disruption provoked by d-amphetamine (2.5, 3 mg/kg), ketamine (5, 30 mg/kg) and MK801 (0.2, 0.5 mg/kg) in Wistar rats, C57Bl/6J and CD1 mice, and on spontaneously low PPI in Iffa Credo rats and DBA/2J mice. PPI-disrupting effects of d-amphetamine (2.5–5 mg/kg) and MK801 (0.3–1 mg/kg) were examined in CRF-overexpressing (CRFtg) mice, which display PPI deficits. Finally, we determined the influence of CP154,526 on d-amphetamine-induced dopamine outflow in nucleus accumbens and prefrontal cortex of CRFtg mice using in vivo microdialysis.

Results

No CRF1?antagonists improved PPI deficits in any test. CRFtg mice showed blunted PPI disruption in response to MK801, but not d-amphetamine. Further, d-amphetamine-induced dopamine release was less pronounced in CRFtg versus wild-type mice, a response normalized by pretreatment with CP154,526.

Conclusion

The inability of CRF1 receptor antagonists to block pharmacological disruption of sensorimotor gating suggests that the involvement of CRF1 receptors in the modulation of dopaminergic and glutamatergic neurotransmission relevant for sensory gating is limited. Furthermore, the alterations observed in CRFtg mice support the notion that long-term elevated central CRF levels induce changes in these neurotransmitter systems.  相似文献   

4.

Rationale

Psychoses are debilitating side effects associated with current dopaminergic treatments for Parkinson's disease (PD). Prepulse inhibition (PPI), in which a non-startling stimulus reduces startle response to a subsequent startle-eliciting stimulus, is important in filtering out extraneous sensory stimuli. PPI deficits induced by dopamine agonists can model symptoms of psychosis. Adenosine A2A receptor antagonists, being developed as novel PD treatments, indirectly modulate dopamine signaling in the basal ganglia and may have an improved psychosis profile which could be detected using the PPI model.

Objectives

The aims of this study is to characterize PPI in MitoPark mice, which exhibit progressive loss of dopamine signaling and develop a Parkinson-like motor phenotype, and assess standard and novel PD treatment effects on PPI in MitoPark mice, which more closely mimic the basal ganglia dopamine status of PD patients.

Results

MitoPark mice displayed enhanced PPI as dopamine tone decreased with age, consistent with studies in intact mice that show enhanced PPI in response to dopamine antagonists. Paradoxically, older MitoParks were more sensitive to PPI disruption when challenged with dopamine agonists such as apomorphine or pramipexole. Alternatively, SCH 412348, an adenosine A2A antagonist, did not disrupt PPI in MitoPark mice at doses that normalized hypoactivity.

Conclusion

Use of MitoPark mice in the PPI assay to assess the potential for PD treatment to produce psychoses likely represents a more disease-relevant model. SCH 412348 does not differentially disrupt PPI as do dopamine agonists, perhaps indicative of an improved psychosis profile of adenosine A2A antagonists, even in PD patients with decreased dopamine tone in the basal ganglia.  相似文献   

5.

Rationale

A sensitized dopamine system may be linked to the genesis of psychotic symptoms in schizophrenia. Following withdrawal from amphetamine exposures, psychotic-like traits have been robustly demonstrated, but the presence of cognitive/mnemonic deficits remains uncertain.

Methods

Adult male Lewis and Fischer rats, differing in cognitive performance, were exposed intermittently to escalating doses of amphetamine over 5 weeks. This was effective in producing behavioral sensitization to a subsequent amphetamine challenge. Following 27 days of drug withdrawal, the animals were assessed in Pavlovian conditioning, object recognition, and spatial working memory. In addition, prepulse inhibition (PPI), spontaneous motor activity, and anxiety-like behavior were measured.

Results

Amphetamine pretreatment induced behavioral sensitization in both rat strains similarly. Working memory was enhanced in Fischer but not Lewis rats following withdrawal. Spontaneous novel object preference was enhanced in sensitized Fischer rats, but was impaired in sensitized Lewis rats, thus effectively reversing the strain difference in non-sensitized controls. In contrast, Pavlovian fear conditioning remained unaffected and so were anxiety-like behavior, open field activity, and PPI.

Conclusion

The face validity of the amphetamine withdrawal model for cognitive deficits was limited to the object recognition memory impairment observed in sensitized Lewis rats. Yet, the possibility that enhancing dopaminergic neurotransmission may facilitate object recognition and spatial working memory performance was demonstrated in sensitized Fischer rats. Identification of the mechanisms underlying such strain-dependent effects would be instrumental in the further specifications of the construct validity, and therefore the limitations and potential of the amphetamine sensitization model of schizophrenia.  相似文献   

6.

Rationale

Due to its intrinsic deficiency in prepulse inhibition (PPI), the inbred DBA/2 mouse strain has been considered as an animal model for evaluating antipsychotic drugs. However, the PPI impairment observed in DBA/2 mice relative to the common C57BL/6 strain is confounded by a concomitant reduction in baseline startle reactivity. In this study, we examined the robustness of the PPI deficit when this confound is fully taken into account.

Materials and methods

Male DBA/2 and C57BL/6 mice were compared in a PPI experiment using multiple pulse stimulus intensities, allowing the possible matching of startle reactivity prior to examination of PPI. The known PPI-enhancing effect of the antipsychotic, clozapine, was then evaluated in half of the animals, whilst the other half was subjected to two additional schizophrenia-relevant behavioural tests: latent inhibition (LI) and locomotor reaction to the psychostimulants—amphetamine and phencyclidine.

Results

PPI deficiency in DBA/2 relative to C57BL/6 mice was essentially independent of the strain difference in baseline startle reactivity. Yet, there was no evidence that DBA/2 mice were superior in detecting the PPI-facilitating effect of clozapine when startle difference was balanced. Compared with C57BL/6 mice, DBA/2 mice also showed impaired LI and a different temporal profile in their responses to amphetamine and phencyclidine.

Conclusion

Relative to the C57BL/6 strain, DBA/2 mice displayed multiple behavioural traits relevant to schizophrenia psycho- and physiopathology, indicative of both dopaminergic and glutamatergic/N-methyl-d-aspartic acid receptor dysfunctions. Further examination of their underlying neurobiological differences is therefore warranted in order to enhance the power of this specific inter-strain comparison as a model of schizophrenia.  相似文献   

7.

Rationale

Impulsivity is a key feature of disorders that include attention-deficit/hyperactivity disorder (ADHD). The cliff avoidance reaction (CAR) assesses maladaptive impulsive rodent behavior. Dopamine transporter knockout (DAT-KO) mice display features of ADHD and are candidates in which to test other impulsive phenotypes.

Objectives

Impulsivity of DAT-KO mice was assessed in the CAR paradigm. For comparison, attentional deficits were also assessed in prepulse inhibition (PPI) in which DAT-KO mice have been shown to exhibit impaired sensorimotor gating.

Results

DAT-KO mice exhibited a profound CAR impairment compared to wild-type (WT) mice. As expected, DAT-KO mice showed PPI deficits compared to WT mice. Furthermore, the DAT-KO mice with the most impaired CAR exhibited the most severe PPI deficits. Treatment with methylphenidate or nisoxetine ameliorated CAR impairments in DAT-KO mice.

Conclusion

These results suggest that DAT-KO mice exhibit impulsive CAR behavior that correlates with their PPI deficits. Blockade of monoamine transporters, especially the norepinephrine transporter (NET) in the prefrontal cortex (PFC), may contribute to pharmacological improvement of impulsivity in these mice.  相似文献   

8.

Introduction

Muscarinic M5 receptors are the only muscarinic receptor subtype expressed by dopamine-containing neurons of the ventral tegmental area. These cells play an important role for the reinforcing properties of psychostimulants and M5 receptors modulate their activity. Previous studies showed that M5 receptor knockout (M 5 ?/? ) mice are less sensitive to the reinforcing properties of addictive drugs.

Materials and methods

Here, we investigate the role of M5 receptors in the effects of amphetamine and cocaine on locomotor activity, locomotor sensitization, and dopamine release using M 5 ?/? mice backcrossed to the C57BL/6NTac strain.

Statistical analyses

Sensitization of the locomotor response is considered a model for chronic adaptations to repeated substance exposure, which might be related to drug craving and relapse. The effects of amphetamine on locomotor activity and locomotor sensitization were enhanced in M 5 ?/? mice, while the effects of cocaine were similar in M 5 ?/? and wild-type mice.

Results

Consistent with the behavioral results, amphetamine-, but not cocaine, -elicited dopamine release in nucleus accumbens was enhanced in M 5 ?/? mice.

Discussion

The different effects of amphetamine and cocaine in M 5 ?/? mice may be due to the divergent pharmacological profile of the two drugs, where amphetamine, but not cocaine, is able to release intracellular stores of dopamine. In conclusion, we show here for the first time that amphetamine-induced hyperactivity and dopamine release as well as amphetamine sensitization are enhanced in mice lacking the M5 receptor. These results support the concept that the M5 receptor modulates effects of addictive drugs.  相似文献   

9.
Dopamine and 3,4-dihydroxy phenylacetic acid (DOPAC) levels in discrete regions and apomorphine- or (−)-sulpiride–induced changes in electrically evoked dopamine release from nucleus accumbens slices were assessed after testing prepulse inhibition of acoustic startle (PPI) in rats. Dopamine and DOPAC levels in the nucleus accumbens, but not in the striatum, correlated well with PPI (r = −0.64 for dopamine, r = −0.48 for DOPAC). Evoked dopamine release from the nucleus accumbens did not differ between the high-PPI (more than 60%) and the low-PPI (less than 40%) group. When slices were superfused with 1 μM apomorphine, the S2/S1 ratio in rats showing high PPI was 0.77 ± 0.02 (mean ± SEM, 66% of control), significantly smaller than in the low-PPI group (S2/S1 ratio = 0.97 ± 0.08, 94% of control, p < 0.05). Moreover, (−)-sulpiride–induced increase in evoked dopamine release from the nucleus accumbens in the high-PPI group was inclined to be greater than in the low-PPI group. The results suggest that PPI differences between individuals may reflect the sensitivity of release-modulating dopamine autoreceptors in the nucleus accumbens.  相似文献   

10.

Rationale

Estrogen has been shown to have beneficial effects in patients with schizophrenia. However, the mechanisms involved in this protective effect are unclear. Schizophrenia is associated with deficits in sensory gating, a filtering mechanism which normally prevents sensory overload. In rodent models, acute treatment with drugs such as the dopamine D1/D2 receptor agonist, apomorphine; the dopamine releaser, amphetamine; and the glutamate NMDA receptor antagonists, phencyclidine or MK-801, can induce a phenotype similar to that seen in schizophrenia.

Objectives

Given the putative protective action of estrogen in schizophrenia, here we investigated the effect of ovariectomy (OVX) and estrogen replacement in female rats on drug-induced auditory gating deficits. For comparison, we also assessed the effects of castration (CAST) and dihydrotestosterone (DHT) replacement in male rats.

Methods

Rats were instrumented with cortical surface electrodes. Test sessions comprised of 150 presentations of paired clicks, 500 ms apart (S1 and S2).

Results

Administration of all drugs increased the ratio of responses to S2/S1 in sham-operated female and male rats. OVX reduced event-related potential amplitudes but did not alter S2/S1 ratio or drug effects. In OVX rats with 17β-estradiol implants, the effect of apomorphine was abolished, but there was no change in that of amphetamine and phencyclidine. There were no effects of CAST or DHT replacement in male rats.

Conclusions

Chronic estrogen replacement in OVX rats protected against sensory gating deficits caused by direct dopamine D1/D2 receptor stimulation. These data could indicate a possible mechanism by which estrogen exerts a protective action in schizophrenia.  相似文献   

11.

Rationale

Enhancement of N-methyl-d-aspartate receptor (NMDAR) activity through its glycine modulatory site (GMS) is a novel therapeutic approach in schizophrenia. Brain concentrations of endogenous GMS agonist d-serine and antagonist N-acetyl-aspartylglutamate are regulated by serine racemase (SR) and glutamic acid decarboxylase 2 (GCP2), respectively. Using mice genetically, under-expressing these enzymes may clarify the role of NMDAR-mediated neurotransmission in schizophrenia.

Objectives

We investigated the behavioral effects of two psychotomimetic drugs, the noncompetitive NMDAR antagonist, phencyclidine (PCP; 0, 1.0, 3.0, or 6.0?mg/kg), and the indirect dopamine receptor agonist, amphetamine (AMPH; 0, 1.0, 2.0, or 4.0?mg/kg), in SR ?/? and GCP2 ?/+ mice. Outcome measures were locomotor activity and prepulse inhibition (PPI) of the acoustic startle reflex. Acute effects of an exogenous GMS antagonist, gavestinel (0, 3.0, or 10.0?mg/kg), on PCP-induced behaviors were examined in wild-type mice for comparison to the mutants with reduced GMS activity.

Results

PCP-induced hyperactivity was increased in GCP2 ?/+ mice, and PCP-enhanced startle reactivity was increased in SR ?/? mice. PCP disruption of PPI was unaffected in either mutant. In contrast, gavestinel attenuated PCP-induced PPI disruption without effect on baseline PPI or locomotor activity. AMPH effects were similar to controls in both mutant strains.

Conclusions

The results of the PCP experiments demonstrate that convergence of pharmacological and genetic manipulations at NMDARs may confound the predictive validity of these preclinical assays for the effects of GMS activation in schizophrenia. The AMPH data provide additional evidence that hyperdopaminergia in schizophrenia may be distinct from NMDAR hypofunction.  相似文献   

12.

Rationale and objectives

Behavioral, neurochemical and pharmaco-EEG profiles of a new synthetic drug 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in rats were examined.

Materials and methods

Locomotor effects, prepulse inhibition (PPI) of acoustic startle reaction (ASR), dopamine and its metabolite levels in nucleus accumbens (NAc), EEG power spectra and coherence in freely moving rats were analysed. Amphetamine was used as a reference compound.

Results

2C-B had a biphasic effect on locomotion with initial inhibitory followed by excitatory effect; amphetamine induced only hyperlocomotion. Both drugs induced deficits in the PPI; however they had opposite effects on ASR. 2C-B increased dopamine but decreased 3,4-dihydroxyphenylacetic acid (DOPAC) in the NAc. Low doses of 2C-B induced a decrease in EEG power spectra and coherence. On the contrary, high dose of 2C-B 50 mg/kg had a temporally biphasic effect with an initial decrease followed by an increase in EEG power; decrease as well as increase in EEG coherence was observed. Amphetamine mainly induced an increase in EEG power and coherence in theta and alpha bands. Increases in the theta and alpha power and coherence in 2C-B and amphetamine were temporally linked to an increase in locomotor activity and DA levels in NAc.

Conclusions

2C-B is a centrally active compound similar to other hallucinogens, entactogens and stimulants. Increased dopamine and decreased DOPAC in the NAc may reflect its psychotomimetic and addictive potential and monoaminoxidase inhibition. Alterations in brain functional connectivity reflected the behavioral and neurochemical changes produced by the drug; a correlation between EEG changes and locomotor behavior was observed.  相似文献   

13.

Rationale

Amphetamine challenge in rodent prepulse inhibition (PPI) studies has been used to model potential dopamine involvement in effects that may be relevant to schizophrenia, though similar studies in healthy humans have failed to report replicable or robust effects.

Objectives

The present study investigated dexamphetamine effects on PPI in healthy humans with an increased dose and a range of startling stimulus intensities to determine participants' sensitivity and range of responses to the stimuli.

Methods

A randomised, placebo-controlled dexamphetamine (0.45 mg/kg, per os.), double-blind, counterbalanced, within-subject design was used. PPI was measured in 64 participants across a range of startling stimulus intensities, during two attention set conditions (ATTEND and IGNORE). Startle magnitudes for pulse-alone and prepulse-pulse magnitudes were modelled using the startle reflex magnitude (sigmoid) function. Parameters were extracted from these fits, including the upper limit of the asymptote (maximum startle reflex capacity, R MAX), intensity threshold, stimulus intensity that elicits a half-maximal response (ES50) and the maximum rate of change of startle response magnitude to an increase in stimulus intensity.

Results

Dexamphetamine increased the threshold and ES50 of the response to pulse-alone trials in both sexes and reduced R MAX exclusively in females. Dexamphetamine modestly increased PPI of the R MAX across both attention conditions. PPI of R MAX was reduced during the ATTEND condition compared to the IGNORE condition.

Conclusions

Results indicate that sex differences exist in motor, but not sensory, components of the startle reflex. Findings also reveal that administration of 0.45 mg/kg dexamphetamine to healthy humans does not mimic PPI effects observed in schizophrenia.  相似文献   

14.

Rationale

Whilst cannabinoid CB2 receptors were thought to exist predominantly in immune cells in the periphery, the recent discovery of CB2 receptors in the brain has led to an increased interest in the role of these central CB2 receptors. Several studies have reported an association with CB2 receptors and schizophrenia. Sensorimotor gating deficits occur in schizophrenia patients and can be induced in animals using psychotomimetic drugs such as N-methyl-D-aspartate (NMDA) receptor antagonists.

Objectives

The aim of this study was to investigate the effect of CB2 ligands on sensorimotor gating, either alone, or on sensorimotor gating deficits induced by the NMDA receptor antagonist MK-801 in mice.

Method

The effects of CB2 receptor ligands on prepulse inhibition (PPI), an operational measure of sensorimotor gating, alone or when administrated in combination with MK-801, in Balb-C mice were evaluated.

Results

The CB2 receptor agonist JWH015 had no significant effect on PPI alone but reversed disruptions in PPI induced by MK-801. This effect was blocked by co-administration of the CB2 receptor antagonist AM630, but not by co-administration of the CB1 receptor antagonist AM251, indicating a CB2-mediated effect. The mixed CB1/CB2 receptor agonist JWH203 was partially able to reverse MK-801-induced PPI disruptions. Neither the CB2 receptor antagonist AM630 nor the CB1 receptor antagonist AM251 had any significant effect alone or on MK-801-induced disruptions in PPI.

Conclusions

CB2 receptor agonism reversed MK-801 disruptions in sensorimotor gating deficits in mice, indicating that CB2 agonism may have a protective effect against aspects of drug-induced psychosis.  相似文献   

15.

Rationale

Glucocorticoid hormones facilitate sensitization to repeated administration of psychostimulants, an effect that is mediated by glucocorticoid receptors (GRs). It is still unclear, however, at which stage of psychomotor sensitization are stress and GR-mediated effects involved.

Objectives

In the present study, we have tested the hypothesis that GR-mediated effects during the phase of repeated amphetamine injections play a crucial role in the long-term expression of sensitization. For this purpose, we used DBA/2 mice, an inbred strain commonly used for the study of stress effects on psychostimulant sensitization.

Methods

Animals were treated with the GR antagonist mifepristone (200 mg/kg) at 2.5 h before each daily injection of amphetamine (2.5 mg/kg) or saline in a 5-day protocol. The amphetamine or saline injections were given in the home or a novel context. This was followed by a 2.5-week withdrawal period, without any drug delivery. Following the withdrawal period, two low-dose amphetamine challenges (1.25 mg/kg) were given subsequently, without additional mifepristone.

Results

The animals receiving amphetamine in the novel context showed a higher expression of sensitization at challenge as compared to those in the home condition. Mifepristone treatment influenced locomotor response to repeated amphetamine injections, but this effect during the initial phase did not affect the expression of sensitization after a withdrawal period.

Conclusion

Our results indicate that GR-related processes during the initial phase of sensitization are involved in, but not crucial for, the development of long-term sensitization.  相似文献   

16.
17.

Rationale

Inhibitors of phosphodiesterase 10A (PDE10A), an enzyme highly expressed in medium spiny neurons of the mammalian striatum, enhance activity in direct (dopamine D1 receptor-expressing) and indirect (D2 receptor-expressing striatal output) pathways. The ability of such agents to act to potentiate D1 receptor signaling while inhibiting D2 receptor signaling suggest that PDE10A inhibitors may have a unique antipsychotic-like behavioral profile differentiated from the D2 receptor antagonist-specific antipsychotics currently used in the treatment of schizophrenia.

Objectives

To evaluate the functional consequences of PDE10A inhibitor modulation of D1 and D2 receptor pathway signaling, we compared the effects of a PDE10A inhibitor (TP-10) on D1 and D2 receptor agonist-induced disruptions in prepulse inhibition (PPI), a measure of sensorimotor gating disrupted in patients with schizophrenia.

Results

Our results indicate that, in rats: (1) PDE10A inhibition (TP-10, 0.32–10.0 mg/kg) has no effect on PPI disruption resulting from the mixed D1/D2 receptor agonist apomorphine (0.5 mg/kg), confirming previous report; (2) Yet, TP-10 blocked the PPI disruption induced by the D2 receptor agonist quinpirole (0.5 mg/kg); and attenuated apomorphine-induced disruptions in PPI in the presence of the D1 receptor antagonist SCH23390 (0.005 mg/kg).

Conclusions

These findings indicate that TP-10 cannot block dopamine agonist-induced deficits in PPI in the presence of D1 activation and suggest that the effect of PDE10A inhibition on D1 signaling may be counterproductive in some models of antipsychotic activity. These findings, and the contribution of TP-10 effects in the direct pathway on sensorimotor gating in particular, may have implications for the potential antipsychotic efficacy of PDE10A inhibitors.  相似文献   

18.

Rationale

Stark differences exist between adult (>PND 70) and juvenile (~PND 21–34) rodents in how DCC (deleted in colorectal cancer) receptors and sensitization to amphetamine interact. In adults, repeated amphetamine upregulates DCC receptor expression selectively in the ventral tegmental area (VTA), an effect that is critical for sensitization. In contrast, amphetamine administered to juveniles downregulates VTA DCC expression. Moreover, whereas adult dcc heterozygous mice fail to sensitize when repeatedly treated with amphetamine, drug treatment during the juvenile period actually abolishes this adult “protective” phenotype.

Objectives

We set out to determine whether adolescence (PND ~35–55) is a period during which: (1) amphetamine-induced alterations in VTA DCC expression switch from downregulation to upregulation; (2) the “protective” phenotype of adult dcc heterozygotes against sensitization becomes evident; and (3) the adult “protective” phenotype of dcc heterozygotes can still be abolished by repeated amphetamine treatment.

Results

Repeated amphetamine did not significantly alter VTA DCC expression in adolescent rodents when assessed 1 week later. Both wild-type and dcc heterozygous mice exhibited sensitization at this time. Remarkably, wild-type mice, but not dcc heterozygotes, exhibited sensitization when tested during adulthood.

Conclusions

Adolescence is a time of transition for dcc heterozygotes as related to sensitization. Our results support the hypothesis that DCC may be a key factor in determining age-dependent individual differences in vulnerability to sensitization. Given that exposure to drugs of abuse during adolescence can have profound consequences for adulthood, the resilience of adult dcc heterozygous mice against adolescent exposure to amphetamine is particularly salient.  相似文献   

19.

Introduction

We have previously found that a disruption to prepulse inhibiton (PPI) induced by methamphetamine (METH) is associated with impaired functioning of pallidotegmental neurons, which play a crucial role in PPI of the startle reflex, through the activation of gamma-aminobutyric acid type B receptors in pedunculopontine tegmental neurons in mice.

Objectives

Here, we examined the effect of nicotine on METH-induced impairment of PPI of the startle reflex focusing on dysfunctional pallidotegmental neurons and the neural system.

Results

Nicotine (0.15–0.5 mg/kg) ameliorated the deficit in PPI induced by acute METH, and the ameliorating effect of nicotine was antagonized by nicotinic receptor antagonists such as methyllycaconitine and dihydro-β-erythroidine. The acute METH-induced disruption of PPI was accompanied by suppression of c-Fos expression in the lateral globus pallidus (LGP) as well as its induction in the caudal pontine reticular nucleus (PnC) in mice subjected to the PPI test. Nicotine-induced amelioration of PPI deficits in METH-treated mice was accompanied by a reversal of the changes in c-Fos expression in both the LGP and PnC to the basal level.

Conclusions

Nicotine is effective in ameliorating the impairment of PPI caused by METH, which may be associated with normalization of the pallidotegmental neurons.  相似文献   

20.

Rationale

Repeated exposure to psychostimulants alters behavioral responses to reward-related cues; however, the motivational underpinnings of this effect have not been fully characterized.

Objectives

The following study was designed to examine how amphetamine sensitization affects performance in rats on a series of Pavlovian and operant tasks that distinguish between general-incentive and outcome-selective forms of conditioned responses.

Methods

Adult male rats underwent Pavlovian and instrumental training for food pellet rewards. Following training, rats were sensitized to d-amphetamine (2?mg/kg for 7?days). Rats were subsequently tested on an outcome-selective Pavlovian-instrumental transfer (PIT) task, an outcome-reinstatement task, and an outcome devaluation task. Additionally, in a separate experiment, PIT was assessed in amphetamine-sensitized and control rats using a Pavlovian backward-conditioned stimulus.

Results

Repeated amphetamine exposure sensitized locomotor activity to acute amphetamine challenge. Amphetamine altered responses to CS presentations by increasing conditioned approach. During tests of PIT, amphetamine-treated rats showed no outcome-selectivity in their responding, responding to a CS whether or not it shared a common outcome with the instrumental response. No effect of amphetamine sensitization was observed on tests of outcome-selective reinstatement by outcome delivery or action selection based on outcome value. Amphetamine-sensitized rats showed impaired outcome-selective PIT to a backward CS but were unaltered in conditioned approach.

Conclusions

Amphetamine sensitization prevents outcome-selective responding during PIT, which is dissociable from amphetamine's effects on conditioned approach. These data suggest fundamental alterations in how stimuli motivate action in addiction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号