首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
 目的 探讨壳聚糖修饰的聚乳酸-羟基乙酸共聚物(PLGA)纳米粒的生物黏附性,阐明其促吸收机制,并考察纳米粒的细胞毒性以评价其安全性。方法 以胰岛素为模型药物,采用FITC标记胰岛素,复乳法制备普通PLGA纳米粒,壳聚糖包裹制备生物黏附性PLGA纳米粒。粒度及表面电位分析仪测量纳米粒的粒径及Zeta 电位,超速离心法测定载药纳米粒的包封率,通过测定胃肠道中胰岛素的总量评价纳米粒的生物黏附性,并采用MTT法评价PLGA纳米粒的细胞毒作用。结果 纳米粒粒径均一,PLGA普通纳米粒及生物黏附性纳米粒的平均粒径分别为(124.7±11)和(136.6±13)nm,粒径差别不大,但壳聚糖包衣显著地增强了纳米粒的正电性,使得Zeta电位由负值(-1.67±0.05) mV逆转为正值(42.6±0.3)mV,并且提高了药物的包封率,由(46.67±1.82)%增至(52.73±2.96)%。生物黏附性纳米粒口服后胃肠道中胰岛素的总量显著高于普通纳米粒,3 h达到1.31倍。MTT法显示生物黏附性PLGA纳米粒及普通PLGA纳米粒在所考察的剂量范围内(≤25 mg·mL-1),均对细胞无特殊毒性。结论 壳聚糖修饰的PLGA生物黏附性纳米粒是蛋白多肽类药物口服给药的良好载体。  相似文献   

2.
《中成药》2016,(3)
目的制备载高乌甲素壳聚糖纳米粒,并考察其体外释药特性。方法以壳聚糖为载体材料,以三聚磷酸钠为交联剂,采用微乳液-离子交联法制备纳米粒。以包封产率和载药量为主要评价指标,通过正交设计试验优化其制备工艺。结果纳米粒呈球形或类球形,平均粒径为334 nm,在30 h内稳定。高乌甲素的包封产率和载药量分别为(35.34±0.94)%、(2.25±0.08)%。结论该工艺简便可靠,制备的纳米粒具有明显的缓释特征。  相似文献   

3.
目的 制备壳聚糖修饰雷公藤多苷纳米粒(LMWC-TG-NPs),并研究其体外释药行为.方法 采用改良的自乳化溶剂扩散法制备LMWC-TG-NPs;正交试验设计优化雷公藤多苷纳米粒(TG-NPs)处方,单因素试验考察壳聚糖(LMWC)修饰方式;以含20%乙醇的PBS (pH 7.4)为释放介质考察LMWC-TG-NPs的体外释药行为.结果 优化的处方工艺:以1.0% Poloxamer 188、80 mg PLA、12mL有机相、丙酮-乙醇(2∶3)制备TG-NPs混悬液,以与TG-NPs混悬液等体积的10% LMWC溶液修饰TG-NPs制备LMWC-TG-NPs;根据优化条件制备的LMWC-TG-NPs,外观呈圆形或类圆形,平均粒径为(207.6±3.4) nm,多分散指数(PDI)为0.078±0.009 (n=3),包封率和载药量分别为(61.83±2.43)%、(10.70±0.37)%(n=3);体外释药符合Higuchi方程.结论 所制备的LMWC-TG-NPs包封率较高,粒径小,体外释药具有明显的缓释特征,为后期研究其肾脏靶向和毒性奠定了基础.  相似文献   

4.
目的:制备槲皮素-(聚乳酸-羟基乙酸共聚物)嵌段共聚物(QC-PLGA)纳米粒冻干粉并考察其体外释放规律。方法:采用乳化溶剂挥发法制备QC-PLGA纳米粒,通过正交试验确定最优处方工艺,通过单因素试验筛选冻干保护剂,通过动态透析技术考察QC-PLGA纳米粒冻干粉的体外释药规律。结果:最佳制备工艺为0.2%聚乙烯醇,PLGA质量浓度10 g·L~(-1),油/水相体积比1∶35,槲皮素用量5 mg,冻干保护剂为2%乳糖。QC-PLGA纳米粒冻干粉的外表光滑,形态无皱缩塌陷、结构致密且加入注射用水振摇后再分散性良好,体外释放规律基本符合Weibull方程的释药模型,释药动力学方程ln[ln(1/1-Q)]=0.399lnt-1.503(R~2=0.973)。结论:QC-PLGA纳米粒冻干粉制备工艺简单可行、性质稳定、易储存,相比槲皮素原料药具有明显的缓释作用。  相似文献   

5.
目的:制备具有靶向性的雷公藤甲素叶酸-壳聚糖纳米粒,并考察其体外释药性能。方法:以粒径和PDI为指标,采用单因素试验和正交试验法,考察溶液pH值、反应温度、壳聚糖和多聚磷酸钠的比例及质量浓度对壳聚糖纳米粒的制备工艺的影响;通过雷公藤甲素与壳聚糖的偶联比及雷公藤甲素、叶酸活性酯和壳聚糖上的氨基反应确定最佳制备工艺,采用离子交联法制备雷公藤甲素叶酸-壳聚糖纳米粒。采用HPLC考察其体外释药特性。结果:最佳制备工艺为反应温度25℃,溶液pH 3.5,壳聚糖-多聚磷酸3∶1,壳聚糖与多聚磷酸钠的质量分数均为0.3%,制得的纳米粒平均粒径约170 nm,粒子分散指数(PDI)约0.21。载药纳米粒的释放率于4 h后达平衡,最大释药率约68%。结论:按优选工艺制备的雷公藤甲素叶酸-壳聚糖纳米粒质量稳定可靠,优选的工艺简便易行。  相似文献   

6.
沈熊  许根英  董颖  梁健  吕迁洲  许青 《中成药》2014,(11):2298-2301
目的制备载汉黄芩素的mPEG-PLGA纳米粒,并对其性能进行体外评价。方法以mPEG-PLGA为载体材料,采用溶剂扩散法制备载汉黄芩素的纳米粒,考察其形态、载药性能、血清稳定性和体外释放行为等指标。结果制得的汉黄芩素纳米粒外观圆整,粒径为(112±33)nm;载药量为(3.27±0.04)%;纳米粒在50%胎牛血清中稳定;pH 7.4磷酸盐缓冲液中24 h累积释放率约为39%,血浆对其释放行为无明显影响。结论制得的汉黄芩素纳米粒具有明显的药物缓释效果和良好的血清稳定性。  相似文献   

7.
红景天苷壳聚糖纳米粒的制备及其体外释放性能研究   总被引:1,自引:0,他引:1  
何黎黎  邓黎  林芸竹 《中草药》2013,44(5):552-556
目的 以壳聚糖为载体制备红景天苷壳聚糖纳米粒(SA-CS-NPs),并考察其体外释药特性.方法 采用溶剂扩散-离子交联法制备SA-CS-NPs,考察其粒径分布和形态,并对SA-CS-NPs的包封率、载药量及其体外释药特性进行研究.结果 所制得的SA-CS-NPs呈球形或类球形,平均粒径为(247.5±23.8) nm(n=3),Zeta电位为(23.4±2.7) mV(n=3),多分散指数(PDI)为0.265±0.071(n=3);平均包封率为(70.15±1.60)%,平均载药量为(14.03±0.32)%(n=3);24h累积释放率达85%以上.结论 溶剂扩散-离子交联法制备SA-CS-NPs具有合适的粒径和包封率,并能达到缓释效果.  相似文献   

8.
目的:制备并表征聚乳酸-羟基乙酸共聚物(PLGA)-克班宁纳米粒(PLGA-Cre-NPs),考察其体外释放特性,为克班宁的体内作用时间延长、毒性降低提供参考。方法:以PLGA为载体,采用乳化溶剂扩散法制备PLGA-Cre-NPs。以包封率、粒径、多分散指数(PDI)为评价指标,通过星点设计-效应面法优选PLGA-Cre-NPs的制备工艺。利用膜透析法考察PLGA-CreNPs的体外释药规律。结果:PLGA-Cre-NPs的最佳制备工艺为有机相与水相体积比(3∶10),丙酮-无水乙醇(8∶2),PLGA投入量90 mg。PLGA-Cre-NPs的包封率(84.69±2.54)%,粒径(155.3±14.2)nm,PDI=0.095±0.018,扫描电镜显示其呈规则球形结构。PLGA-Cre-NPs体外释放包括速释和缓释2个阶段,0~24 h符合Weibull方程,24~168 h符合Higuchi方程;半衰期18.06 h,168 h时累计释放率达78.77%。结论:优选的工艺条件稳定可行。制得的PLGA-Cre-NPs包封率较高、粒径均匀,有望制备成缓释制剂。  相似文献   

9.
目的制备厚朴酚聚乳酸-羟基乙酸共聚物(PLGA)纳米粒,并考察其体内药动学。方法乳化-溶剂挥发法制备纳米粒后,以3%甘露醇为冻干保护剂制备冻干粉,测定其平均粒径、Zeta电位、包封率、载药量、体外释药。大鼠灌胃给予厚朴酚及其PLGA纳米粒混悬液(50 mg/mL)后,于0.25、0.5、1、2、2.5、3、4、6、10、12 h采血,HPLC法测定厚朴酚血药浓度,计算主要药动学参数。结果冻干后,所得纳米粒的Zeta电位、包封率、载药量低于冻干前,平均粒径更高,体外释药符合Weibull方程(R2=0.978 3)。纳米粒tmax、Cmax、AUC0~t、AUC0~∞高于原料药(P<0.05,P<0.01),相对生物利用提高至2.17倍。结论 PLGA纳米粒具有体外缓释作用,可提高厚朴酚口服生物利用度。  相似文献   

10.
目的:制备姜黄素聚乳酸羟基乙酸共聚物纳米粒(Cur-PLGA-NPs),鼻腔给药后考察其在大鼠体内的药动学行为并对其脑组织分布进行研究。方法:以PLGA为载体材料,采用改良的自乳化溶剂挥发法制备Cur-PLGA-NPs;透射电镜观察纳米粒的形态;激光粒度仪考察粒径;超速离心法测定其包封率及载药量;以姜黄素混悬液(Cur-Sol)为对照组,考察大鼠鼻腔给药Cur-PLGA-NPs的体内药动学过程,并测定其在大鼠脑组织的浓度。结果:纳米粒外观呈圆形或类圆形,平均粒径为(99.37±1.79)nm,包封率和载药量分别为(81.63±1.96)%和(4.55±0.15)%;体内药动学结果显示,Cur-Sol和Cur-PLGA-NPs的T1/2分别为(0.85±0.12)h和(1.72±0.44)h,AUC0-t分别为(224.59±22.44)μg·h·L~(-1)和(588.03±34.02)μg·h·L~(-1)。脑组织分布结果显示,Cur-Sol和Cur-PLGA-NPs的AUC0→t分别为(31.33±6.38)μg·h·g-1和(45.39±2.08)μg·h·g~(-1)。结论:Cur-PLGA-NPs经鼻腔给药后显著提高姜黄素体内和脑组织蓄积量并且延缓消除。  相似文献   

11.
 目的制备亲水性多肽类药物神经毒素的自组装核壳型纳米粒,并对其理化性质及体外释药特性进行考察。方法以聚乙二醇-聚氰基丙烯酸乙酯嵌段共聚物(PEG-g-PECA)为载体,乳化聚合法制备神经毒素自组装核壳型纳米粒,采用正交实验优化制备工艺,制得的核壳型纳米粒通过透射电镜、Zeta电位/粒度分布仪考察理化性质,并用透析袋法分别研究其在pH7.4和6.8的PBS缓冲液中的体外释药特性。结果PEG-g-PECA能包埋亲水性多肽神经毒素,制备的神经毒素自组装核壳型纳米粒粒径为(89.6±8.9)nm,多分散系数为(0.110±0.003),包封率为(58.43±0.62)%,Zeta电位为(-38.81±0.47)mV;在pH7.4和6.8的PBS缓冲液中的体外释药行为均符合Weibull方程,分别为lnln[1/(1-Q)]=0.474lnt-1.6121,r=0.9946(pH7.4)及lnln[1/(1-Q)]=0.351lnt-0.8271,r=0.9708(pH6.8)。结论以PEG-g-PECA为载体制备亲水性多肽类药物自组装核壳型纳米粒方法可行,所得纳米粒包封率较高,理化性质稳定,体外释药具有缓释制剂特征。  相似文献   

12.
目的:通过优化处方和工艺制备缓释、长效的阿魏酸脂质体植入制剂。方法:采用HPLC测定阿魏酸含量,流动相乙腈-0.1%磷酸(22∶78),检测波长324 nm。运用醋酸钙主动载药技术制备阿魏酸脂质体,使用透析法考察阿魏酸脂质体的释放度。通过单因素试验考察磷脂材料、胆固醇含量、粒径及不同血液成分对阿魏酸脂质体释放度的影响,利用温敏凝胶技术进一步延长阿魏酸脂质体的缓释效果。结果:阿魏酸脂质体选择氢化大豆磷脂(HSPC)为脂质体膜材,HSPC与胆固醇的摩尔比4∶1,超声时间1 min,脂质体平均粒径397.7 nm,可实现12 h缓释效果,血液成分能够加速脂质体的释放但不同血液成分无显著性差异。采用温敏凝胶技术可延长阿魏酸脂质体的缓释效果,体外释药符合Higuchi方程且持续释放时间48 h。结论:胎牛血清和大鼠血浆可替代人血清用于阿魏酸脂质体的释放度考察。通过控制脂质体的处方与工艺因素,并结合温敏凝胶技术可实现阿魏酸脂质体的缓释、长效。  相似文献   

13.
 目的 制备索拉非尼固体脂质纳米粒,并考察其理化性质及体外释药特性。方法 采用乳化蒸发-低温固化法制备索拉非尼固体脂质纳米粒,透射电镜观察形态,激光粒度仪测定粒径和Zeta电位,葡聚糖凝胶法和HPLC测定其包封率,透析法考察其体外释药特性,冷冻干燥法制备索拉非尼固体脂质纳米粒冻干粉,差示扫描量热分析其物相状态。结果 制得索拉非尼固体脂质纳米粒为类球形实体,粒径分布比较均匀,平均粒径为(108.2±7.0) nm,多分散指数为(0.250±0.022),Zeta电位为(-16.4±0.7) mV;测得3批样品的平均包封率为(73.49±1.87)%;体外释放符合Weibull模型;等体积15%甘露醇作冻干保护剂效果较好;DSC分析证明纳米粒已形成。结论 乳化蒸发-低温固化法适用于索拉非尼固体脂质纳米粒的制备,所制纳米粒各项物理指标稳定,具有明显缓释作用。  相似文献   

14.
马钱子碱聚乳酸载药纳米粒的制备和体外评价   总被引:1,自引:0,他引:1  
目的:制备和评价马钱子碱聚乳酸载药纳米粒(Bru-PLA-NPs).方法:采用溶剂扩散法制备Bru-PLA-NPs,并对其进行表征和体外释药评价.结果:制得的Bru-PLA-NPs的平均粒径为95 nm,多分散指数为0.362,zeta电位为-15.68 mV.Bru的平均载药量和包封率分别为7%,37%.体外释药试验表明,与Bru溶液相比Bru-PLA-NPs具有明显的缓释作用.结论:采用溶剂扩散法制备的Bru-PLA-NPs粒径小,载药量高,具有明显的缓释作用.  相似文献   

15.
新型利培酮PLGA微球的制备及体外释放研究   总被引:2,自引:0,他引:2       下载免费PDF全文
 目的 制备新型利培酮微球,并快速评价微球的体外释放性质。方法 采用O/W乳化溶剂挥发法制备微球,研究PLGA浓度、乳化均质转速、油相与水相比例等对微球粒径和包封率的影响。通过升高释放介质温度建立体外释放加速评价方法。结果 在37 ℃ pH 7.4 PBS中,利培酮微球以零级释放模式缓释15 d,快速释放的时间与上市利培酮微球基本一致而无延滞期。采用45 ℃加速释放可提高释放速度5倍,在3 d内完成评价,加速释放评价与长期释放相关性好。结论 本实验所制备的利培酮微球,可开发为释放两周的制剂。由于无延滞期,在临床使用和提高患者顺应性上比已上市产品更具优势。加速评价方法可对产品进行快速质量控制。  相似文献   

16.
目的:制备和评价马钱子碱聚乳酸载药纳米粒(Bru-PLA-NPs)。方法:采用溶剂扩散法制备Bru-PLA-NPs,并对其进行表征和体外释药评价。结果:制得的Bru-PLA-NPs的平均粒径为95 nm,多分散指数为0.362,Zeta电位为-15.68 mV。Bru的平均载药量和包封率分别为7%,37%。体外释药试验表明,与Bru溶液相比Bru-PLA-NPs具有明显的缓释作用。结论:采用溶剂扩散法制备的Bru-PLA-NPs粒径小,载药量高,具有明显的缓释作用。  相似文献   

17.
目的:根据蟾酥有效成分难溶于水、血药浓度波动大、易产生毒副作用等特点,将蟾酥与灵芝联合应用后制成复方蟾酥缓释滴丸,以改善蟾酥的副作用。方法:以聚乙二醇4000(PEG4000)和硬脂酸为基质,利用熔融法制备复方蟾酥缓释滴丸。以滴丸滴制情况为指标,采用单因素试验考察滴丸成型因素。以圆整度、丸重差异及释放度为指标,采用正交试验优化复方蟾酥缓释滴丸的制备工艺。结果:最佳制备工艺为药物-基质(1∶2),PEG4000-硬脂酸(5∶1),熔融温度80℃,滴距8 cm,冷凝液管口温度50~5℃;缓释滴丸在体外释放达12 h,符合Ritger-Peppas方程模型。结论:优选的复方蟾酥缓释滴丸制备工艺稳定可行,能够使蟾酥的血药浓度波动降低、毒副作用减少,符合临床治疗需要。复方蟾酥缓释滴丸的释放更接近于non-Fickian扩散,其释药机制为扩散和骨架溶蚀两者的结合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号