首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulator of G-protein signaling RGS17(Z2) is a member of the RGS-Rz subfamily of GTPase-activating proteins (GAP) that efficiently deactivate GalphazGTP subunits. We have found that in the central nervous system (CNS), the levels of RGSZ2 mRNA and protein are elevated in the hypothalamus, midbrain, and pons-medulla, and that RGSZ2 is glycosylated in synaptosomal membranes isolated from CNS tissue. In analyzing the function of RGSZ2 in the CNS, we found that when the expression of RGSZ2 was impaired, the antinociceptive response to morphine and [D-Ala2, N-MePhe4, Gly-ol5]-enkephalin (DAMGO) augmented. This potentiation involved mu-opioid receptors and increased tolerance to further doses of these agonists administered 24 h later. High doses of morphine promoted agonist desensitization even within the analgesia time-course, a phenomenon that appears to be related to the great capacity of morphine to activate Gz proteins. In contrast, the knockdown of RGSZ2 proteins did not affect the activity of delta receptor agonists, [D-Pen2,5]-enkephalin (DPDPE), and [D-Ala2] deltorphin II. In membranes from periaqueductal gray matter (PAG), both RGSZ2 and the related RGS20(Z1) co-precipitated with mu-opioid receptors. While a morphine challenge reduced the association of Gi/o/z with mu receptors, it increased their association with the RGSZ2 and RGSZ1 proteins. However, only Galphaz subunits co-precipitated with RGSZ2. Doses of morphine that produced acute tolerance maintained the association of Galpha subunits with RGSZ proteins even after the analgesic effects had ceased. These results indicate that both RGSZ1 and RGSZ2 proteins influence mu receptor signaling by sequestering Galpha subunits, therefore behaving as effector antagonists.  相似文献   

2.
In the CNS, the regulators of G-protein signaling (RGS) proteins belonging to the Rz subfamily, RGS19 (G(alpha) interacting protein (GAIP)) and RGS20 (Z1), control the activity of opioid agonists at mu but not at delta receptors. Rz proteins show high selectivity in deactivating G(alpha)z-GTP subunits. After reducing the expression of RGSZ1 with antisense oligodeoxynucleotides (ODN), the supraspinal antinociception produced by morphine, heroin, DAMGO ([D-Ala2, N-MePhe4,Gly-ol5]-enkephalin), and endomorphin-1 was notably increased. No change was observed in the effect of endomorphin-2. This agrees with the proposed existence of different mu receptors for the endomorphins. The activities of DPDPE ([D-Pen2,5]-enkephalin) and [D-Ala2] deltorphin II, agonists at delta receptors, were also unchanged. Knockdown of GAIP and of the GAIP interacting protein C-terminus (GIPC) led to changes in agonist effects at mu but not at delta receptors. The impairment of RGSZ1 extended the duration of morphine analgesia by at least 1 h beyond that observed in control animals. CTOP (Cys2, Tyr3, Orn5, Pen7-amide) antagonized morphine analgesia when given during the period in which the effect of morphine was enhanced by RGSZ1 knockdown. Thus, in naive mice, morphine tachyphylaxis originated in the presence of the opioid agonist and during the analgesia time course. The knockdown of RGSZ1 facilitated the development of tolerance to a single dose of morphine and accelerated tolerance to continuous delivery of the opioid. These results indicate that mu but not delta receptors are linked to Rz regulation. The mu receptor-mediated activation of Gz proteins is effective at recruiting the adaptive mechanisms leading to the development of opioid desensitization.  相似文献   

3.
Two consecutive i.c.v. administrations of analgesic doses of mu-opioid receptor agonists lead to a profound desensitisation of the latter receptors; a third dose produced less than 20% of the effect obtained with the first administration. Desensitisation was still effective 24h later. Impairing the activity of Galphaz but not Galphai2 subunits prevented tolerance developing after the administration of three consecutive doses of morphine. Further, the i.c.v. injection of Galphai2 subunits potentiated morphine analgesia and abolished acute tolerance, whereas i.c.v.-administered Galphaz subunits produced a rapid and robust loss of the response to morphine. The RGSZ1 and RGSZ2 proteins selectively deactivate GalphazGTP subunits, and their knockdown increased the effects produced by the first dose of morphine. However, impairing their activity also accelerated tachyphylaxis following successive doses of morphine, and facilitated the development of acute morphine tolerance. In contrast, inhibiting the RGS9-2 proteins, which bind to GalphaoGTP and GalphaiGTP but only weakly deactivates them, preserved the effects of consecutive morphine doses and abolished the generation of acute tolerance. Therefore, desensitisation of mu-opioid receptors can be achieved by reducing the responsiveness of post-receptor elements (via the possible action of activated Galphaz subunits) and/or by depleting the pool of receptor-regulated G proteins that agonists need to propagate their effects, e.g., through the activity of RGS9-2 proteins.  相似文献   

4.
Rationale In cell culture systems, agonists can promote the phosphorylation and internalization of receptors coupled to G proteins (GPCR), leading to their desensitization. However, in the CNS opioid agonists promote a profound desensitization of their analgesic effects without diminishing the presence of their receptors in the neuronal membrane. Recent studies have indicated that CNS proteins of the RGS family, specific regulators of G protein signalling, may be involved in mu-opioid receptor desensitization in vivo.Objective In this work we review the role played by RGS proteins in the intensity and duration of the effects of mu-opioid receptor agonists, and how they influence the delayed tolerance that develops in response to specific doses of opioids.Results RGS proteins are GTPase-activating proteins (GAP) that accelerate the hydrolysis of GGTP to terminate signalling at effectors. The GAP activity of RGS-R4 and RGS-Rz proteins restricts the amplitude of opioid analgesia, and the efficient deactivation of GzGTP subunits by RGS-Rz proteins prevents mu receptor desensitization. However, RGS-R7 proteins antagonize effectors by binding to and sequestering mu receptor-activated Gi/o/z subunits. Thus, they reduce the pool of receptor-regulated G proteins and hence, the effects of agonists. The delayed tolerance observed following morphine administration correlates with the transfer of G subunits from mu receptors to RGS-R7 proteins and the subsequent stabilization of this association.Conclusion In the CNS, the RGS proteins control the activity of mu opioid receptors through GAP-dependent (RGS-R4 and RGS-Rz) as well as by GAP-independent mechanisms (RGS-R7). As a result, they can both antagonize effectors and desensitize receptors under certain circumstances.  相似文献   

5.
The R7 subfamily of regulators of G-protein signaling (RGS) proteins (RGS6, RGS7, RGS9-2, and RGS11), and its binding protein Gbeta5, are found in neural structures of mouse brain. A single intracerebroventricular priming dose of 10 nmol morphine gave rise to acute tolerance to the analgesic effects of successive identical test doses of the opioid. At 2 h after administering the acute opioid, RGS7 mRNA levels in the striatum plus those of RGS9-2 in the striatum and thalamus were increased, whereas RGS9-2 and RGS11 mRNA were reduced in the cortex. Similar but attenuated RGS-R7 mRNA changes persisted 24 h after acute morphine administration. No changes in Gbeta5 mRNA levels were observed. At 2 days after commencing sustained morphine treatment, the levels of mRNA for RGS7, RGS9-2, RGS11, and Gbeta5 increased in most of the brain structures studied (striatum, thalamus, periaqueductal gray matter (PAG), and cortex). In these morphine tolerant-dependent mice, the greater changes were found for RGS9-2 in the thalamus (>500%) and PAG (>200%). In post-dependent mice, the increases in RGS-R7 and Gbeta5 mRNA still persisted in the PAG and striatum at 8 and 16 days after starting the chronic opioid treatment. The raised mRNA levels promoted by chronic, but not by acute, morphine, were accompanied by increases in the encoded proteins. This is probably a result of the costabilization of the RGS-R7 and Gbeta5 proteins forming heterodimers. Opioid-induced adaptations of RGS-R7 and Gbeta5 genes may regulate the severity of morphine-induced tolerance/dependence and the duration of the post-dependent period, helping to recover the normal response.  相似文献   

6.
The Gbeta5 protein, which is similar in sequence to other G-protein beta subunits, mainly associates with the G-protein gamma-like (GGL) domains of the R7 subfamily of regulators of G-protein signalling (RGS) proteins. This paper reports the presence of the Gbeta5 protein and its mRNA in all areas of mouse CNS, and also its involvement in the cellular signals initiated at mu- and delta-opioid receptors. The expression of Gbeta5 and RGS9-2 proteins (member of the R7 subfamily of RGS) was reduced by blocking their mRNAs with antisense oligodeoxynucleotides (ODN). Knock-down of these proteins enhanced the potency and duration of antinociception promoted by morphine and [D-Ala2, N-MePhe4,Gly-ol5]-enkephalin (DAMGO), agonists at mu opioid receptors. However, the activity of the selective agonist at delta opioid receptors, [D-Pen(2,5)]-encephalin (DPDPE), appeared to be reduced. A single intracerebroventricular (i.c.v.) ED80 analgesic dose of morphine gave rise to acute tolerance in control mice, but did not promote tolerance in Gbeta5 or RGS9-2 knock-down animals. In a model of sustained morphine treatment, the impairment of Gbeta5 proteins facilitated the development of tolerance. This treatment did not alter the incidence of jumping behaviour precipitated by naloxone 3 days after commencing with chronic morphine. These results show differences in the signalling regulation of G-proteins when activated by mu or delta opioid agonists. For mu opioid receptors, acute tolerance, but probably not long-term tolerance, appears to depend on the function of Gbeta5 subunits and associated RGS proteins.  相似文献   

7.
The regulators of G-protein signaling (RGS) proteins have been shown to modulate the function of some heterotrimeric G-proteins by stimulating the GTPase activity of G-protein alpha subunits. In this study, by northern blotting analysis, we investigated the regulation of RGS4 mRNA by opioid receptor agonists in PC12 cells stably expressing either cloned mu- or kappa-opioid receptors. Treatment with respective opioid receptor agonists (mu: morphine) and [D-Ala(2), MePhe(4), Gly(ol)(5)] enkephalin (DAMGO), kappa: (+)-(5 alpha,7 alpha,8 beta)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro-(4,5)dec-8-y1]benzeneacetamide (U69,593)) for 0.5-24 h significantly and transiently increased the expression of RGS4 mRNA by 140-170% of the control level in a concentration-dependent manner which peaked when treated for 2 h, while treatment of non-transfected PC12 cells with opioid receptor agonists did not. The up-regulation of RGS4 mRNA was significantly blocked by co-treatment with respective opioid antagonists (mu: naloxone, kappa: norbinaltorphimine) or pretreatment with pertussis toxin. These results suggest that the activation of mu- or kappa-opioid receptors increases RGS4 mRNA level, which might contribute to opioid desentilization.  相似文献   

8.
Members of the R7 subfamily of regulators of G-protein signaling (RGS) proteins (RGS6, RGS7, RGS9-2, and RGS11) are found in the mouse CNS. The expression of these proteins was effectively reduced in different neural structures by blocking their mRNA with antisense oligodeoxynucleotides (ODNs). This was achieved without noticeable changes in the binding characteristics of labeled beta-endorphin to opioid receptors. Knockdown of R7 proteins enhanced the potency of antinociception promoted by morphine and [D-Ala(2), N-MePhe(4), Gly-ol(5)]-enkephalin (DAMGO)-both agonists at mu-opioid receptors. The duration of morphine analgesia was greatly increased in RGS9-2 and in RGS11 knockdown mice. The impairment of R7 proteins brought about different changes in the analgesic activity of selective delta agonists. Knockdown of RGS11 reduced [D-Ala(2)]deltorphin II analgesic effects. Those of RGS6 and RGS9-2 proteins caused [D-Ala(2)]deltorphin II to produce a smoothened time-course curve-the peak effect blunted and analgesia extended during the declining phase. RGS9-2 impairment also promoted a similar pattern of change for [D-Pen(2,5)]-enkephalin (DPDPE). RGS7-deficient mice showed an increased response to both [D-Ala(2)]deltorphin II and DPDPE analgesic effects. A single intracerebroventricular (i.c.v.) ED(80) analgesic dose of morphine gave rise to acute tolerance in control mice, but did not promote tolerance in RGS6, RGS7, RGS9-2, or RGS11 knockdown animals. Thus, R7 proteins play a critical role in agonist tachyphylaxis and acute tolerance at mu-opioid receptors, and show differences in their modulation of delta-opioid receptors.  相似文献   

9.
1. Morphine produces a plethora of pharmacological effects and its chronic administration induces several side-effects. The cellular mechanisms by which opiates induce these side-effects are not fully understood. Several studies suggest that regulation of adenylyl cyclase activity by opioids and other transmitters plays an important role in the control of neural function. 2. The aim of this study was to evaluate desensitization of mu- and delta- opioid receptors, defined as a reduced ability of opioid agonists to inhibit adenylyl cyclase activity, in four different brain structures known to be involved in opiate drug actions: caudate putamen, nucleus accumbens, thalamus and periaqueductal gray (PAG). Opiate regulation of adenylyl cyclase in these regions has been studied in control and morphine-dependent rats. 3. The chronic morphine treatment used in the present study (subcutaneous administration of 15.4 mg morphine/rat/day for 6 days via osmotic pump) induced significant physical dependence as indicated by naloxone-precipitated withdrawal symptoms. 4. Basal adenylyl cyclase in the four brain regions was not modified by this chronic morphine treatment. In the PAG and the thalamus, a desensitization of mu- and delta-opioid receptors was observed, characterized by a reduced ability of Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol (DAMGO; mu), Tyr-D-Pen-Gly-Phe-D-Pen (DPDPE; delta) and [D-Ala2]-deltorphin-II (DT-II; delta) to inhibit adenylyl cyclase, activity following chronic morphine treatment. 5. The opioid receptor desensitization in PAG and thalamus appeared to be heterologous since the metabotropic glutamate receptor agonists, L-AP4 and glutamate, and the 5-hydroxytryptamine (5-HT)1A receptor agonist, R(+)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT), also showed reduced inhibition of adenylyl cyclase activity following chronic morphine treatment. 6. In the nucleus accumbens and the caudate putamen, desensitization of delta-opioid receptor-mediated inhibition without modification of mu-opioid receptor-mediated inhibition was observed. An indirect mechanism probably involving dopaminergic systems is proposed to explain the desensitization of delta-mediated responses and the lack of mu-opioid receptor desensitization after chronic morphine treatment in caudate putamen and nucleus accumbens. 7. These results suggest that adaptive responses occurring during chronic morphine administration are not identical in all opiate-sensitive neural populations.  相似文献   

10.
1. Three pharmacological types of opioid receptors, mu, delta and kappa, and their corresponding genes have been identified. Although other types of opioid receptors have been suggested, their existence has not been established unequivocally. A fourth opioid receptor, ORL1, which is genetically closely related to the others, has also been isolated. ORL1 responds to the endogenous agonist nociceptin (orphanin FQ) and displays a pharmacological profile that differs greatly from mu, delta and kappa receptors. 2. All opioid receptors mediate many of their cellular effects via activation of heterotrimeric G-proteins. The mu, delta and kappa receptors are all capable of interacting with the pertussis toxin-sensitive G-protein alpha-subunits Gi1, Gi2, Gi3, Go1, Go2 and the pertussis toxin-insensitive Gz and G16. None of the opioid receptors interacts substantially with Gs and mu receptors do not activate Gq, G11, G12, G13, or G14. 3. Differential coupling of different opioid receptors to most types of G-proteins is marginal. The mu, delta and kappa receptors appear to preferentially activate Go and Gi2 over other pertussis toxin-sensitive G-proteins, although there is evidence that mu receptors show some preference for Gi3. delta Receptors couple more efficiently to G16 than do mu or kappa receptors. 4. There is some evidence that opioid receptors, particularly mu and ORL1 receptors, can also couple to cellular effectors in a G-protein-independent manner. 5. In general, the consequences of activation of any of the opioid receptors in a given cell type depend more on the profile (stoichiometry) of the G-proteins and effectors expressed than on the type of opioid receptor present in the cell. Notions that different types of opioid receptors intrinsically couple preferentially to one type of effector rather than another should, therefore, be discarded.  相似文献   

11.
The molecular basis of opioid receptor mechanisms was studied in reconstitution experiments using purified or membrane-bound opioid receptors and purified GTP-binding proteins (G-proteins). mu-Opioid receptor exclusively purified from rat brains was reconstituted with G-proteins in lipid vesicles. The mu-agonist stimulated the G-protein activity in both G1 or Go-reconstituted vesicles. The stoichiometry revealed that one molecule of mu-receptor is functionally coupled to plural numbers of Gi or Go molecules and that mu-receptor exists in at least two different subtypes, mu i and mu o, separately coupled to Gi and Go, respectively. In addition, when the mu-receptor was phosphorylated by cAMP-dependent protein kinase, the mu-agonist-stimulation of G-protein activity disappeared, while the guanine nucleotide-sensitivity of agonist binding was unchanged. These findings suggest that there are independent domains in the receptor which are related to functional coupling to G-protein and to the agonist-binding modulation by G-protein. kappa-Opioid receptor agonist inhibited the G-protein activity in guinea pig cerebellar membranes. Further experiments revealed that the kappa-opioid receptor is functionally coupled to an inhibition of phospholipase C activity via an inhibition of Gi-activity. Such a receptor-mediated inhibition of G-protein activity may be the first demonstration of a signal transduction mechanism. The delta-opioid receptor agonist showed no effect on G-protein activity in guinea pig striatal and rat cortical membranes, while it stimulated it in NG108-15 cells. In all these membranes, the delta-agonist binding was markedly reduced by GTP gamma S in the presence of MgCl2. These findings suggest that delta-receptors in the brain might be coupled to G-protein without signal transduction.  相似文献   

12.
Sustained administration of opioids leads to antinociceptive tolerance, while prolonged association of L-type Ca2+ channel blockers (e.g. nimodipine) with opioids results in increased antinociceptive response. Herein, we investigated the changes in mu-opioid receptor signalling underlying this shift from analgesic tolerance to supersensitivity. Thus, the interaction of mu-opioid receptors with G proteins and adenylyl cyclase was examined in lumbar spinal cord segments of rats. In control animals, the mu-opioid selective agonists, sufentanil and DAMGO, stimulated [35S]5'-(gamma-thio)-triphosphate ([35S]GTP gamma S) binding and inhibited forskolin-stimulated adenylyl cyclase activity, through a mechanism involving pertussis toxin (PTX) sensitive G alpha(i/o) subunits. Seven days of chronic sufentanil treatment developed antinociceptive tolerance associated with a reduction in mu-agonist-induced [35S]GTP gamma S binding, mu-agonist-induced adenylyl cyclase inhibition, and co-precipitation of G alpha o, G alpha i2 G alpha z and G alpha q11 subunits with mu-opioid receptors. In contrast, combined nimodipine treatment with sufentanil over the same period increased the sufentanil analgesic response. This antinociceptive supersensitivity was accompanied by a significant increase of mu-agonist-induced inhibition of adenylyl cyclase that was resistant to the antagonism by PTX. In good agreement, co-precipitation of the PTX-resistant, G alpha z and G alpha q/11 subunits with mu-opioid receptors was not lowered. On the other hand, the PTX-sensitive subunits, G alpha i2 and G alpha o, as well as agonist-stimulated [35S]GTP gamma S binding were still reduced. Our results demonstrate that mu-opioid analgesic tolerance follows uncoupling of spinal mu-opioid receptors from their G proteins and linked effector pathways. Conversely, the enhanced analgesic response following combined nimodipine treatment with sufentanil is associated with adenylyl cyclase supersensitivity to the opioid inhibitory effect through a mechanism involving PTX-resistant G protein subunits.  相似文献   

13.
Effects of regulator of G protein signaling (RGS) proteins on mu and delta opioid receptors were investigated in HEK293 cells. Co-expression of RGS1, RGS2, RGS4, RGS9, RGS10 or RGS19 (Galpha-interacting protein (GAIP)) significantly reduced [Tyr-D-Ala-Gly-N-methyl-Phe-Gly-ol]-Enkephalin (DAMGO)-induced inhibition of adenylyl cyclase (AC) mediated by mu opioid receptor, but only RGS9 decreased the effects of [Tyr-D-Pen-Gly-p-Chloro-Phe-D-Pen]-Enkephalin (DPDPE) mediated by delta opioid receptor. When C-tails of the receptors were exchanged (mu/deltaC and delta/muC chimeras), RGS proteins decreased delta/muC-mediated AC inhibition, but none had significant effects on that via mu/deltaC receptor. Thus, the C-terminal domains of the receptors are critical for the differential effects of RGS proteins, which may be due to differences in receptor-G protein-RGS protein interactions in signaling complexes.  相似文献   

14.
Previous studies have shown pretreatment with chemokines CCL5/RANTES (100 ng) or CXCL12/SDF-1alpha (100 ng) injected into the periaqueductal grey (PAG) region of the brain, 30 min before the mu opioid agonist DAMGO (400 ng), blocked the antinociception induced by DAMGO in the in vivo cold water tail-flick (CWT) antinociceptive test in rats. In the present experiments, we tested whether the action of other agonists at mu and delta opioid receptors is blocked when CCL5/RANTES or CXCL12/SDF-1alpha is administered into the PAG 30 min before, or co-administered with, opioid agonists in the CWT assay. The results showed that: (1) CXCL12/SDF-1alpha (100 ng, PAG) or CCL5/RANTES (100 ng, PAG), given 30 min before the opioid agonist morphine, or selective delta opioid receptor agonist DPDPE, blocked the antinociceptive effect of these drugs; (2) CXCL12/SDF-1alpha (100 ng, PAG) or CCL5/RANTES (100 ng, PAG), injected at the same time as DAMGO or DPDPE, significantly reduced the antinociceptive effect induced by these drugs. These results demonstrate that the heterologous desensitization is rapid between the mu or delta opioid receptors and either CCL5/RANTES receptor CCR5 or CXCL12/SDF-1alpha receptor CXCR4 in vivo, but the effect is greater if the chemokine is administered before the opioid.  相似文献   

15.
Several studies using selective opioid agonists or mice with a deletion of the mu-opioid receptor, have shown that morphine dependence is essentially due to chronic stimulation of mu- but not delta-opioid receptors. Because dependence is assumed to be related to persistent intracellular modifications, we have investigated modifications putatively induced by chronic activation of mu receptors with morphine or selective agonists in vitro in SH-SY5Y cells and in vivo in different strains of mice, including mice lacking the mu-opioid receptor gene. The results show a similar down-regulation and desensitization of mu and delta binding sites, whereas an overexpression of dynamin occurred only with mu agonists, strongly suggesting the relevance of this up-regulation with the opiate dependence. Moreover, translocation of overexpressed dynamin from intracellular pools to plasma membranes was observed in chronic morphine-treated rats. This recruitment could be critically involved in long-lasting changes such as alterations of axonal transport observed in opioid dependence.  相似文献   

16.
Using heterologous expression in Xenopus laevis oocytes, we compared the potencies of morphine, morphine-6beta-glucuronide (M6G), and morphine-3-glucuronide (M3G) for cloned human mu- (hMOR), kappa- (hKOR), and delta-opioid receptors (hDOR). Each receptor subtype was individually co-expressed with heteromultimeric G-protein coupled inwardly rectifying K(+) (GIRK) channels, consisting of GIRK1 and GIRK2 subunits, and RGS4, a regulator of G-protein signaling. The two-microelectrode voltage clamp technique was used to measure the opioid receptor-activated GIRK1/GIRK2 channel responses. Compared with morphine, M6G had higher potency at the hMOR, lower potency at the hKOR, and similar potency at the hDOR, while M3G showed a 1000-fold lower and non-selective potency via opioid receptors. In contrast to naloxone, M3G did not antagonize the effects of morphine at the hMOR. We also investigated whether Trp318 and His319 provide the molecular basis for mu/delta selectivity and mu/kappa selectivity of morphinan alkaloids by mutating these residues to their corresponding residues in kappa- and delta-opioid receptors. A single-point mutation (W318L) on hMOR completely conferred delta-like potency for morphine and M6G on the mutant mu-receptor. Double mutation at Trp318 and His319 positions (Trp318Y/His319Y) only partially conferred kappa-like potency for morphine and M6G; the decrease in potency for M6G was significantly larger than for morphine. The results of our study show that both M6G and M3G are opioid receptor agonists with different potencies and that the potency of morphinan receptor ligands can be changed by selective mutations of hMOR at the Trp318 and His319 positions.  相似文献   

17.
The capacity of opioids to alleviate inflammatory pain is negatively regulated by the glutamate-binding N-methyl--aspartate receptor (NMDAR). Increased activity of this receptor complicates the clinical use of opioids to treat persistent neuropathic pain. Immunohistochemical and ultrastructural studies have demonstrated the coexistence of both receptors within single neurons of the CNS, including those in the mesencephalic periaqueductal gray (PAG), a region that is implicated in the opioid control of nociception. We now report that mu-opioid receptors (MOR) and NMDAR NR1 subunits associate in the postsynaptic structures of PAG neurons. Morphine disrupts this complex by protein kinase-C (PKC)-mediated phosphorylation of the NR1 C1 segment and potentiates the NMDAR–CaMKII, pathway that is implicated in morphine tolerance. Inhibition of PKC, but not PKA or GRK2, restored the MOR–NR1 association and rescued the analgesic effect of morphine as well. The administration of N-methyl--aspartic acid separated the MOR–NR1 complex, increased MOR Ser phosphorylation, reduced the association of the MOR with G-proteins, and diminished the antinociceptive capacity of morphine. Inhibition of PKA, but not PKC, CaMKII, or GRK2, blocked these effects and preserved morphine antinociception. Thus, the opposing activities of the MOR and NMDAR in pain control affect their relation within neurons of structures such as the PAG. This finding could be exploited in developing bifunctional drugs that would act exclusively on those NMDARs associated with MORs.  相似文献   

18.
The collision-coupling model for receptor-G-protein interaction predicts that the rate of G-protein activation is dependent on receptor density, but not G-protein levels. C6 cells expressing mu- or delta-opioid receptors, or SH-SY5Y cells, were treated with beta-funaltrexamine (mu) or naltrindole-5'-isothiocyanate (delta) to decrease receptor number. The time course of full or partial agonist-stimulated ?35SGTPgammaS binding did not vary in C6 cell membranes containing <1-25 pmol/mg mu-opioid receptor, or 1. 4-4.3 pmol/mg delta-opioid receptor, or in SHSY5Y cells containing 0. 16-0.39 pmol/mg receptor. The association of ?35SGTPgammaS binding was faster in membranes from C6mu cells than from C6delta cells. A 10-fold reduction in functional G-protein, following pertussis toxin treatment, lowered the maximal level of ?35SGTPgammaS binding but not the association rate. These data indicate a compartmentalization of opioid receptors and G protein at the cell membrane.  相似文献   

19.
Chronic morphine treatment has been shown to produce constitutive activation of mu-opioid receptors, and this transition might contribute to the development of tolerance and dependence. The apparent ability of chronic morphine to increase the spontaneous, agonist-independent activation of mu-opioid receptors may be unique, due to its distinct partial agonist properties of possessing a relatively high intrinsic activity coupled with a poor ability to produce desensitization and down-regulation. Therefore, the present study tested the hypothesis that prolonged exposure to morphine would produce greater constitutive activity of mu-opioid receptors than exposure to the full agonist [D-Ala(2),N-MePhe(4),Gly-ol(5)]enkephalin (DAMGO). GH(3) cells expressing mu-opioid receptors were exposed to chronic morphine, DAMGO, or no opioid under conditions determined to produce maximal desensitization, down-regulation, and cAMP rebound. After chronic treatment, the mu-opioid antagonists naloxone and beta-chlornaltrexamine (beta-CNA) were evaluated in two assays predictive of inverse agonist activity. Both antagonists produced a concentration-dependent inhibition of [(35)S]GTP gamma S binding only in membranes prepared from cells chronically exposed to opioids. This effect was reversed by the neutral mu-opioid antagonist CTAP. Additionally, conditions known to uncouple G protein-coupled receptors from G proteins produced a leftward shift in the competition curve of beta-CNA for [(3)H]DAMGO binding only in membranes prepared from chronically treated cells. In contrast, these conditions produced no shift in the competition curve by the neutral antagonist CTAP in cells exposed to chronic DAMGO. Therefore, prolonged exposure of GH(3)MOR cells to opioids produced constitutive activation of mu-opioid receptors. Surprisingly, chronic treatment with the more efficacious agonist DAMGO produced greater increases in both measures of inverse agonist activity than did morphine. These observations may lend novel insight into the mechanisms of opioid tolerance and dependence.  相似文献   

20.
Morphine and delta9-tetrahydrocannabinol (THC) produce antinociception via mu opioid and cannabinoid CB1 receptors, respectively, located in central nervous system (CNS) regions including periaqueductal gray and spinal cord. Chronic treatment with morphine or THC produces antinociceptive tolerance and cellular adaptations that include receptor desensitization. Previous studies have shown that administration of combined sub-analgesic doses of THC+morphine produced antinociception in the absence of tolerance. The present study assessed receptor-mediated G-protein activity in spinal cord and periaqueductal gray following chronic administration of THC, morphine or low dose combination. Rats received morphine (escalating doses from 1 to 6x75 mg s.c. pellets or s.c. injection of 100 to 200 mg/kg twice daily), THC (4 mg/kg i.p. twice daily) or low dose combination (0.75 mg/kg each morphine (s.c) and THC (i.p.) twice daily) for 6.5 days. Antinociception was measured in one cohort of rats using the paw pressure test, and a second cohort was assessed for agonist-stimulated [35S]GTPgammaS binding. Chronic administration of morphine or THC produced antinociceptive tolerance to the respective drugs, whereas combination treatment did not produce tolerance. Administration of THC attenuated cannabinoid CB1 receptor-stimulated G-protein activity in both periaqueductal gray and spinal cord, and administration of morphine decreased mu opioid receptor-stimulated [35S]GTPgammaS binding in spinal cord or periaqueductal gray, depending on route of administration. In contrast, combination treatment did not alter cannabinoid CB1 receptor- or mu opioid receptor-stimulated G-protein activity in either region. These results demonstrate that low dose THC-morphine combination treatment produces antinociception in the absence of tolerance or attenuation of receptor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号