首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 537 毫秒
1.
The DNA sequence of the short (S) genomic component of the equine herpesvirus type 1 (EHV-1)KyA strain has been determined recently in our laboratory. Analysis of a 1353-bp BamHI/PvuII clone mapping at the unique short/terminal inverted repeat (Us/TR) junction revealed 507 bp of Us and 846 bp of TR sequences as well as an open reading frame (ORF) that is contained entirely within the Us. This ORF encodes a potential polypeptide of 219 amino acids that shows significant homology to the US9 proteins of herpes simplex virus type 1 (HSV-1), EHV-4, pseudorabies virus (PRV), and varicella zoster virus (VZV). The US9 polypeptides of the two equine herpesviruses exhibit 50% identity but are twice as large as their counterparts in HSV-1, PRV, and VZV. All five US9 proteins are enriched for serine and threonine residues and share a conserved domain of highly basic residues followed by a region of nonpolar amino acids. DNA sequence and Southern blot hybridization analyses revealed that the Us of EHV-1 KyA differs from the Us of EHV-1 KyD and AB1 in that the ORFs encoding glycoproteins I and E and a unique 10-kDa polypeptide are deleted from the KyA genome. These data demonstrate that the predicted 10-kDa protein unique to EHV-1 is nonessential for replication in vitro and that EHV-1 glycoproteins I and E, like their equivalents in HSV-1 and PRV, are also nonessential. These findings and those reported previously by this laboratory and others reveal that the Us segment of EHV-1 comprises nine ORFs, two of which, US4 and 10-kDa ORF, are unique to EHV-1. The gene order of the Us is US2, protein kinase, gG, US4, gD, gI, gE, 10 kDa, and US9.  相似文献   

2.
3.
4.
Synthesis and processing of equine herpesvirus type 1 glycoprotein 14   总被引:7,自引:0,他引:7  
Glycoprotein 14 (gp14) of equine herpesvirus type 1 (EHV-1), the homolog of herpes simplex virus (HSV) glycoprotein B (gB), was investigated employing a panel of monoclonal antibodies to ascertain the regulatory class, rate of synthesis, and type of glycosylation of this polypeptide. Application of immunoprecipitation, Western blot, and SDS-PAGE analysis in conjunction with the use of metabolic inhibitors (cycloheximide, antinomycin D, phosphonoacetic acid, tunicamycin, and monensin), and time-course and pulse-chase experiments revealed the following information: (1) Three gp14-related polypeptides with molecular weights of 138 kilodaltons (K), 77-75K, and 55-53K are present in EHV-1-infected cell extracts. (2) All three species are synthesized in the presence of the DNA synthesis inhibitor phosphonoacetic acid although their synthesis is enhanced by DNA replication, indicative of a beta-gamma class molecule. (3) The 138K species is synthesized first as a precursor of the smaller species of gp14, the 77-75K and 55-53K forms. (4) Use of glycosylation inhibitors and digestion of immunoprecipitated gp14 with endoglycosidases indicate that the primary translation product is a 118K molecule which is cotranslationally glycosylated to the 138K form by the addition of high mannose oligosaccharides. (5) The 77-75K species contains both high mannose and hybrid oligosaccharides while the 55-53K form of gp14 contains some complex oligosaccharides. (6) In the absence of a reducing agent, the 138K polypeptide and a large 145K species are observed in both infected cell extracts and purified virions. Thus, EHV-1 gp14 appears to be synthesized as a large precursor molecule of 138K and is proteolytically cleaved to two smaller forms, 77-75K and 55-53K, which are linked by a disulfide bond(s) to form a 145K complex. This model of gp14 synthesis and maturation is similar to those proposed for a number of HSV gB equivalents found in the Alphaherpesvirnae.  相似文献   

5.
Previous work revealed that the Us(unique short) segment of equine herpesvirus type-1 (EHV-1), like that of other alphaherpesviruses, encodes a serine/threonine protein kinase (PK). Experiments were carried out to identify the PK encoded by the EHV-1 EUS2 gene (ORF 69) and to ascertain its time course of synthesis and cellular localization. Western blot and immunoprecipitation analyses of EHV-1-infected cell extracts using a PK-specific polyclonal antibody generated against a bacterially expressed TrpE/PK fusion protein identified the UsPK as a 42- to 45-kDa phosphoprotein. The PK protein is first synthesized at 3 hr postinfection, is produced throughout the infection cycle, and is incorporated into EHV-1 virions. Interestingly, immunoprecipitation analyses revealed that the PK protein within the cytoplasm is associated with the 33-kDa IR6 novel protein of EHV-1, is expressed abundantly as an early protein, and is present in the large rod-like structures formed by the IR6 protein (ORF67 protein) within the cytoplasm of infected cells. Confocal microscopic examination of cells stained with fluorescein-labeled antibody clearly showed that the PK protein colocalized with the cytoplasmic IR6 rod-like structures and remained associated with these unique structures during infection. In contrast, in cells infected with the EHV-1 RacM strain in which the IR6 protein harbors four amino acid substitutions that prevent formation of the rod-like structures (Osterriederet al.,1996,Virology217, 442–451), the PK protein localized predominantly to the nucleus. The possible significance of the association of the IR6 and PK proteins in EHV-1 replication is discussed.  相似文献   

6.
Previous work revealed that the U (unique short) segment of equine herpesvirus type-1 (EHV-1), like that of other alphaherpesviruses, encodes a serine/threonine protein kinase (PK). Experiments were carried out to identify the PK encoded by the EHV-1 EUS2 gene (ORF 69) and to ascertain its time course of synthesis and cellular localization. Western blot and immunoprecipitation analyses of EHV-1-infected cell extracts using a PK-specific polyclonal antibody generated against a bacterially expressed TrpE/PK fusion protein identified the U PK as a 42- to 45-kDa phosphoprotein. The PK protein is first synthesized at 3 hr postinfection, is produced throughout the infection cycle, and is incorporated into EHV-1 virions. Interestingly, immunoprecipitation analyses revealed that the PK protein within the cytoplasm is associated with the 33-kDa IR6 novel protein of EHV-1, is expressed abundantly as an early protein, and is present in the large rod-like structures formed by the IR6 protein (ORF67 protein) within the cytoplasm of infected cells. Confocal microscopic examination of cells stained with fluorescein-labeled antibody clearly showed that the PK protein colocalized with the cytoplasmic IR6 rod-like structures and remained associated with these unique structures during infection. In contrast, in cells infected with the EHV-1 RacM strain in which the IR6 protein harbors four amino acid substitutions that prevent formation of the rod-like structures (Osterriederet al.,1996,Virology217, 442–451), the PK protein localized predominantly to the nucleus. The possible significance of the association of the IR6 and PK proteins in EHV-1 replication is discussed.  相似文献   

7.
Equine herpesvirus 1 (EHV-1)-specific antibody-secreting cells (ASC) isolated from the lung and spleen of mice at 12 months after immunization with attenuated EHV-1 KyA, heat-killed KyA, or recombinant viral glycoprotein D (rgD) assessed by ELISPOT showed a three- to fivefold increase in three immunoglobulin isotypes at 3 days post-challenge with pathogenic EHV-1 RacL11 as compared to control mice. ELISPOT assays demonstrated a high frequency of cells secreting proinflammatory tumor necrosis factor-alpha (TNF-alpha), interferon gamma (IFN-gamma), and interleukin 4 (IL-4) in the lungs in response to infection with KyA or RacL11 or immunization with rgD. Cytokine production elicited by EHV-1 KyA or RacL11 infection revealed similar frequencies of EHV-1-specific IFN-gamma and IL-4 spot forming cells in the mediastinal lymph nodes and spleen. However, KyA induced significantly greater amounts of IFN-gamma producing cells in the lungs than did RacL11. Intranasal immunization with KyA or rgD induced long-term immunity that provided protection against pathogenic EHV-1 challenge infection at 12 months post-immunization. Overall, the data indicate that immunization with infectious KyA or rgD induces significant levels of cytokines, virus-specific ASC in the lungs and spleen, and long-term virus specific B-cell responses.  相似文献   

8.
The EICP0 gene (gene 63) of equine herpesvirus 1 (EHV-1) encodes an early regulatory protein that is a promiscuous trans-activator of all classes of viral genes. Bacterial artificial chromosome (BAC) technology and RecE/T cloning were employed to delete the EICP0 gene from EHV-1 strain KyA. Polymerase chain reaction, Southern blot analysis, and DNA sequencing confirmed the deletion of the EICP0 gene and its replacement with a kanamycin resistance gene in mutant KyA. Transfection of rabbit kidney cells with the EICP0 mutant genome produced infectious virus, indicating that the EICP0 gene is not essential for KyA replication in cell culture. Experiments to assess the effect of the EICP0 deletion on EHV-1 gene programming revealed that mRNA expression of the immediate-early gene and representative early and late genes as well as the synthesis of these viral proteins were reduced as compared to the kinetics of viral mRNA and protein synthesis observed for the wild type virus. However, the transition from early to late viral gene expression was not prevented or delayed, suggesting that the absence of the EICP0 gene did not disrupt the temporal aspects of EHV-1 gene regulation. The extracellular virus titer and plaque areas of the EICP0 mutant virus KyADeltaEICP0, in which the gp2-encoding gene 71 gene that is absent in the KyA BAC was restored, were reduced by 10-fold and 19%, respectively, when compared to parental KyA virus; while the titer and plaque areas of mutant KyADeltaEICP0Deltagp2 that lacks both the EICP0 gene and gene 71 were reduced more than 50-fold and 67%, respectively. The above results show that the EICP0 gene is dispensable for EHV-1 replication in cell culture, and that the switch from early to late viral gene expression for the representative genes examined does not require the EICP0 protein, but that the EICP0 protein may be structurally required for virus egress and cell-to-cell spread.  相似文献   

9.
10.
The pathogenesis of three equine herpesvirus 1 (EHV-1) recombinants was assessed in a CBA mouse model. Sequences encoding the majority of glycoproteins I (gI) and E (gE) were deleted from the pathogenic EHV-1 strain RacL11 (L11ΔgIΔgE), and sequences comprising the 3859 bp deletion within the strain KyA US segment, which includes genes 73 (gI), 74 (gE), and 75 (putative 10 kDa protein 75), were re-inserted into attenuated KyA (KgI/gE/75). In addition, genes gE and 75 were inserted into KyA to generate the EHV-1 recombinant KgE/75. The insertion of the 3859 bp US segment was sufficient to confer virulence to KyA, as indicated by pronounced signs of clinical disease including substantial weight loss. A large plaque morphology was observed in cells infected with KgI/gE/75 compared with KyA, and a small plaque phenotype was observed in cells infected with L11ΔgIΔgE compared with RacL11. These data indicate that gI and/or gI and gE contribute to the ability of EHV-1 to spread directly from cell-to-cell. The deletion of both gI and gE from the pathogenic RacL11 strain did not reduce clinical signs of disease in infected mice, but did decrease mortality compared with RacL11. Furthermore, the insertion of genes 74 (gE) and 75 into the vaccine strain KyA did not alter the attenuated phenotype of this virus. Finally, KgI/gE/75 and RacL11 elicited the production of the proinflammatory chemokines MIP-1, MIP-1β, and MIP-2 in the lungs of infected mice, while KyA did not, suggesting that gI and/or gI and gE contribute to the up-regulation of these mediators of inflammation. These findings show that gI, and/or gI and gE restore a virulent phenotype to the EHV-1 KyA strain, and indicate that virulence factors, in addition to gI and gE, contribute to the pathogenesis of the RacL11 strain.  相似文献   

11.
The genome of equine herpesvirus-1 (EHV-1) contained three open reading frames (ORFs) in a 3.9 kbpBamHI-SmaI fragment at 0.38–0.41 map units in the long unique region. The most 5′ ORF encoded the carboxy terminus of a protein with 45–55 percent amino acid homology to the DNA-binding proteins (ICP8-DBP) of four other alphaherpesviruses. The middle ORF translated to a polypeptide of 775 residues with 43–55% homology to the ICP18.5 proteins. The most 3′ ORF encoded the EHV-1 glycoprotein B (gB) gene. Three mRNAs of 4.3, 4.4–4.8, and 3.5–3.9 kb (corresponding to the three sequenced ORFs) were all transcribed from the same strand. The gene order of this group was conserved in all herpesviruses examined.  相似文献   

12.
D K Agrawal  J E Johnson 《Virology》1992,190(2):806-814
We have determined the nucleotide sequence of the RNA2 segment of the Nudaurelia capensis omega virus genome. It was found to consist of 2448 nucleotides and contained one long open reading frame (ORF) encoding the 644 residue capsid protein. The deduced amino acid sequence of this protein reveals a positively charged amino terminus, a characteristic exhibited by several other viral capsid proteins, that is thought to be important for interactions between the capsid and the genomic RNA. There are 366 and 150 bases of untranslated sequence on the 5' and 3' ends, respectively. The ORF encoding the capsid protein initiates at the second AUG from the 5' end. The 5' proximal AUG specifies a short ORF (30 codons) which terminates 1 base before the initiation codon for the coat protein. Our analysis also revealed the presence of a second, previously unidentified polypeptide associated with Nudaurelia capensis omega virus particles. The amino terminal sequence of this protein corresponds to a portion of the long ORF beginning at codon 571. The lack of an initiation codon near this sequence indicates that the small polypeptide is most likely produced as a carboxy terminal cleavage product from a 70-kDa capsid protein precursor, yielding the previously identified 62-kDa protein and the 8-kDa protein that we have observed. The putative cleavage site would be at an Asn/Phe pair, somewhat resembling known cleavage sites (Asn/Ala) in the T = 3 Nodaviridae. In addition, we have found that there is also a second polypeptide similar in size to that from Nudaurelia capensis omega virus associated with particles of Nudaurelia capensis beta virus, the type member of Tetraviridae.  相似文献   

13.
14.
The antibody responses of CBA/J mice infected intranasally (i.n.) with either the attenuated KyA strain or the pathogenic RacL11 strain of equine herpesvirus 1 (EHV-1) or immunized with recombinant glycoprotein D (rgD) were investigated using the ELISPOT assay to measure EHV-1-specific antibody-secreting cells (ASC) in the regional lymphoid tissue of the respiratory tract. IgG, IgA, and IgM ASC specific for EHV-1 were detected in the mediastinal lymph nodes (MLN) and lungs 2 weeks after i.n. infection with EHV-1 strain KyA or RacL11, or immunization with heat-killed KyA or rgD. EHV-1-specific ASC were present in the MLN and lungs at 4 and 8 weeks, but declined in frequency by fivefold in the lung at 8 weeks. However, i.n. immunized (2 x 10(6) pfu KyA or 50 microgram rgD/mouse) mice infected at 8 weeks with pathogenic EHV-1 RacL11 resisted challenge and showed eight- and tenfold increases in MLN ASC and lung ASC, respectively, by 3 days after challenge. In contrast to the intranasal route of immunization, intraperitoneal immunization yielded ASC frequencies in the MLN and lungs that were only slightly above those of nonimmunized control mice. These data indicate that immunization with infectious or heat-killed EHV-1 KyA, or rgD, induces significant levels of virus-specific ASC both in the MLN and lungs, a specific memory B-cell response, and long-term protective immunity. The finding that the numbers of ASC induced by the pathogenic strain versus the attenuated strain of EHV-1, which were virtually identical, indicated that the ability to generate a B-cell response is independent of and does not contribute to EHV-1 virulence.  相似文献   

15.
Equine herpesvirus 1 glycoprotein D (EHV-1 gD) has been shown in mouse models and in the natural host to have potential as a subunit vaccine, using various expression systems that included Escherichia coli, baculovirus and plasmid DNA. With the aim of producing secreted recombinant protein, we have cloned and expressed EHV-1 gD, lacking its native signal sequence and C-terminal transmembrane region, into the methylotrophic yeast Pichia pastoris. The truncated glycoprotein D (gD) gene was placed under the control of the methanol inducible alcohol oxidase 1 promoter and directed for secretion with the Saccharomyces cerevisiae alpha-factor prepro secretion signal. SDS-PAGE and Western blot analysis of culture supernatant fluid 24 h after induction revealed gD-specific protein products between 40 and 200 kDa. After treatment with PNGase F and Endo H, three predominant bands of 34, 45 and 48 kDa were detected, confirming high mannose N-linked glycosylation of Pichia-expressed gD (Pic-gD). N-terminal sequence analysis of PNGase F-treated affinity-purified protein showed that the native signal cleavage site of gD was being recognised by P. pastoris and the 34 kDa band could be explained by internal proteolytic cleavage effected by a putative Kex2-like protease. Pic-gD, when used in a DNA prime/protein boost inoculation schedule, induced high EHV-1 ELISA and virus neutralizing antibodies and provided protection from challenge infection in BALB/c mice.  相似文献   

16.
17.
Nucleotide sequence analysis has shown previously that the genomic-length mRNA (mRNA1) of the coronavirus infectious bronchitis virus (IBV) contains two large open reading frames (ORFs), 1a and 1b, with the potential to encode polyproteins of approximately 441 and 300 kDa, respectively. We have characterized the specificity of a set of region-specific antisera raised against the 5'-portion of ORF 1a by immunoprecipitation of in vitro-synthesized, C-terminally truncated 1a polypeptides and used these antisera to detect virus-specific proteins in IBV-infected Vero cells. Two antisera, which had specificity for IBV sequences from nucleotides 710 to 2079 and 1355 to 2433, respectively, immunoprecipitated a polypeptide of approximately 87 kDa from IBV-infected Vero cells. In vitro translation of ORF 1a sequence terminating at nucleotide 5763 did not produce this protein unless the in vitro translation products were incubated with Vero cell S10 extracts prepared from either IBV-infected or mock-infected Vero cells. However, processing of the 87-kDa protein was also observed when the same region was expressed in Vero cells using the vaccinia virus/T7 expression system. This observation indicates that the 87-kDa polypeptide is encoded within the 5'-most 3000 nucleotides of mRNA 1 and that it might be cleaved from the 1a polyprotein by viral and cellular proteinases.  相似文献   

18.
19.
A clone expressing a 58-kDa protein reactive with human convalescent-phase serum was isolated from a recombinant library of Ehrlichia chaffeensis, the etiologic agent of human ehrlichiosis. Sequencing identified two open reading frames, one encoding a 10.3-kDa polypeptide consisting of 94 amino acids and another encoding a 58-kDa polypeptide consisting of 550 amino acids. The sequences of the 10.3- and 58-kDa polypeptides were homologous to those of the Escherichia coli GroES and GroEL heat shock proteins, respectively.  相似文献   

20.
Equine herpesvirus 1 (EHV-1) recombinants that carry either a deletion of glycoprotein M (gM) or express mutant forms of gM were constructed. The recombinants were derived from strain Kentucky A (KyA), which also lacks genes encoding gE and gI. Plaques on RK13 cells induced by the gM-negative KyA were reduced in size by 80%, but plaque sizes were restored to wild-type levels on gM-expressing cells. Electron microscopic studies revealed a massive defect in virus release after the deletion of gM in the gE- and gI-negative KyA, which was caused by a block in secondary envelopment of virions at Golgi vesicles. Recombinant KyA expressing mutant gM with deletions of predicted transmembrane domains was generated and characterized. It was shown that mutant gM was expressed and formed dimeric and oligomeric structures. However, subcellular localization of mutant gM proteins differed from that of wild-type gM. Mutant glycoproteins were not transported to the Golgi network and consequently were not incorporated into the envelope of extracellular virions. Also, a small plaque phenotype of mutant viruses that was indistinguishable from that of the gM-negative KyA was observed. Plaque sizes of mutant viruses were restored to wild-type levels by plating onto RK13 cells constitutively expressing full-length EHV-1 gM, indicating that mutant proteins did not exert a transdominant negative effect on wild-type gM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号