首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
β-Amyloid plaque deposition observed in brains from Alzheimer patients, might function as immune stimulus for glial/macrophages activation, which is supported by observations of activated microglia expressing interleukin (IL)-1β and elevated IL-6 immunoreactivity in close proximity to amyloid plaques. To elucidate the mechanisms involved in β-amyloid-mediated inflammation, transgenic mice (Tg2576) expressing high levels of the Swedish double mutation of human amyloid precursor protein and progressively developing typical β-amyloid plaques in cortical brain regions including gliosis and astrocytosis, were examined for the expression pattern of a number of cytokines.Using ribonuclease protection assay, interleukin (IL)-1α,-β, IL-1 receptor antagonist, IL-6, IL-10, IL-12, IL-18, interferon-γ, and macrophage migration inhibitory factor (MIF) mRNA were not induced in a number of cortical areas of Tg2576 mice regardless of the postnatal ages studied ranging between 2 and 13 months. Using immunocytochemistry for IL-1α,β, IL-6, tumor necrosis factor (TNF)-α, and macrophage chemotactic protein (MCP)-1, only IL-1β was found to be induced in reactive astrocytes surrounding β-amyloid deposits detected in 14-month-old Tg2576 mice. Using non-radioactive in situ hybridization glial fibrillary acidic protein (GFAP) mRNA was detected to be expressed by reactive astrocytes in close proximity to β-amyloid plaques. The local immune response detected around cortical β-amyloid deposits in transgenic Tg2576 mouse brain is seemingly different to that observed in brains from Alzheimer patients but may represent an initial event of chronic neuroinflammation at later stages of the disease.  相似文献   

2.
To elucidate the mechanisms involved in beta-amyloid-mediated inflammation in Alzheimer's disease, transgenic Tg2576 mice containing as transgene the Swedish double mutation of human amyloid precursor protein 695, were examined for the expression pattern of various cytokines using double immunocytochemistry and laser scanning microscopy. Tg2576 mice studied at postnatal ages of 13, 16 and 19 months demonstrated an age-related accumulation of both senile and diffuse beta-amyloid plaques in neocortex and hippocampus. Reactive interleukin (IL)-1beta-immunoreactive astrocytes were found in close proximity to both fibrillary and diffuse beta-amyloid deposits detectable at very early stages of plaque development, while activated microglia appeared in and around fibrillary beta-amyloid plaques only. Subpopulations of reactive astrocytes also demonstrated immunolabeling for transforming growth factor (TGF)-beta1, TGF-beta3, and IL-10, already detectable in 13-month-old transgenic mouse brain, while a few IL-6-immunoreactive astrocytes were observed only at later stages of plaque development. The early beta-amyloid-mediated upregulation of IL-1beta, TGF-beta, and IL-10 in surrounding reactive astrocytes indicates the induction of both pro- and anti-inflammatory mechanisms. The transgenic approach used in this study may thus provide a useful tool to further disclose the in vivo mechanisms by which pro- and anti-inflammatory cytokines interact and/or contribute to the progression of Alzheimer's disease.  相似文献   

3.
The beta-site APP-cleaving enzyme (BACE1) is a prerequisite for the generation of beta-amyloid peptides, which give rise to cerebrovascular and parenchymal beta-amyloid deposits in the brain of Alzheimer's disease patients. BACE1 is neuronally expressed in the brains of humans and experimental animals such as mice and rats. In addition, we have recently shown that BACE1 protein is expressed by reactive astrocytes in close proximity to beta-amyloid plaques in the brains of aged transgenic Tg2576 mice that overexpress human amyloid precursor protein carrying the double mutation K670N-M671L. To address the question whether astrocytic BACE1 expression is an event specifically triggered by beta-amyloid plaques or whether glial cell activation by other mechanisms also induces BACE1 expression, we used six different experimental strategies to activate brain glial cells acutely or chronically. Brain sections were processed for the expression of BACE1 and glial markers by double immunofluorescence labeling and evaluated by confocal laser scanning microscopy. There was no detectable expression of BACE1 protein by activated microglial cells of the ameboid or ramified phenotype in any of the lesion paradigms studied. In contrast, BACE1 expression by reactive astrocytes was evident in chronic but not in acute models of gliosis. Additionally, we observed BACE1-immunoreactive astrocytes in proximity to beta-amyloid plaques in the brains of aged Tg2576 mice and Alzheimer's disease patients.  相似文献   

4.
A transgenic mouse expressing the human beta-amyloid precursor protein with the 'Swedish' mutation, Tg2576, was used to investigate the mechanism of beta-amyloid (Abeta) deposition. Previously, we have reported that the major species of Abeta in the amyloid plaques of Tg2576 mice are Abeta1-40 and Abeta1-42. Moreover, Abeta1-42 deposition precedes Abeta1-40 deposition, while Abeta1-40 accumulates in the central part of the plaques later in the pathogenic process. Those data indicate that Abeta deposits in Tg2576 mice have similar characteristics to those in Alzheimer's disease. In the present study, to understand more fully the amyloid deposition mechanism implicating Alzheimer's disease pathogenesis, we examined immunohistochemically the distributions of apolipoprotein E (apoE) and Abeta in amyloid plaques of aged Tg2576 mouse brains. Our findings suggest that Abeta1-42 deposition precedes apoE deposition, and that Abeta1-40 deposition follows apoE deposition during plaque maturation. We next examined the relationship between apoE and astrogliosis associated with amyloid plaques using a double-immunofluorescence method. Extracellular apoE deposits were always associated with reactive astrocytes whose processes showed enhancement of apoE-immunoreactivity. Taken together, the characteristics of amyloid plaques in Tg2576 mice are similar to those in Alzheimer's disease with respect to apoE and astrogliosis. Furthermore, apoE deposition and astrogliosis may be necessary for amyloid plaque maturation.  相似文献   

5.
We measured tissue distribution and expression pattern of the beta-site amyloid precursor protein (APP)-cleaving enzyme (BACE) in the brains of transgenic Tg2576 mice that show amyloid pathology. BACE protein was expressed at high levels in brain; at lower levels in heart and liver; and at very low levels in pancreas, kidney, and thymus and was almost absent in spleen and lung when assayed by Western blot analysis. We observed strictly neuronal expression of BACE protein in the brains of nontransgenic control mice, with the most robust immunocytochemical labeling present in the cerebral cortex, hippocampal formation, thalamus, and cholinergic basal forebrain nuclei. BACE protein levels did not differ significantly between control and transgenic mice or as a result of aging. However, in the aged, 17-month-old Tg2576 mice there was robust amyloid plaque formation, and BACE protein was also present in reactive astrocytes present near amyloid plaques, as shown by double immunofluorescent labeling and confocal laser scanning microscopy. The lack of astrocytic BACE immunoreactivity in young transgenic Tg2576 mice suggests that it is not the APP overexpression but rather the amyloid plaque formation that stimulates astrocytic BACE expression in Tg2576 mice. Our data also suggest that the neuronal overexpression of APP does not induce the overexpression of its metabolizing enzyme in neurons. Alternatively, the age-dependent accumulation of amyloid plaques in the Tg2576 mice does not require increased neuronal expression of BACE. Our data support the hypothesis that neurons are the primary source of beta-amyloid peptides in brain and that astrocytic beta-amyloid generation may contribute to amyloid plaque formation at later stages or under conditions when astrocytes are activated.  相似文献   

6.
It was proposed that insulin-degrading enzyme (IDE) participates in the clearance of amyloid beta (Abeta) in the brain, and its low expression or activity may be relevant for the progression of Alzheimer disease. We performed a longitudinal study of brain level, activity, and distribution of IDE in transgenic mice (Tg2576) expressing the Swedish mutation in human Abeta precursor protein. At 16 months of age, Tg2576 showed a significant 2-fold increment in IDE protein level as compared with 4.5- and 11-month-old animals. The peak of IDE was in synchrony with the sharp accumulation of sodium dodecyl sulfate-soluble Abeta and massive Abeta deposition into plaques. At this stage, IDE appeared surrounding Abeta fibrillar deposits within glial fibrillar acidic protein-positive astrocytes, suggesting that it was locally overexpressed during the Abeta-mediated inflammation process. When primary astrocytes were exposed to fibrillar Abeta in vitro, IDE protein level increased as compared with control, and this effect was reduced by the addition of U0126, a specific inhibitor of the ERK1/2 mitogen-activated protein kinase cascade. We propose that in Tg2576 mice and in contrast to its behavior in Alzheimer brains, active IDE increases with age around plaques as a component of astrocyte activation as a result of Abeta-triggered inflammation.  相似文献   

7.
Cholinergic dysfunction is a consistent feature of Alzheimer's disease, and the interrelationship between beta-amyloid deposits, inflammation and early cholinergic cell loss is still not fully understood. To characterize the mechanisms by which beta-amyloid and pro-inflammatory cytokines may exert specific degenerating actions on cholinergic cells ultrastructural investigations by electron microscopy were performed in brain sections from transgenic Tg2576 mice that express the Swedish double mutation of the human amyloid precursor protein and progressively develop beta-amyloid plaques during aging. Both light and electron microscopical investigations of the cerebral cortex of 19-month-old transgenic mice revealed a number of pathological tissue responses in close proximity of beta-amyloid plaques, such as activated microglia, astroglial proliferation, increased number of fibrous astrocytes, brain edema, degeneration of nerve cells, dendrites and axon terminals. Ultrastructural detection of choline acetyl transferase (ChAT)-immunostaining in cerebral cortical sections of transgenic mice clearly demonstrated degeneration of ChAT-immunoreactive fibres in the environment of beta-amyloid plaques and activated glial cells suggesting a role of beta-amyloid and/or inflammation in specific degeneration of cholinergic synaptic structures.  相似文献   

8.
Alzheimer's disease is associated with markedly impaired cerebral glucose metabolism as detected by reduced cortical desoxyglucose utilization, by altered activities of key glycolytic enzymes or by reduced densities of cortical glucose transporter subtypes. To determine whether formation and/or deposition of beta-amyloid plays a role in the pathology of glucose metabolism, transgenic Tg2576 mice that overexpress the Swedish mutation of the human amyloid precursor protein and demonstrate a progressive, age-related cortical and hippocampal deposition of beta-amyloid plaques, were used to study expression and activity of key enzymes of brain glycolysis (phosphofructokinase, PFK) and glyconeogenesis (fructose1,6-bisphosphatase; FbPase). Quantitative RT-PCR revealed high expression levels of both C- and M-type PFK mRNA in non-transgenic mouse cerebral cortex, whilst there was little expression of the L-type. In 24-month-old transgenic Tg2576 mouse cortex, but not in 7-, 13-, and 17-month-old mice, the copy number of PFK-C mRNA was significantly reduced in comparison to non-transgenic littermates, while the mRNA level of the other PFK isoforms and FbPase did not differ between transgenic and non-transgenic tissue samples. In situ hybridization in brain sections from aged Tg2576 mice revealed reduced PFK-C mRNA expression in beta-amyloid plaque-associated neurons and upregulation in reactive astrocytes surrounding beta-amyloid deposits. The decreased PFK-C protein level detected by Western analysis in cerebral cortical tissue from 24-month-old transgenic Tg2576 mice was accompanied by reduced enzyme activity of PFK in comparison to non-transgenic littermates. Our data demonstrate that impairment of cerebral cortical glucose metabolism occurs only due to the long-lasting high beta-amyloid burden. This results from a reduction in glycolytic activity in beta-amyloid plaque-associated neurons and a concomitant upregulation in reactive, plaque-surrounding astrocytes.  相似文献   

9.
Transgenic Tg2576 mice expressing human amyloid precursor protein (hAPP) with the Swedish mutation are among the most frequently used animal models to study the amyloid pathology related to Alzheimer's disease (AD). The transgene expression in this model is considered to be neuron-specific. Using a novel hAPP-specific antibody in combination with cell type-specific markers for double immunofluorescent labelings and laser scanning microscopy, we here report that—in addition to neurons throughout the brain—astrocytes in the corpus callosum and to a lesser extent in neocortex express hAPP. This astrocytic hAPP expression is already detectable in young Tg2576 mice before the onset of amyloid pathology and still present in aged Tg2576 mice with robust amyloid pathology in neocortex, hippocampus, and corpus callosum. Surprisingly, hAPP immunoreactivity in cortex is restricted to resting astrocytes distant from amyloid plaques but absent from reactive astrocytes in close proximity to amyloid plaques. In contrast, neither microglial cells nor oligodendrocytes of young or aged Tg2576 mice display hAPP labeling. The astrocytic expression of hAPP is substantiated by the analyses of hAPP mRNA and protein expression in primary cultures derived from Tg2576 offspring. We conclude that astrocytes, in particular in corpus callosum, may contribute to amyloid pathology in Tg2576 mice and thus mimic this aspect of AD pathology.  相似文献   

10.
Beta-amyloid (Abeta) plaques have been shown to induce inflammatory changes in Alzheimer's disease brains. Cortical, but not cerebellar tissue from 16-month-old Tg2576 (Tg+) mice showed significant increases in interleukin (IL)-1alpha (2.2-fold), IL-1beta (3.4-fold), tumor necrosis factor-alpha (3.9-fold), and monocyte chemoattractant protein-1 (2.5-fold) mRNA levels compared to controls (Tg-). These changes were not apparent in 6-month-old Tg+ mice except for TNF-alpha. mRNA levels of glial fibrillary acidic protein and complement components, C1qA and C3 were also elevated in aged mice. Lipopolysaccharide (LPS) (25 microg/mouse, i.v.) induced a significantly greater production of IL-1beta protein in the cortices and hippocampi of Tg+ vs. Tg- mice at 1, 2, 4, and 6 h. Experiments in 6-month-old mice showed that not only was there less cytokine produced compared to 16-month-old mice, but the exacerbated cytokine response to LPS in Tg+ mice was not apparent. Higher levels of Abeta1-40 were measured in the cortices of 6- and 16-month-old Tg+ mice at 4-6 h after LPS, which returned to baseline after 18 h. We demonstrate that Abeta plaques elicit inflammatory responses in Tg2576 mice that are further exacerbated when challenged by an exogenous inflammatory insult, which may serve to amplify degenerative processes.  相似文献   

11.
To elucidate the mechanisms involved in β-amyloid-mediated inflammation in Alzheimer’s disease, transgenic Tg2576 mice containing as transgene the Swedish double mutation of human amyloid precursor protein 695, were examined for the expression pattern of various cytokines using double immunocytochemistry and laser scanning microscopy. Tg2576 mice studied at postnatal ages of 13, 16 and 19 months demonstrated an age-related accumulation of both senile and diffuse β-amyloid plaques in neocortex and hippocampus. Reactive interleukin (IL)-1β-immunoreactive astrocytes were found in close proximity to both fibrillary and diffuse β-amyloid deposits detectable at very early stages of plaque development, while activated microglia appeared in and around fibrillary β-amyloid plaques only. Subpopulations of reactive astrocytes also demonstrated immunolabeling for transforming growth factor (TGF)-β1, TGF-β3, and IL-10, already detectable in 13-month-old transgenic mouse brain, while a few IL-6-immunoreactive astrocytes were observed only at later stages of plaque development. The early β-amyloid-mediated upregulation of IL-1β, TGF-β, and IL-10 in surrounding reactive astrocytes indicates the induction of both pro- and anti-inflammatory mechanisms. The transgenic approach used in this study may thus provide a useful tool to further disclose the in vivo mechanisms by which pro- and anti-inflammatory cytokines interact and/or contribute to the progression of Alzheimer’s disease.  相似文献   

12.
A prominent feature of Alzheimer's disease (AD) pathology is an abundance of activated glia (astrocytes and microglia) in close proximity to the amyloid plaques. These activated glia overexpress a number of proteins that may participate in the progression of the disease, possibly by propagation of inflammatory and oxidative stress responses. The beta-amyloid peptide 1-42 (Abeta), a major constituent of neuritic plaques, can itself induce glial activation. However, little is known about whether other plaque components, especially the upregulated glial proteins, can induce glial activation or modulate the effects of Abeta on glia. In this study, we focused on four glial proteins that are abundant in amyloid plaques and/or that are known to interact with Abeta: alpha1-antichymotrypsin (ACT), interleukin-1beta (IL-1beta), S100beta, and butyrylcholinesterase (BChE). We examined the ability of these proteins to activate rat cortical astrocyte cultures and to influence the ability of Abeta to activate astrocytes. Treatment of astrocytes with ACT, IL-1beta, or S100beta resulted in glial activation, as assessed by reactive morphology, upregulation of IL-1beta, and production of inducible nitric oxide synthase and nitric oxide. The ability of Abeta to induce astrocyte activation was also enhanced in the presence of each of these three proteins. In contrast, BChE alone did not activate astrocytes and had no effect on Abeta-induced activation. These results suggest that certain proteins produced by activated glia may contribute to the chronic glial activation seen in AD through their ability to stimulate astrocytes directly or through their ability to modulate Abeta-induced activation.  相似文献   

13.
Prostaglandin (PG) D2 is produced in activated microglia by the action of hematopoietic PGD synthase (HPGDS) and plays important roles in neuroinflammation. Because the fact that neuroinflammation accelerates progression of Alzheimer disease (AD) has been documented, we investigated whether PGD2 is also involved in the pathology of AD. Here, we report that the level of the mRNA of the receptor for PGD2 (DP1) was increased in AD brains compared with the level in non-AD brains. Immunocytochemical analysis showed HPGDS expression to be localized in the microglia surrounding senile plaques. In situ hybridization studies revealed that DP1 mRNA was specifically localized in microglia and reactive astrocytes within senile plaques of AD brains. In the brain of Tg2576 mice, a model of AD, HPGDS and DP1 proteins were mainly localized immunocytochemically in microglia and astrocytes in the plaques, and the levels of their mRNAs increased in parallel with amyloid beta deposition. These results indicate that PGD2 may act as a mediator of plaque-associated inflammation in AD brain and may explain the pharmacologic mechanisms underlying the favorable response of patients with AD to nonsteroidal anti-inflammatory drugs.  相似文献   

14.
In Alzheimer's disease (AD) brains increased NO synthase (NOS) expression is found in reactive astrocytes surrounding amyloid plaques. We have recently shown that treatment with beta-amyloid peptides or IL-1beta down-regulates NO-sensitive soluble guanylyl cyclase (sGC) in cultured astrocytes and in adult rat brain. In this work, we have examined sGC activity and expression in postmortem brain tissue of AD patients and matched controls. No significant alteration was observed in basal or NO-stimulated sGC activity, nor in sGC beta1 and alpha1 subunit levels in cortical extracts of AD brains. Immunohistochemistry showed intense and widespread labeling of sGC beta1 in cortical and hippocampal neurons and white matter fibrillar astrocytes, while grey matter astrocytes were faintly stained. In AD, expression of sGC in neurons and fibrillar astrocytes is not altered but is markedly reduced in reactive astrocytes surrounding amyloid plaques. Immunostaining for sGC beta1 was also lacking in reactive astrocytes in cortex and subcortical white matter in Creutzfeldt-Jakob disease brains and in subacute and chronic plaques in multiple sclerosis (MS) brains. Thus, induction of astrocyte reactivity is associated with decreased capacity to generate cGMP in response to NO both in vitro and in vivo. This effect may be related to the development of the astroglial inflammatory response.  相似文献   

15.
We investigated the influence of five- to sevenfold neuronal overexpression of the Swedish mutation of human APP695 (APPsw) in the transgenic mouse strain Tg2576 on neocortical protein kinase C (PKC) expression and subcellular distribution. Using specific antibodies to PKC alpha, PKC beta, PKC gamma, PKC epsilon and PKC zeta isoforms for Western blot analysis, we observed increased immunoreactivity for PKC alpha and PKC gamma isoforms in crude tissue homogenates from the neocortex of 16-month-old APPsw mice as compared with nontransgenic littermates, which was not present in 6 month-old Tg2576 mice. We also observed elevated levels of PKC alpha, PKC beta, PKC gamma and PKC zeta in membrane fractions and reduced concentrations of PKC alpha and PKC gamma in cytosolic fractions of aged Tg2576 mice, indicating that these PKC isoforms are in their activated state. In young, 6-month-old Tg2576 mice, however, the increase in membrane-bound PKC isoforms and concomitant decrease in cytosolic PKC isoforms was much less pronounced, demonstrating the age-dependent nature of alterations in PKC isoforms. Immunocytochemistry of brain sections supported these findings and revealed increased neuronal labelling for PKC alpha, PKC gamma and PKC lambda isoforms in neocortex of 16-month-old APPsw mice compared with nontransgenic littermates, with the increase being strongest for PKC gamma and PKC lambda isoforms. Additionally, PKC gamma and to a lesser extent PKC lambda isoforms were induced in reactive astrocytes in proximity to amyloid plaques. Our data indicate that neuronal overexpression of APPsw causes a dynamic change in neuronal expression and activation of multiple PKC isoforms known to be regulators of proteolytic amyloid precursor protein (APP) processing (PKC alpha) and of neuronal survival (PKC lambda and PKC zeta). The induction of the PKC gamma and PKC lambda isoforms in reactive astrocytes surrounding amyloid plaques might be required for astrocyte activation and astrocytic cytokine expression in response to amyloid plaque formation.  相似文献   

16.
Alzheimer’s disease (AD) is the most commonly diagnosed dementia but its underlying pathological mechanisms still unclear. Neuroinflammation and secretion of cytokines such as interleukin-6 (IL-6) accompany the main hallmarks of the disease: amyloid plaques and neurofibrillary tangles. In this study, we analyzed the role of IL-6 trans-signaling in two mouse models of AD, Tg2576 and 3xTg-AD mice. The inhibition of IL-6 trans-signaling partially rescued the AD-induced mortality in females of both models. Before amyloid plaques deposition, it reversed AD-induced changes in exploration and anxiety (but did not affect locomotion) in Tg2576 female mice. However, after plaque deposition the only behavioral trait affected by the inhibition of IL-6 trans-signaling was locomotion. Results in the Morris water maze suggest that cognitive flexibility was reduced by the blocking of the IL-6 trans-signaling in young and old Tg2576 female mice. The inhibition of IL-6 trans-signaling also decreased amyloid plaque burden in cortex and hippocampus, and Aβ40 and Aβ42 levels in the cortex, of Tg2576 female mice. The aforementioned changes might be correlated with changes in blood vessels and matrix structure and organization rather than changes in neuroinflammation. 3xTgAD mice showed a very mild phenotype regarding amyloid cascade, but results were in accordance with those of Tg2576 mice. These results strongly suggest that the inhibition of the IL-6 trans-signaling could represent a powerful therapeutic target in AD.  相似文献   

17.
The molecular mechanisms of beta-amyloidogenesis in sporadic Alzheimer's disease are still poorly understood. To reveal whether aging-associated increases in brain oxidative stress and inflammation may trigger onset or progression of beta-amyloid deposition, a transgenic mouse (Tg2576) that express the Swedish double mutation of human amyloid precursor protein (APP) was used as animal model to study the developmental pattern of markers of oxidative stress and APP processing. In Tg2576 mouse brain, cortical levels of soluble beta-amyloid (1-40) and (1-42) steadily increased with age, but significant deposition of fibrillary beta-amyloid in cortical areas did not occur before postnatal age of 10 months. The slope of increase in cerebral cortical beta-secretase (BACE1) activities in Tg2576 mice between ages of 9 and 13 months was significantly higher as compared to that of the alpha-secretase, while the expression level of BACE1 protein and mRNA did not change with age. The activities of superoxide dismutase and glutathione peroxidase in cortical tissue from Tg2576 mice steadily increased from postnatal age 9-12 months. The levels of cortical nitric oxide, and reactive nitrogen species demonstrated peak values around 9 months of age, while the level of interleukin-1beta steadily increased from postnatal month 13 onwards. The developmental temporal coincidence of increased levels of reactive nitrogen species and antioxidative enzymes with the onset of beta-amyloid plaque deposition provides further evidence that developmentally and aging-induced alterations in brain oxidative status exhibit a major factor in triggering enhanced production and deposition of beta-amyloid, and potentially predispose to Alzheimer's disease.  相似文献   

18.
Transgenic mice carrying disease-linked forms of genes associated with Alzheimer disease often demonstrate deposition of the beta-amyloid as senile plaques and cerebral amyloid angiopathy. We have characterized the natural history of beta-amyloid deposition in APPswe/PS1dE9 mice, a particularly aggressive transgenic mouse model generated with mutant transgenes for APP (APPswe: KM594/5NL) and PS1 (dE9: deletion of exon 9). Ex vivo histochemistry showed Abeta deposition by 4 months with a progressive increase in plaque number up to 12 months and a similar increase of Abeta levels. In vivo multiphoton microscopy at weekly intervals showed increasing beta-amyloid deposition as CAA and plaques. Although first appearing at an early age, CAA progressed at a significantly slower rate than in the Tg2576 mice. The consistent and early onset of beta-amyloid accumulation in the APPswe/PS1dE9 model confirms its utility for studies of biochemical and pathological mechanisms underlying beta-amyloid deposition, as well as exploring new therapeutic treatments.  相似文献   

19.
20.
The molecular mechanisms of the interrelationship between cholinergic neurotransmission, processing of amyloid precursor protein (APP) and beta-amyloid (Abeta) production in vivo are still less understood. To reveal any effect of cholinergic dysfunction on APP processing in vivo, 11-month-old transgenic Tg2576 mice with Abeta plaque pathology received intraperitoneal injections of scopolamine at a daily dosage of 2mg/kg body weight for 14 days in order to suppress cortical cholinergic transmission by chronic inhibition of muscarinic acetylcholine receptors. Scopolamine treatment of transgenic Tg2576 mice resulted in increased levels of fibrillar Abeta(1-40) and Abeta(1-42), while the soluble, SDS-extractable Abeta level remained unchanged as compared to vehicle-injected Tg2576 mice. alpha-Secretase activity determined in cortical tissue from scopolamine-treated Tg2576 mice was lower by about 30% as compared to that assayed in control mice, while beta-secretase activity and BACE1 protein expression appeared unaffected by scopolamine treatment. The amount of sAPPalpha, the product secreted by alpha-secretase-mediated APP cleavage, and the unprocessed APP were assayed in the soluble and membrane fraction, respectively, of cortical tissue preparations from treated and control mice by Western blotting. Using the anti antibody 6E10 which specifically labels human sAPPalpha and full length APP in transgenic Tg2576, an enhanced APP level was detected in the membrane fraction from treated mice as compared to controls, while in the soluble fraction scopolamine treatment did not affect the protein level of sAPPalpha. These data indicate an accumulation of APP in cortical membrane fraction in scopolamine-treated Tg2576 mice presumably due to the decreased level of alpha-secretase-mediated APP cleavage, and further suggest that chronic suppression of cortical muscarinic cholinergic transmission may alter the balance between alpha- and beta-secretory APP processing by favouring the amyloidogenic route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号