首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Orexin-A-like immunoreactive (OrA-ir) neurons and terminals in the cat hypothalamus were examined using immunohistochemical techniques. OrA-ir neurons were found principally in the lateral hypothalamic area (LHA) at the level of the tuberal cinereum and in the dorsal and posterior hypothalamic areas. In the LHA the majority of the neurons were located dorsal and lateral to the fornix; a small number of OrA-ir neurons were also present in other regions of the hypothalamus. OrA-ir fibers with varicose terminals were detected in almost all hypothalamic regions. The high density of fibers was located in the suprachiasmatic nucleus, the infundibular nucleus (INF), the tuberomamillary nucleus (TM) and the supra- and pre-mamillary nuclei. Ultrastructural analysis revealed that OrA-ir neurons in the LHA receive abundant input from non-immunoreactive terminals. These terminals, which contained many small, clear, round vesicles with a few large, dense core vesicles, made asymmetrical synaptic contacts with OrA-ir dendrites, indicating that the activity of orexin neurons is under excitatory control. On the other hand, the terminals of OrA-ir neurons also made asymmetrical synaptic contact with dendrites in the LHA, the INF and the TM. The dendrites in the LHA were both non-immunoreactive and OrA-ir; conversely, the dendrites in the INF and the TM were non-immunoreactive. In these regions, OrA-ir terminals contained many small, clear, round vesicles with few large, dense core vesicles, suggesting that orexinergic neurons also provide excitatory input to other neurons in these regions.  相似文献   

2.
The ultrastructure of substance P (SP)-immunoreactive elements in the cat dorsal motor nucleus of the vagus nerve was examined using pre- and post-embedding immunocytochemical procedures. Substance P-like immunoreactivity was observed in axon terminals and axon fibres which were mostly unmyelinated. Quantitative data showed that at least 16% of axon terminals contained SP. Their mean diameter was larger than that of their non-immunoreactive counterparts. Most (83%) SP-containing terminals were seen to contact dendrites but some were observed adjoining soma or entirely embedded in the cytoplasm of vagal neurons (4.5%). Only 0.5% were observed to contact soma of internuerons. A few immunoreactive axon terminals (4%) were observed in contact with non-immunoreactive axon terminals. Round agranular vesicles and numerous dense core vesicles were visible in most SP-containing axon terminals (84.6%). The immunogold procedure showed the preferential subcellular location of SP to be dense core vesicles. In 32.4% of cases, SP-containing terminals were involved in synaptic contacts that were generally of the asymmetrical Gray type 1 and mainly apposed dendrites. The theoretical total of synaptic contacts was 74.5% and this suggests the existence of weak non-synaptic SP innervation involving approximately 25% of SP-containing axon terminals. No axo-axonic synapses were observed in the dorsal vagal nucleus. These results support the hypothesis that SP found in the dorsal vagal nucleus originates partly from vagal afferents and is involved in direct modulation of visceral functions mediated by vagal preganglionic neurons.  相似文献   

3.
A light and electron microscopic study, combining HRP axonal tracing or degeneration and GABA immunocytochemistry, was performed in the lamprey Lampetra fluviatilis in order to analyze retinal and non-retinal inputs upon the retinopetal neurons localized in the reticular mesencephalic area (RMA). The iontophoretic deposit of HRP onto the central stump of the cut optic nerve produced a dense anterograde labeling in the retino-recipient strata marginale and cellulare externum of the optic tectum as well as the retrograde labeling of retinopetal neurons in the mesencephalic tegmentum. The large ascending proximal dendrites of the retinopetal neurons constituted a distinct bundle coursing first dorso-laterally in the dorsal mesencephalic tegmentum, and then dorso-medially in the strata fibrosum centrale and cellulare et fibrosum internum of the optic tectum before their distal portions penetrated the retino-recipient tectal layers. The distribution of GABA immunoreactivity was also investigated in the tectal layers and dorsal mesencephalic tegmentum with both pre- and post-embedding methods. The retinal terminals, identified either following HRP iontophoresis in the optic nerve or in early phases of degeneration after short-term survivals following retinal lesion, contained rounded-shaped synaptic vesicles and were always GABA immunonegative. They established asymmetrical synaptic contacts on the distal dendrites of RMA neurons and represented 11.4% of all terminals contacting such neurons (15% of these neurons were GABA immunopositive). The dense extra-retinal input upon the retinopetal RMA neurons was composed of five types of axon terminal profiles, either GABA-immunopositive or -immunonegative. Considering the different cytochemical types of axon terminals contacting RMA neurons, as well as the characteristics of the retinal targets of these neurons, we suggest that, globally, the effects of RMA neurons upon the retina are mainly inhibitory.  相似文献   

4.
The orexinergic system interacts with several functional states of emotions, stress, hunger, wakefulness and behavioral arousal through four pathways originating in the lateral hypothalamus (LH). Hundreds of orexinergic efferents have been described by tracing studies and direct immunohistochemistry of orexin in the forebrain, olfactory regions, hippocampus, amygdala, septum, basal ganglia, thalamus, hypothalamus, brain stem and spinal cord. Most of these tracing studies investigated the whole orexinergic projection to all regions of the intracranial part of the CNS. To identify the orexinergic efferents at the subnuclear level of resolution, we focussed on the orexinergic target in the amygdala, which is substantially involved in the LH output and contributes mostly to the functional outcome of the orexinergic system and the basal ganglia. Immunohistochemical identification of axonal orexin A and orexin B in male adult rats has been performed on serial sections. In the extended amygdala many new orexinergic targets were found in the anterior amygdaloid area (dense), anterior cortical nucleus (moderate), amygdalostriatal transition region (moderate), basolateral regions (moderate), basomedial nucleus (moderate), several bed nucleus of the stria terminals regions (few to dense), central amygdaloid subdivisions (dense), posteromedial cortical nucleus (moderate) and medial amygdaloid subnuclei (dense). Furthermore, the entopeduncular nucleus has been newly identified as another target for orexinergic fibers with a high density. These results suggest that subdivisions and subnuclei of the extended amygdala are specific targets of the orexinergic system.  相似文献   

5.
Modafinil is a drug used to treat hypersomnolence of narcolepsy. We previously reported that modafinil increases hypothalamic histamine release in rats but did not increase locomotor activity in histamine-depleted mice, suggesting that modafinil-induced locomotor activity involves the histaminergic system. Modafinil is also thought to express its effect through the orexinergic neurons, and orexin increases hypothalamic histamine release. These findings led us to investigate whether modafinil activates the histaminergic system via the orexinergic system. In the present study, we performed in vivo microdialysis and c-Fos immunohistochemistry to investigate whether the orexinergic system mediates the activation of the histaminergic system by modafinil using orexin neuron-deficient mice. Two hours after the injection, modafinil (150 mg/kg) caused a significant increase of histamine release compared to the basal release in wild type mice. However, modafinil had no effect on the histamine release in orexin neuron-deficient mice. By immunohistochemical study, we found that there was no neuronal activation in the tuberomammillary nucleus where the cell bodies of the histaminergic neurons exclusively exist in orexin neuron-deficient mice. These findings indicate that modafinil-induced increment of histamine release requires intact orexinergic neurons.  相似文献   

6.
The present study describes the distribution of orexin-A immunoreactive neurons and terminal networks in relation to the previously described catecholaminergic, cholinergic and serotonergic systems within the brain of the rock hyrax, Procavia capensis. Adult female rock hyrax brains were sectioned and immunohistochemically stained with an antibody to orexin-A. The staining revealed that the neurons were mainly located within the hypothalamus as with other mammals. The orexinergic terminal network distribution also resembled the typical mammalian plan. High-density orexinergic terminal networks were located within regions of the diencephalon (e.g. paraventricular nuclei), midbrain (e.g. serotonergic nuclei) and pons (locus coeruleus), while medium density orexinergic terminal networks were evident in the telencephalic (e.g. basal forebrain), diencephalic (e.g. hypothalamus), midbrain (e.g. periaqueductal gray matter), pontine (e.g. serotonergic nuclei) and medullary regions (e.g. serotonergic and catecholaminergic nuclei). Although the distribution of the orexinergic terminal networks was typically mammalian, the rock hyrax did show one atypical feature, the presence of a high-density orexinergic terminal network within the anterodorsal nucleus of the dorsal thalamus (AD). The dense orexinergic innervation of the AD nucleus has only been reported previously in the Nile grass rat, Arvicanthis niloticus and Syrian hamster, Mesocricetus auratus, both diurnal mammals. It is possible that orexinergic innervation of the AD nucleus might be a unique feature associated with diurnal mammals. It was also noted that the dense orexinergic innervation of the AD nucleus coincided with previously identified cholinergic neurons and terminal networks in this particular nucleus of the rock hyrax brain. It is possible that this dense orexinergic innervation of the AD nucleus in the brain of the rock hyrax may act in concert with the cholinergic neurons and/or the cholinergic axonal terminals, which in turn may influence arousal states and motivational processing.  相似文献   

7.
The subnuclear and synaptic distribution of substance P immunoreactivity was examined in the rat interpeduncular nucleus at the light and electron microscope level. The nucleus possessed a prominent substance P-immunoreactive axonal plexus in the lateral and dorsomedial subnuclei, and in the dorsal cap of the rostral subnucleus. The density of substance P-immunoreactive axons in the remaining subnuclear divisions was sparse to moderate. Terminals of immunoreactive axons contained spherical vesicles and formed asymmetric contacts on dendritic processes exclusively. Immunoreactive neurons, restricted to the rostral subnucleus, possessed long, sparsely branched dendrites. Unlabelled terminals containing either spherical or pleomorphic vesicles contacted substance P-immunoreactive dendritic profiles. Axodendritic and axosomatic synapses containing substance P immunoreactivity pre- and postsynaptically were not observed. Ultrastructural evidence for synaptic relationships between substance P-containing profiles and those containing either choline acetyltransferase or glutamate decarboxylase was obtained by means of double antigen immunohistochemistry. Terminals of fasciculus retroflexus axons stained for choline acetyltransferase immunoreactivity formed asymmetric synaptic contacts with substance P-immunoreactive dendritic profiles. Few substance P-positive dendrites in the rostral subnucleus received terminals possessing glutamate decarboxylase activity. Unlabelled terminals containing either spherical or pleomorphic vesicles contacted substance P- and glutamate decarboxylase-immunoreactive dendritic profiles simultaneously. Terminals possessing either substance P or glutamate decarboxylase immunoreactivity formed synaptic contacts with dendritic processes of neurons in the lateral subnucleus. Many of the neurons within this subnuclear division contained glutamate decarboxylase. This study provides direct evidence of synaptic relationships between choline acetyltransferase-immunoreactive axons and substance P-immunoreactive dendritic profiles, and between substance P-positive axons and glutamate decarboxylase-immunoreactive dendrites. These findings reveal that two types of transmitter-specific axons of the fasciculus retroflexus innervate neuronal populations of the interpeduncular nucleus stained immunohistochemically for either substance P or glutamate decarboxylase.  相似文献   

8.
An electron microscopic study showed by using a dual immunolabeling technique that in the suprachiasmatic nucleus of the rat, axon terminals immunoreactive for neuropeptide Y (NPY) made synaptic contacts upon neurons immunoreactive for vasoactive intestinal polypeptide (VIP). Diaminobenzidine (DAB)-labeled NPY axon terminals made synaptic contacts on silver-gold-labeled VIP perikarya and dendritic processes. The presynaptic NPY terminals contained many small clear vesicles and a few cored vesicles labeled with DAB chromogen. At the synaptic portion, a symmetrical thickening of the pre- and post-synaptic membranes was evident.  相似文献   

9.
An ultrastructural immunocytochemical study was undertaken to identify neuroactive substances contained in presynaptic boutons in the hypothalamic suprachiasmatic nucleus. Axonal boutons containing immunoreactive gamma-aminobutyrate, glutamate decarboxylase, neurophysin/vasopressin, gastrin releasing peptide/bombesin, somatostatin and serotonin were localized within the hypothalamic suprachiasmatic nucleus with pre-embedding peroxidase immunostaining. Synaptic contacts were found between boutons containing each of these substances and postsynaptic structures. While some variation in synaptic morphology existed, most of the immunoreactive contacts were of the symmetrical type. Previous work has indicated that neuroactive peptides may be found in highest concentrations in dense-core vesicles, to examine the subcellular localization of the amino acid inhibitory transmitter gamma-aminobutyrate, ultrastructural immunocytochemistry with pre-embedding peroxidase was compared with post-embedding immunocytochemistry with colloidal gold. Ultracryothin sections were also used for ultrastructural localization of gamma-aminobutyrate and glutamate decarboxylase immunoreactivity. Both gamma-aminobutyrate and glutamate decarboxylase immunoreactivity were found throughout the cytoplasm of immunoreactive boutons when pre-embedding peroxidase was used; with post-embedding colloidal gold immunostaining, label was found over areas containing small clear vesicles, and over mitochondria of immunoreactive axons. At the dilutions used in this study, strongly immunoreactive gamma-aminobutyrate dendrites, boutons forming asymmetrical synapses, and cell bodies were not found. Differences between pre-embedding and post-embedding immunostaining may be due to antigen and label diffusion caused by mild fixation and membrane damage necessary for antisera penetration during pre-embedding immunostaining. These results suggest that gamma-aminobutyrate, gastrin releasing peptide, somatostatin and vasopressin are contained in axons making contact with neurons of the suprachiasmatic nucleus, and may function as neurotransmitters here. Since all of these substances can also be localized in perikarya within the suprachiasmatic nucleus, there is a strong possibility that at least some of the axons containing immunoreactivity for each of these substances may be involved in local circuit interactions between neurons within the suprachiasmatic nucleus.  相似文献   

10.
 The olivary pretectal nucleus is a primary visual centre, involved in the pupillary light reflex. In the present study an ultrastructural analysis was made of the olivary pretectal nucleus by means of separate, anterograde and retrograde tracing techniques and immunohistochemistry of gamma-aminobutyric acid. Large-projection neurons and two types of gamma-aminobutyric acid-immunoreactive (GABA-ir) neurons are observed in the olivary pretectal nucleus. The primary dendrites of the projection neurons have a dichotomous appearance, the secondary dendrites a multipolar appearance. At the ultrastructural level the projection neurons have well-developed Golgi fields, abundant rough endoplasmic reticulum and the nucleus is always heavily indented. Numerous small GABA-ir neurons and a few medium-sized GABA-ir neurons are found. The small GABA-ir neurons contain a few stacks of rough endoplasmic reticulum and the nucleus is oval-shaped. The medium-sized GABA-ir neurons have well-developed Golgi fields, a moderate number of rough endoplasmic reticulum stacks and an indented nucleus. GABA-positive dendritic profiles containing vesicles also are observed. In the neuropil of the olivary pretectal nucleus, retinal terminals are found that contain round clear vesicles and electron-lucent mitochondria. They make asymmetric synaptic contacts (Gray type I) with dendritic profiles and with profiles containing vesicles. Terminals originating from the contralateral olivary pretectal nucleus exhibit small, round clear vesicles, electron-dense mitochondria and make asymmetric synaptic contacts (Gray type I) mainly with dendritic profiles. Two types of GABA-ir terminals were found. One type is incorporated in glomerulus-like arrangements, whereas the other type is not. GABA-ir terminals contain pleomorphic vesicles, electron-dense mitochondria and make symmetric synaptic contacts (Gray type II). Retinal terminals, terminals originating from the contralateral olivary pretectal nucleus and GABA-ir terminals are organized in glomerulus-like structures, in which dendrites of the large projection neurons form the central elements. Triadic arrangements are observed in these structures; a retinal terminal contacts a dendrite and a GABA-ir terminal and the GABA-ir terminal also contacts the dendrite. The complexity of the synaptic organization and the abundancy of inhibitory elements in the olivary pretectal nucleus suggest that the olivary pretectal nucleus is strongly involved in processing visual information in the pupillary light reflex arc. Received: 17 July 1996 / Accepted: 24 September 1996  相似文献   

11.
Orexin is a neuropeptide that has been implicated in several processes, such as induction of appetite, arousal and alertness and sleep/wake regulation. Multiple lines of evidence also suggest that orexin is involved in the stress response. When orexin is administered intracerebroventricular it activates the hypothalamic pituitary adrenal (HPA)-axis, which is the main regulator of the stress response. The HPA-axis is not the only player in the stress response evidence suggests that urocortin 1 (Ucn1), a member of the corticotropin releasing factor (CRF) neuropeptide family, also plays an important role in the stress response adaptation. Ucn1 is primarily synthetized in the centrally projecting Edinger–Westphal nucleus (EWcp), which also receives dense innervation by orexin terminals. In this study we tested the hypothesis that orexin would directly shape the response of EWcp-Ucn1 neurons to acute cold stress. To test this hypothesis, we first assessed whether orexinergic axon terminals would innervate EWcp-Ucn1/CART neurons, and next we exposed orexin deficient (orexin-KO) male mice and their male wild-type (WT) littermates to acute cold stress for 2 h. We also assessed stress-associated changes in plasma corticosterone (CORT), as well as the activation of Ucn1/CART neurons in the EWcp nucleus. We found that orexin immunoreactive axon terminals were juxtaposed to EWcp-Ucn1/CART neurons, which also expressed orexin receptor 1 mRNA. Furthermore, acute stress strongly activated the EWcp-Ucn1/CART neurons and increased plasma CORT in both WT littermates and orexin-KO mice, however no genotype effect was found on these indices. Taken together our data show that orexin in general is not involved in the animal's acute stress response (plasma CORT) and it does not play a direct role in shaping the response of EWcp-Ucn1 neurons to acute stress either.  相似文献   

12.
A post-embedding immunogold study was carried out to estimate the immunoreactivity to glutamate in retinal terminals, P axon terminals and dendrites containing synaptic vesicles in the superficial layers of the optic tectum of Vipera. Retinal terminals, identified following either intraocular injection of tritiated proline, horseradish peroxidase (HRP) or short-term survivals after retinal ablation, were observed to be highly glutamate-immunoreactive. A detailed quantitative analysis showed that about 50% of glutamate immunoreactivity was localized over the synaptic vesicles, 35.8% over mitochondria and 14.2% over the axoplasmic matrix. The close association of immunoreactivity with the synaptic vesicles could indicate that Vipera retino-tectal terminals may use glutamate as their neurotransmitter. P axon terminals and dendrites containing synaptic vesicles, strongly γ-aminobutyric (GABA)-immunoreactive, were shown to be also moderately glutamate-immunoreactive, but two to three times less than retinal terminals. Moreover, in P axon terminals, the glutamate immunoreactivity was denser over mitochondria than over synaptic vesicles, possibly reflecting the ‘metabolic' pool of glutamate, which serves as a precursor in the formation of GABA.  相似文献   

13.
Immunocytochemical studies were carried out on the morphological relation between primary afferent central terminals (C-terminals) and GABAergic neurons in the mouse superficial dorsal horn. The superficial dorsal horn is composed of many synaptic glomeruli comprising two types: Type I with centrally located CI-terminals surrounded by several dendrites and few axonal endings, and Type II with centrally located CII-terminals surrounded by several dendrites and a few axonal endings. The CI-terminals are sinuous or scalloped with densely packed agranular synaptic vesicles, a few granular synaptic vesicles and mitochondria, and show an electron dense axoplasm, whereas the CII-terminals are large and round or rectangular with evenly distributed agranular synaptic vesicles, a number of granular synaptic vesicles and mitochondria, and show an electron opaque axoplasm. The immunoreaction of GABA was remarkable in the superficial laminae of the dorsal horn. Many interneuronal somata in the substantia gelatinosa showed GABAergic immunoreactivity. The immunoreaction was seen in the entire GABAergic neuroplasm, but not in the nucleus and its envelope. Most GABAergic features appeared as dendrites making postsynaptic contact with CI- or CII-terminals; i.e., numerous C-terminals made presynaptic contact with GABAergic dendrites. GABA immunoreactivity was seen over round synaptic vesicles and mitochondrial membranes. A few CII-terminals made presynaptic contact with GABAergic interneuronal somata. Previous physiological and anatomical studies have suggested that not only the cutaneous nociceptive primary afferent C-terminals but also mechanoreceptive primary afferent C-terminals make presynaptic contact with the GABAergic dendrites, boutons and soma. The presynaptic relation of these primary afferents with GABAergic neurons seems to provide morphological support for the essential feature of the gate control theory: primary afferent fibers may play a part in the modulation of nociceptive information via GABAergic neurons in the superficial dorsal horn. Small GABAergic terminals were found to make contact with blood capillaries suggesting the release of GABA into circulation.  相似文献   

14.
The somas of primary afferent neurons in the mesencephalic nucleus of the trigeminal nerve in rat have a dense investment of axons immunoreactive for the enzyme adenosine deaminase. We previously suggested that these axons may originate from adenosine deaminase-immunoreactive neurons located in the tuberomammillary nucleus of the hypothalamus [Nagy et al. (1986) Neuroscience 17, 141-156]. Anterograde tracing and immunohistochemical techniques were used to investigate this possibility further. In addition, the appearance of adenosine-immunoreactive axons and the nature of their interactions with mesencephalic neurons was examined ultrastructurally. After injections of either Phaseolus vulgaris-leucoagglutinin or wheat germ agglutinin-horseradish peroxidase into the region of the tuberomammillary nucleus, punctate deposits of anterogradely transported tracer, detected by immunoperoxidase methods, were seen surrounding mesencephalic neurons. In sections immunostained for tracer and adenosine deaminase by double immunofluorescence, some fibres in the periaqueductal gray matter and around Mes V somas were found to be labelled for both the lectin and the enzyme. Ultrastructurally, only a single morphological class of adenosine deaminase-immunoreactive axons adjacent to, or indenting the cytoplasmic membranes of, large somas in the mesencephalic nucleus could be recognized; they were varicose and contained relatively large immunoreactive vesicles ranging in diameter from 45 to 70 nm. Occasionally, thin processes of these axons could be traced back to small adenosine deaminase-positive neuronal cell bodies located not within the tuberomammillary nucleus, but rather, within the periaqueductal gray matter. In serial ultrathin sections, membrane specializations resembling synaptic junctions were sometimes seen at points where mesencephalic somas were in contact with adenosine deaminase-immunoreactive terminals. Somas within the mesencephalic nucleus also formed such junctions with non-immunoreactive boutons which were morphologically different from, and often seen in close proximity to, those containing adenosine deaminase. These results indicate that in addition to possible afferents from the tuberomammillary nucleus, primary sensory somas within the mesencephalic nucleus are also associated with axonal processes originating from adenosine deaminase-positive neurons located within the periaqueductal gray matter. The infrequent synaptic contacts between these somas and adenosine deaminase-positive axons, despite their close anatomical arrangement, is suggestive of a diffuse endocrine or neurocrine type of axonal relationship with mesencephalic somas or with the n  相似文献   

15.
Information to the cerebellum enters via many afferent sources collectively known as precerebellar nuclei. We investigated the distribution of cholinergic terminal-like structures in the mouse precerebellar nuclei by immunohistochemistry for vesicular acetylcholine transporter (VAChT). VAChT is involved in acetylcholine transport into synaptic vesicles and is regarded as a reliable marker for cholinergic terminals and preterminal axons. In adult male mice, brains were perfusion-fixed. Polyclonal antibodies for VAChT, immunoglobulin G-peroxidase and diaminobenzidine were used for immunostaining. In the mouse brain, immunoreactivity was seen in almost all major cholinergic cell groups including brainstem motoneurons. In precerebellar nuclei, the signal could be detected as diffusely beaded terminal-like structures. It was seen heaviest in the pontine nuclei and moderate in the pontine reticulotegmental nucleus; however, it was seen less in the medial solitary nucleus, red nucleus, lateral reticular nucleus, inferior olivary nucleus, external cuneate nucleus and vestibular nuclear complex. In particular, VAChT-immunoreactive varicose fibers were so dense in the pontine nuclei that detailed distribution was studied using three-dimensional reconstruction of the pontine nuclei. VAChT-like immunoreactivity clustered predominantly in the medial and ventral regions suggesting a unique regional difference of the cholinergic input. Electron microscopic observation in the pontine nuclei disclosed ultrastructural features of VAChT-immunoreactive varicosities. The labeled bouton makes a symmetrical synapse with unlabeled dendrites and contains pleomorphic synaptic vesicles. To clarify the neurons of origin of VAChT-immunoreactive terminals, VAChT immunostaining combined with wheat germ agglutinin-conjugated horseradish peroxidase retrograde labeling was conducted by injecting a retrograde tracer into the right pontine nuclei. Double-labeled neurons were seen bilaterally in the laterodorsal tegmental nucleus and pedunculopontine tegmental nucleus. It is assumed that mesopontine cholinergic neurons negatively regulate neocortico-ponto-cerebellar projections at the level of pontine nuclei.  相似文献   

16.
The distribution and staining pattern of gamma-aminobutyric acid immunoreactivity have been examined by both light and electron microscopy in the dorsal part of the lateral geniculate nucleus of three reptilian species: the turtle Chinemys reevesi, the lizard Ophisaurus apodus and the snake Vipera aspis. After perfusion of the animals with 1% paraformaldehyde and 1% glutaraldehyde and polyethyleneglycol embedding of the brains, the analysis of sections processed immunocytochemically with an anti-GABA antiserum has revealed a moderate-to-dense labeling of the neurons of the dorsal part of the lateral geniculate complex in these species. Labeled cell bodies are small-sized, either rounded or fusiform and the GABA-positive dendrites emerging from them are not preferentially oriented in any particular direction. Quantitative studies in Vipera indicate that GABA-positive neurons make up about 14% of the population of neurons of the dorsal part of the lateral geniculate nucleus. Electron microscopy of specimens treated by either pre- or post-embedding techniques has confirmed that these cells corresponded to neurons. No glial cells were ever observed to be immunopositive. These GABA-positive neurons, characterized by the presence of pleiomorphic synaptic vesicles localized either in their perikaryon or more often in presynaptic dendrites, established symmetrical synaptic contacts. In this case, the latter were involved both pre- and postsynaptically in serial and, more rarely, in triadic arrangements, a synaptic organization specific to interneurons. The involvement of such GABA-positive neurons in local circuits is discussed.  相似文献   

17.
Summary Axon terminals in the neuropil of the lateral nucleus can be divided into six classes, each with a specific constellation of characteristics that consistently occur together. Two of these classes have synaptic varicosities with elliptical synaptic vesicles, one in a dense, the other in a sparse matrix, and both make axosomatic and axodendritic synapses. The remaining four classes all have round synaptic vesicles and do not make axosomatic synapses. In the first of these four, the vesicles are tightly packed in a dense matrix, in another they are loosely dispersed, and in the third they are clustered. In the fourth, large granular vesicles predominate. Of these six classes, the most numerous belong to the axons of the Purkinje cell terminal arborization. These boutons resemble their counterparts in the cerebellar cortex, the recurrent collaterals of the Purkinje axon. They have elliptical and flat synaptic vesicles in a dark matrix. The varicosities terminate on somata and dendrites of large and small neurons and constitute the majority of their input. Purkinje axons constitute 86% of the total population of terminals on large neuronal perikarya and 50% of those on their dendrites, but only 78% on the somata of small neurons and 31% on their dendrites. The terminals of climbing fiber collaterals are recognized by their resemblance in electron micrographs to the terminals of the climbing fiber arborization in the cerebellar cortex. They bear round synaptic vesicles packed into a dense axoplasmic matrix and make Gray's type 1 axodendritic synapses with large and small neurons. These axons are restricted to the lateral and ventral aspects of the nucleus and constitute 5% of the terminals on large cell dendrites and 6% of those on small neurons. The axons tentatively identified as collaterals of mossy fibers are myelinated fibers with a light axoplasm containing round synaptic vesicles, dispersed throughout their varicosities. They make Gray's type 1 synapses and constitute a fair percentage of the total axodendritic contacts in the neuropil, 22% on large neurons and 28% on small neurons. The bases for these tentative identifications are discussed in detail, as are the various synaptic relationships undertaken by each class of axon. The remaining 4 classes of axons of the neuropil will be described in subsequent papers.Supported in part by U.S. Public Health Service grants NS 10536 and NS 03659, Training grant NS 05591 from the National Institute of Neurological Diseases and Stroke, and a William F. Milton Fund Award from Harvard University.  相似文献   

18.
A knowledge of neurotransmitters in the neurons of the rat cochlear nuclear complex is of importance in understanding the function of auditory circuits. Using post-embedding ultrastructural immunogold labelling, the distribution of glycinergic and GABAergic neurons and axonal terminals has been studied in the molecular, fusiform and polymorphic layers of the rat dorsal cochlear nucleus (DCN). This technique is not limited by the penetration of antibodies into the nervous tissue as in pre-embedding methods, and allows a fine neurochemical mapping of the nervous tissue. Numerous glycinergic and GABAergic axon terminals contain pleomorphic and flat synaptic vesicles, and are present in all layers (1, 2, 3) of the dorsal cochlear nucleus. Glycine and GABA-negative large terminals (mossy fibres) are mainly seen in granule cell areas of layer 2 (fusiform layer). Mossy fibres contact the dendrites of GABA- and glycine-negative granule cells and of the few unipolar brush cells (excitatory neurons). The least common cells in the granule cell areas are GABAergic and glycinergic Golgi-stellate neurons. In unipolar brush cells, aggregations of vesicles seem to be the origin of their characteristic ringlet-bodies. Golgi-stellate cells send their inhibitory terminals to the dendrites of granule and unipolar brush cells, occasionally directly to mossy fibres. Small or (less frequently) large GABAergic terminals contact the soma or the main dendrite of unipolar brush cells. The circuit of a hypothetical functional unit of neurons in the DCN is proposed. The inputs from auditory tonotopic or non-auditory non-tonotopic mossy fibres eventually reach pyramidal cells through axons from the granule cells or unipolar brush cells. Pyramidal cells convey an excitatory signal from the DCN to higher mesencephalic nuclei for further elaboration of the acoustic signal.  相似文献   

19.
Ghrelin is a novel peptide that stimulates the release of growth hormone from the pituitary and is involved in hypothalamic feeding regulation. A pre-embedding immunostaining technique was used to study the ultrastructure and synaptic relationships of ghrelin-containing neurons in the rat arcuate nucleus (ARC). Ghrelin-like immunoreactive (ghrelin-LI) neurons were found in the ARC, and were especially abundant in its ventral part. At the electron microscopic level, ghrelin-LI neurons received afferent synapses from many unknown axon terminals. Ghrelin-LI products in the immunoreactive cell bodies, processes, and axon terminals were detected mainly in dense granular vesicles about 110 nm in diameter. Ghrelin-LI presynaptic axon terminals often made synapses with unknown immunonegative neurons. These results suggest that ghrelin acts to regulate food intake through synaptic connections in hypothalamic neuronal networks.  相似文献   

20.
Cholecystokinin-like immunoreactivity was investigated with an indirect immunoperoxidase technique in the whole spinal cord with the light microscope and in the dorsal horn with the electron microscope. Intraparenchymal injections of colchicine were performed to allow the detection of cholecystokinin-like immunoreactive cell bodies. Rats treated at birth with capsaicin were also studied at the light microscope. Numerous cholecystokinin-like immunoreactive fibres and varicosities were found in the two superficial layers of the dorsal horn and in the intermedio-medial nucleus; cholecystokinin-like immunoreactive cell bodies were also present in these two regions. After neonatal capsaicin treatment, the number of cholecystokinin-like immunoreactive fibres and varicosities was strongly reduced in the dorsal horn. At the electron microscope level, cholecystokinin-like immunoreactivity was localized in numerous neurites often filled with vesicles (axon terminals and dendrites containing vesicles) and in few cell bodies and dendrites. The immunoreaction was found mainly associated with ribosomes, granular reticulum, neurotubules and vesicles. Large granular vesicles were filled with the reaction product whereas small and medium-sized vesicles showed a varying degree of immunoprecipitate around their membrane. In addition dense "granules" of precipitate were observed in numerous presynaptic neurites. Cholecystokinin-like immunoreactive axons were of small calibre and mostly unmyelinated. Cholecystokinin-like immunoreactive axon terminals made asymmetric synaptic contacts with generally unlabelled dendrites or dendritic spines. A single labelled nerve terminal could contact several different dendrites in structures resembling glomeruli. Few axo-somatic synapses but a relatively high number of axo-axonic contacts were seen. About half of these axo-axonic contacts involved pre- and postsynaptic profiles. Both light and electron microscopic observations led us to the conclusion that some of the cholecystokinin-like immunoreactive fibres of the dorsal horn originate in the spinal ganglia via capsaicin-sensitive C afferents; and some from intrinsic neurons, particularly islet cells. Other fibres may come from supraspinal centres, other local neurons or capsaicin-insensitive afferents from the spinal ganglia. The results are discussed with regard to data in the literature, particularly those concerned with the specificity of the cholecystokinin antibodies; it is hypothesized that several types of cholecystokinin-like immunoreactive peptides may be present in the dorsal horn, depending on their origin (supraspinal, intrinsic or peripheral).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号