首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The response of dorsal column axons was studied after neonatal spinal overhemisection injury (right hemicord and left doral funiculus). Rat pups (N = 11) received this spinal lesion at the C2 level within 30 hours after birth. The cauda equina was exposed 3 months later in one group of chronic operates (N = 5) and in a group of normal adults (N = 2), and all spinal roots from L5 caudally were cut bilaterally; 4 days later the spinal cord and medulla were processed for Fink-Heimer impregnation of degenerating axons and terminals. In a second group of chronic operates (N = 6) and normal adult controls (N = 4) the left sciatic nerve was injected with a cholera toxin-HRP conjugate (C-HRP), followed by a 2-3 day transganglionic transport period, and then the spinal cord and medulla were processed with tetramethylbenzidine histochemistry. Both control groups have a consistent dense projection in topographically adjacent regions of the dorsal funiculus and gracile nucleus. However, there is no sign of axonal growth around the lesion in either group of chronic experimental operates. Instead, there is a decreased density of projection within the dorsal funiculus near the lesion site. Many remaining C-HRP labeled axons in the experimental operates have abnormal, thick varicosities and swollen axonal endings (5-10 microns x 10-30 microns) within the dorsal funiculus through several spinal segments caudal to the lesion. Ultrastructural analysis of the dorsal funiculus in three other chronic experimental operates reveals the presence of numerous vesicle filled axonal profiles and reactive endings which appear similar to the C-HRP labeled structures. Transganglionic labeling after C-HRP sciatic nerve injections (N = 4) and retrograde labeling of L4, L5 dorsal root ganglion neurons after fast blue injections of the gracile nucleus (N = 6) both suggest that all dorsal column axons project to the gracile nucleus in the newborn rat. Dorsal root ganglion (DRG) cell survival following the neonatal overhemisection injury was also examined in the L4 and L5 DRG. DRG neurons that project to the gracile nucleus were prelabeled by injecting fast blue into this nucleus at birth two days prior to the cervical overhemisection spinal injury. Both normal littermates (N = 9) and spinally injured animals (N = 12) were examined after postinjection survival periods of 10 or 22 days.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
It has previously been demonstrated that the severed central branches of adult mammalian dorsal root ganglion cells regenerate into transplants of fetal spinal cord. The aim of this study was to determine whether these regenerating axons form synapses, and, if they do, to characterize them morphologically. Embryonic day 14 or 15 spinal cord was transplanted into the lumbar enlargement of adult Sprague-Dawley rats, and the L4 or L5 dorsal root was cut and then juxtaposed to the transplant. One to 3 months later the regenerated dorsal roots were labeled by anterograde filling with wheat germ agglutinin-horseradish peroxidase (WGA-HRP) or by immunocytochemistry for calcitonin gene-related peptide (CGRP). Dorsal root labeling with WGA-HRP demonstrated that regenerated axon terminals made synaptic contacts within transplants, and stereological electron microscopic analysis demonstrated that CGRP-immunoreactive axon terminals occupied an average of 9% of the neuropil within 2 mm of the dorsal root-transplant interface. The majority of synapses were axodendritic, but a significant percentage were axosomatic or axoaxonic. Since axoaxonic synapses were observed in transplants in which both pre- and postsynaptic profiles of axoaxonic synapses were labeled for CGRP, some regenerated axons apparently form synapses with each other. Approximately 90% of synaptic contacts were simple, 9% were complex, and 25% of the complex terminals were immunopositive for CGRP. Glia occupied 25% of the neuropil within 1 mm of the dorsal root-transplant interface, but only 6% of the neuropil 1-2 mm from the interface. We also performed a stereological analysis of the neuropil in lamina I. The area fractions of neuropil occupied by myelinated axons, perikarya, and dendrites were similar in transplants and in lamina I. However, the area fraction occupied by unmyelinated axons was significantly smaller in transplants, and the area fraction occupied by axon terminals was significantly larger in transplants compared with lamina I. Regenerated CGRP-immunoreactive synaptic terminals in transplants were significantly larger than in normal lamina I, and their synaptic contact length was also increased, suggesting that a compensatory mechanism for increasing synaptic efficiency might occur within the transplants. Synaptic density, however, was significantly reduced in transplants, indicating a smaller number of synaptic terminals per unit area. In lamina I, as in the transplant, most synapses were axodendritic, but the percentage of axosomatic and axoaxonic terminals was lower in lamina I than in the transplants.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Sensory axons interrupted in the dorsal roots of adult mammals are normally unable to regenerate into the spinal cord. We have investigated whether the introduction of a neurotrophin gene into the spinal cord might offer an approach to otherwise intractable spinal root injuries. The dorsal roots of the 4th, 5th, and 6th lumbar spinal nerves of adult rats were severed and reanastomosed. Fourteen to nineteen days later, adenoviral vectors containing either the LacZ or NT-3 genes were injected into the ventral horn of the lumbar spinal cord, resulting in strong expression of the transgenes in glial cells and motor neurons between 4 and 40 days after injection. When dorsal root axons were transganglionically labelled with HRP conjugated to cholera toxin subunit B, 16 to 37 days after dorsal root injury, large numbers of labelled axons could be seen to have regenerated into the cord, but only in those animals injected with vector carrying the NT-3 gene. The regenerated axons were found at the injection site, mainly in the grey matter, and had penetrated as deep as lamina V. Gene therapy with adenoviral vectors encoding a neurotrophin has therefore been shown to be capable of enhancing and directing the regeneration of a subpopulation of dorsal root axons (probably myelinated A fibres), into and through the CNS environment. J. Neurosci. Res. 54:554–562, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
The corticospinal tract (CST) is the major descending pathway controlling voluntary hand function in primates, and though less dominant, it mediates voluntary paw movements in rats. As with primates, the CST in rats originates from multiple (albeit fewer) cortical sites, and functionally different motor and somatosensory subcomponents terminate in different regions of the spinal gray matter. We recently reported in monkeys that following a combined cervical dorsal root/dorsal column lesion (DRL/DCL), both motor and S1 CSTs sprout well beyond their normal terminal range. The S1 CST sprouting response is particularly dramatic, indicating an important, if poorly understood, somatosensory role in the recovery process. As rats are used extensively to model spinal cord injury, we asked if the S1 CST response is conserved in rodents. Rats were divided into sham controls, and two groups surviving post-lesion for ~6 and 10 weeks. A DRL/DCL was made to partially deafferent one paw. Behavioral testing showed a post-lesion deficit and recovery over several weeks. Three weeks prior to ending the experiment, S1 cortex was mapped electrophysiologically, for tracer injection placement to determine S1 CST termination patterns within the cord. Synaptogenesis was also assessed for labeled S1 CST terminals within the dorsal horn. Our findings show that the affected S1 CST sprouts well beyond its normal range in response to a DRL/DCL, much as it does in macaque monkeys. This, along with evidence for increased synaptogenesis post-lesion, indicates that CST terminal sprouting following a central sensory lesion, is a robust and conserved response.  相似文献   

5.
Right lateral hemisection of the lower thoracic spinal cord was performed in 216 adult guinea pigs. Animals that proved suitable for the study were divided into one control and two experimental groups. Experimental animals were implanted with intraperitoneal stimulators delivering regulated current of 35 or 50 microA through electrodes placed 1 cm rostral and caudal of the hemisection. The cathode was cranial to the lesion in one group (n = 67) and caudal in the other (n = 33). Control animals (n = 62) were implanted with sham stimulators and electrodes delivering no current. The functional status of the animals was measured by tactile stimulation of the back skin to elicit the cutaneus trunci muscle reflex, and by the vestibulospinal free-fall response. The cutaneous response ipsilateral and caudal to the lesion was lost following hemisection and did not recover in any of the control animals or in animals with cathode caudal to the lesion. Recovery of the response was found in 9 of 67 animals in the cathode rostral group, between 56 and 139 days after injury. Toe spreading recovered spontaneously in 80-90% of animals in all groups. Of the possible mechanisms of skin reflex recovery, most current evidence points to regrowth of ascending nerve fibers in the lateral funiculus of the spinal cord local to the lesion.  相似文献   

6.
Cut dorsal root axons regenerate into transplants of embryonic spinal cord and form synapses that resemble those found in the dorsal horn of normal spinal cord. One aim of the present study was to determine whether these axons also regenerate into and establish synapses within transplants of embryonic brain. A second aim was to compare the patterns of growth in embryonic brain and spinal cord transplants. Embryonic spinal cord or brain was transplanted into the lumbar enlargement of adult Sprague-Dawley rats, the L4 or L5 dorsal root was cut, and the cut root was juxtaposed to the transplant. The transplants included whole pieces or dissociated cell suspensions of embryonic day 14 (E14) spinal cord, or whole pieces of E14 neocortex, E18 occipital cortex, E15 cerebellum, or E18 hippocampus. One month later the regenerated dorsal root axons were labeled by immunocytochemical methods to demonstrate calcitonin gene-related peptide (CGRP). CGRP-immunoreactive axons regenerated into all the transplants examined and formed synapses in the neocortex and cerebellum transplants in which they were sought. Synapses were far rarer in neocortex and cerebellum than we had observed previously in transplanted spinal cord, and the patterns of growth differed in transplants of spinal cord and brain. In solid transplants of spinal cord, regenerated axons remained relatively close to the interface with the dorsal root, branched, and formed bundles. Areas of dense ingrowth were separated by regions with few labeled axons. In transplants of brain regions, the regenerated axons were few, unbranched, and appeared as individual fibers rather than in bundles, but they were distributed widely in neocortex transplants. The results of quantitative studies confirmed these observations. The area fraction occupied by regenerated axons in solid spinal cord transplants was significantly larger than in occipital cortex or cerebellum transplants. Distribution histograms of the area occupied in transplants demonstrated that regenerated axons were distributed sparsely but homogeneously in transplants of brain, whereas spinal cord transplants were heterogeneous for regenerated axons and contained areas in which growth was dense or sparse. In contrast, several measurements of axon distribution, including area, longest axis, and length of lateral extension, indicated that CGRP-labeled axons spread more widely in occipital cortex transplants than in solid transplants of spinal cord or cerebellum. The results indicate that embryonic CNS tissues that are not normal targets support or enhance the growth of severed dorsal roots and suggest that the conditions that constitute a permissive environment for regenerating axons are relatively nonspecific.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
This study investigated the feasibility of using a peripheral nerve autograft (NAG) to promote and guide regeneration of sensory axons from the caudal lumbar dorsal roots to the rostral dorsal column following a lower thoracic cordotomy in adult rats. After a left hemicordotomy at the T13 vertebra level and ipsilateral L3 and L4 rhizotomies, a peripheral NAG (peroneal nerve) was connected to the distal roots stumps, then implanted into the left dorsal column 10 mm rostral to hemicordotomy site (n = 12). After surgery, all animals of the experimental group experienced complete anesthesia in their left hindlimb. Three months later, a slight response to nociceptive stimulation reappeared in L3 and/or L4 dermatomes in 6 of the 12 experimental animals. None of these animals exhibited self-mutilation. Nine months after surgery, we performed retrograde tracing studies by injecting horseradish peroxidase (HRP) into the left dorsal column 30 mm rostral to the NAG implantation site. In eight animals, we found HRP-stained neurons in the left L3 and/or L4 dorsal root ganglia (DRG). The mean number of HRP-stained neurons per DRG was 71 +/- 92 (range 2-259). In control groups, no HRP-stained neurons were found in L3 or L4 DRG. Histological analysis of the NAG showed evidence of axonal regeneration in all 8 animals with positive retrograde labeling of DRG neurons. However, we did not find a statistical correlation between the number of HRP-stained neurons and the degree of sensory recovery. This study demonstrates that an NAG joining dorsal roots to the dorsal column, thus shunting the original CNS-PNS junction, can support regeneration of central axons from DRG primary sensory neurons into the dorsal column over distances of at least 30 mm despite the inhibitory influence of the CNS white matter.  相似文献   

8.
9.
Macrophages are implicated to play a substantive role in the acute inflammatory reaction to CNS insult in the delayed progressive secondary damage to parenchyma, espacially myelin. When placed in an electrical field in vitro, macrophages show directed pseudopodial extensions and migrate towards the positive pole (anode). We have evaluated if ED1 positive macrophage accumulations in rat spinal cord injuries were affected by the applied extracellular voltage, comparing their numbers to a sham treated group. Our hypothesis was that the applied voltage may reduce the concentration of phagocytes in the central injury and thus reduce the level of secondary damage produced by them. The applied voltage gradient did not alter the number or density of macrophage accumulations in the three week lesion, nor is there any difference in the degree of cavitation between control and experimental groups.  相似文献   

10.
Glial cell line-derived neurotrophic factor (GDNF) is the prototypical member of a growth factor family that signals via the cognate receptors ret and GDNF-receptor alpha-1. The latter receptors are expressed on a variety of neurons that project into the spinal cord, including supraspinal neurons, dorsal root ganglia, and local neurons. Although effects of GDNF on neuronal survival in the brain have previously been reported, GDNF effects on injured axons of the adult spinal cord have not been investigated. Using an ex vivo gene delivery approach that provides both trophic support and a cellular substrate for axonal growth, we implanted primary fibroblasts genetically modified to secrete GDNF into complete and partial mid-thoracic spinal cord transection sites. Compared to recipients of control grafts expressing a reporter gene, GDNF-expressing grafts promoted significant regeneration of several spinal systems, including dorsal column sensory, regionally projecting propriospinal, and local motor axons. Local GDNF expression also induced Schwann cell migration to the lesion site, leading to remyelination of regenerating axons. Thus, GDNF exerts tropic effects on adult spinal axons and Schwann cells that contribute to axon growth after injury.  相似文献   

11.
The regeneration capacity of spinal cord axons is severely limited. Recently, much attention has focused on promoting regeneration of descending spinal cord pathways, but little is known about the regenerative capacity of ascending axons. Here we have assessed the ability of neurotrophic factors to promote regeneration of sensory neurons whose central axons ascend in the dorsal columns. The dorsal columns of adult rats were crushed and either brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), neurotrophin-3 (NT-3) or a vehicle solution was delivered continuously to the lesion site for 4 weeks. Transganglionic labelling with cholera toxin beta subunit (CTB) was used to selectively label large myelinated Abeta fibres. In lesioned rats treated with vehicle, CTB-labelled fibres were observed ascending in the gracile fasciculus, but these stopped abruptly at the lesion site, with no evidence of sprouting or growth into lesioned tissue. No CTB-labelled terminals were observed in the gracile nucleus, indicating that the lesion successfully severed all ascending dorsal column axons. Treatment with BDNF did not promote axonal regeneration. In GDNF-treated rats fibres grew around cavities in caudal degenerated tissue but did not approach the lesion epicentre. NT-3, in contrast, had a striking effect on promoting growth of lesioned dorsal column axons with an abundance of fibre sprouting apparent at the lesion site, and many fibres extending into and beyond the lesion epicentre. Quantification of fibre growth confirmed that only in NT-3-treated rats did fibres grow into the crush site and beyond. No evidence of terminal staining in the gracile nucleus was apparent following any treatment. Thus, although NT-3 promotes extensive growth of lesioned axons, other factors may be required for complete regeneration of these long ascending projections back to the dorsal column nuclei. The intrathecal delivery of NT-3 or other neurotrophic molecules has obvious advantages in clinical applications, as we show for the first time that dorsal column axonal regeneration can be achieved without the use of graft implantation or nerve lesions.  相似文献   

12.
Recent studies on the monosynaptic connection between primary afferent fibres and dorsal spinocerebellar tract (DSCT) neurones in the spinal cord of anaesthetized cats have been undertaken to investigate the mechanisms of excitatory synaptic transmission in the mammalian central nervous system. The need to extend these observations to a study of the effects of changes in the extracellular environment of DSCT neurones prompted us to develop the in vitro preparation described in this paper. We have developed an isolated spinal cord preparation from young guinea pigs, in which DSCT neurones can be identified and recorded from intracellularly. The spinal cord can be maintained in vitro for at least 7 hours. This preparation is sufficiently stable to allow intracellular penetration of DSCT cells in excess of 2 h, with resting membrane potentials of -65 mV obtainable. Reconstruction of neurones stained with horseradish peroxidase confirmed their location in Clarke's column. The dendritic morphology of the reconstructed DSCT neurones was found to be similar to DSCT neurones described in the cat spinal cord. Since the motor system of the guinea pig is quite advanced at birth, this preparation should provide a valid extension to in vivo results on neuronal membrane properties and synaptic potentials in DSCT neurones.  相似文献   

13.
The regeneration of sciatic-dorsal column (DC) axons following DC crush injury and treatment with olfactory ensheathing cells (OECs) and/or sciatic axotomy ("conditioning lesion") was evaluated. Sciatic-DC axons were examined with a transganglionic tracer, cholera toxin conjugated to horseradish peroxidase, and evaluated at chronic time points, 2-26 weeks post-lesion. With DC injury alone (n = 7), sciatic-DC axons were localized to the caudal border of the lesion terminating in reactive end bulbs with no indication of growth into the lesion. In contrast, treatment with either a heterogeneous population of OECs (equal numbers of p75- and fibronectin-positive OECs) (n = 9) or an enriched population of OECs (75% p75-positive OECs) (n = 6) injected either directly into the lesion or 1-mm rostral and caudal to the injury, stimulated DC axon growth into the lesion. A similar regenerative response was observed with a conditioning lesion either concurrent to (n = 4) or 1 week before (n = 4) the DC injury. In either of the latter two paradigms, some DC axons grew across the injury, but no axons grew into the rostral intact spinal cord. Upon combining OEC treatment with the conditioning lesion (n = 21), the result was additive, increasing DC axon growth beyond the rostral border of the lesion in best cases. Additional factors that may limit DC regeneration were tested including formation of the glial scar (immunoreactivity to glial fibrillary acidic protein in astrocytes and to chondroitin sulfate proteoglycans), which remained similar between treated and untreated groups.  相似文献   

14.
We have investigated the hypothesis that the chemorepellent Semaphorin3A may be involved in the failure of axonal regeneration after injury to the ascending dorsal columns of adult rats. Following transection of the thoracic dorsal columns, fibroblasts in the dorsolateral parts of the lesion site showed robust expression of Semaphorin3A mRNA. In addition, dorsal root ganglion (DRG) neurons with projections through the dorsal columns to the injury site persistently expressed both Semaphorin3A receptor components, neuropilin-1 and plexin-A1. These ascending DRG collaterals failed to invade scar regions occupied by Semaphorin3A-positive fibroblasts, even in animals which had received conditioning lesions of the sciatic nerve to enhance regeneration. Other axon populations in the dorsal spinal cord were similarly unable to penetrate Semaphorin3A-positive scar tissue. These data suggest that Semaphorin3A may create an exclusion zone for regenerating dorsal column fibres and that enhancing the intrinsic regenerative response of DRG neurons has only limited effects on axonal regrowth. Tenascin-C and chondroitin sulphate proteoglycans were also detected at the injury site, which was largely devoid of central nervous system (CNS) myelin, showing that several classes of inhibitory factors, including semaphorins, with only partially overlapping spatial and temporal patterns of expression are in a position to participate in preventing regenerative axonal growth in the injured dorsal columns. Interestingly, conditioning nerve injuries enabled numerous ascending DRG axons to regrow across areas of strong tenascin-C and chondroitin sulphate proteoglycan expression, while areas containing Semaphorin3A and CNS myelin were selectively avoided by (pre)primed axonal sprouts.  相似文献   

15.
16.
To understand whether tissue inhibitors of metalloproteinase (TIMPs) contribute to the failure of regenerating sensory axons to enter the spinal cord, we used in situ hybridization and immunocytochemistry to examine the expression of TIMP1, TIMP2, and TIMP3 in the dorsal root, dorsal root entry zone (DREZ), and dorsal column after dorsal root injury in adult rats. We found that the three TIMPs and their mRNAs were up-regulated in a time-, region-, and cell-type-specific manner. Strong up-regulation of all three TIMPs was seen in the injured dorsal roots. TIMP2 was also significantly up-regulated in the DREZ and degenerating dorsal column, where TIMP1 and TIMP3 showed only moderate up-regulation. Most cells up-regulating the TIMPs in the DREZ and degenerating dorsal column were reactive astrocytes, but TIMP2 was also up-regulated by microglia/macrophages, especially at long postoperative survival times. These results suggest that TIMPs may be involved in controlling tissue remodelling following dorsal root injury and that manipulation of the expression of TIMPs may provide a means of promoting axonal regeneration into and within the injured spinal cord.  相似文献   

17.
We have investigated gene transfer to the injured adult rat spinal cord by the use of a recombinant adenovirus. 105 or 5 x 106 plaque-forming units (pfu) of a replication-defective adenoviral vector carrying the green fluorescent protein (GFP) reporter gene were injected into a dorsal hemisection lesion at spinal level T8. Gene expression and inflammatory responses were studied 4, 8 and 21 days after surgery. Numerous cells within 3 mm on each side of the lesion were found to express high levels of GFP at 4 days after infection as shown by GFP fluorescence and immunohistochemistry. At 8 days, expression was still strong although weaker than at 4 days. After 21 days, transgene expression had almost ceased. Expression was neither higher nor more prolonged in animals that had received the higher vector dose. Delayed injection 1 week after spinal injury also did not increase transgene expression. Infected cell types were identified immunohistochemically. The most prominent transduced cells were spinal motoneurons. Additionally, we could identify other neurons, astrocytes, oligodendrocytes and peripheral cells infiltrating the lesion site. The glial and inflammatory reaction at and around the lesion was studied by cresyl violet histology, alpha-GFAP, OX42 and alpha-CD-8 immunohistochemistry. No significant differences from controls were found in the low virus group; in the high virus group a strong invasion of CD-8-positive lymphocytes was found. Open-field locomotion analysis showed virus-infected animals performing as well as control animals. Adenoviral gene transfer may be an efficient way to introduce factors to the injured spinal cord in paradigms of research or therapy.  相似文献   

18.
The extent of regeneration of the central axonal processes of dorsal root ganglion cells was determined using anterograde horseradish peroxidase histochemistry at 1–12 weeks after dorsal root transection in adult frogs. At 4, 8 and 12 weeks axons were found to have regenerated across the dorsal root entry zone and into the spinal cord.  相似文献   

19.
Throughout the vertebrate subphylum, the regenerative potential of central nervous system axons is greatest in embryonic stages and declines as development progresses. For example, Xenopus laevis can functionally recover from complete transection of the spinal cord as a tadpole but is unable to do so after metamorphosing into a frog. Neurons of the reticular formation and raphe nucleus are among those that regenerate axons most reliably in tadpole and that lose this ability after metamorphosis. To identify molecular factors associated with the success and failure of spinal cord axon regeneration, we pharmacologically manipulated thyroid hormone (TH) levels using methimazole or triiodothyronine, to either keep tadpoles in a permanently larval state or induce precocious metamorphosis, respectively. Following complete spinal cord transection, serotonergic axons crossed the lesion site and tadpole swimming ability was restored when metamorphosis was inhibited, but these events failed to occur when metamorphosis was prematurely induced. Thus, the metamorphic events controlled by TH led directly to the loss of regenerative potential. Microarray analysis identified changes in hindbrain gene expression that accompanied regeneration-permissive and -inhibitory conditions, including many genes in the permissive condition that have been previously associated with axon outgrowth and neuroprotection. These data demonstrate that changes in gene expression occur within regenerating neurons in response to axotomy under regeneration-permissive conditions in which normal development has been suspended, and they identify candidate genes for future studies of how central nervous system axons can successfully regenerate in some vertebrates.  相似文献   

20.
A substantial problem in research concerned with axonal repair is the use of a wide variety of lesion models and the complexity associated with the respective in vivo lesion paradigms. Organotypic slice cultures are a potential in vitro alternative because the cytoarchitectonic tissue organization is well preserved and the slices can be maintained in culture for several weeks. Until now no spinal cord slice culture model for the study of axonal growth has been available. Here we present a spinal cord slice culture model that is well suited for the study of axonal growth. The spinal cord slices were cut not in the transverse but in the sagittal longitudinal plane such that several spinal cord segments were included in the slice culture. In these cultures the typical ventro-dorsal polarity of the spinal cord was maintained and intrinsic spinal cord axons formed a strong fibre tract extending along the longitudinal axis of the slice. The axons became myelinated during the culture period and synaptic contacts were present in these cultures. After mechanical lesions the intrinsic spinal cord axons had a substantial potential for axonal growth and regeneration. The number of regenerating axons crossing the lesion site decreased with increasing maturation of the culture, but even in mature cultures a small number of crossing fibres were present. This slice culture model could provide an important tool for several aspects of spinal cord research in the fields of axonal growth and regeneration, synapse formation, formation of intrinsic spinal cord circuits and myelination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号