首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The plasma concentration of the adipocyte-derived peptide adiponectin is decreased in patients with obesity and type 2 diabetes. The adiponectin gene is located on chromosome 3q27, where a diabetes susceptibility locus has been mapped. Adiponectin gene polymorphisms (single nucleotide polymorphisms [SNPs]) have been associated with BMI, insulin sensitivity, and type 2 diabetes in some cross-sectional studies. Our aim was to assess the contribution of these SNPs in the development of features of the insulin resistance syndrome in a 3-year prospective study in approximately 4,500 French Caucasian subjects from the Epidemiologic Data on the Insulin Resistance Syndrome (DESIR) cohort. For subjects who were normoglycemic at baseline, the 3-year risk of becoming hyperglycemic (diabetes or impaired fasting glucose) was affected by two SNPs: G-11391A and T45G. For G-11391A, the risk was increased in GA carriers (odds ratio [OR] adjusted for sex [versus GG] = 1.60 [95% CI 1.16-2.20]; P = 0.004). For T45G, it was increased in GG carriers (OR [versus TT] = 2.71 [1.31-5.60]; P = 0.007). After 3 years, GG subjects had a greater increase in BMI (P = 0.009) and waist-to-hip ratio (P = 0.007). Adiponectin levels at baseline were associated with the development of hyperglycemia (P = 0.005), but the predictive effects on the risk for hyperglycemia were independent of adiponectin genotypes. In conclusion, in the DESIR study, variations at the adiponectin locus affect body weight gain, body fat distribution, and onset of hyperglycemia, as well as adiponectin levels. Adiponectin gene SNPs may have several phenotypic effects that co-occur with the development of the metabolic syndrome.  相似文献   

2.
Wang H  Zhang H  Jia Y  Zhang Z  Craig R  Wang X  Elbein SC 《Diabetes》2004,53(8):2132-2136
Considerable data support adiponectin as an important adipose-derived insulin sensitizer that enhances fatty acid oxidation and alters hepatic gluconeogenesis. Adiponectin acts by way of two receptors, ADIPOR1 and ADIPOR2. ADIPOR1 is widely expressed in tissues, including muscle, liver, and pancreas, and binds the globular form of adiponectin with high affinity. To test the hypothesis that sequence variations in or near the ADIPOR1 gene contribute to the risk of developing type 2 diabetes and the metabolic syndrome, we screened the eight exons (including the untranslated exon 1) of the ADIPOR1 gene with flanking intronic sequences and the 5' and 3' flanking sequences. We identified 22 single nucleotide polymorphisms (SNPs) in Caucasian and African-American subjects, of which a single nonsynonymous SNP (N44K) in exon 2 was present only in African-American subjects. We typed 14 sequence variants that had minor allele frequencies >5%. No SNP was associated with type 2 diabetes in Caucasians or African Americans, and no SNP was a determinant of insulin sensitivity or insulin secretion among nondiabetic members of high-risk Caucasian families. However, the two alleles of a SNP in the 3' untranslated region were expressed unequally, and ADIPOR1 mRNA levels were significantly lower among transformed lymphocytes from diabetic African-American individuals than among control cell lines. This altered gene expression might suggest a role for ADIPOR1 in the metabolic syndrome.  相似文献   

3.
BACKGROUND: The prevalence of cardiovascular disease (CVD) and inflammation is high in patients with end-stage renal disease (ESRD). Adiponectin is an adipocytokine that may have significant anti-inflammatory and anti-atherosclerotic effects. Low adiponectin levels have previously been found in patients with high risk for CVD. METHODS: In a cohort of 204 (62% males) ESRD patients aged 52 +/- 1 years the following parameters were studied: presence of CVD, body composition, plasma adiponectin (N= 107), cholesterol, triglycerides, HDL-cholesterol, serum leptin, high-sensitivity C-reactive protein (hs-CRP), urinary albumin excretion (UAE), and single-nucleotide polymorphisms (SNPs) in the apM1 gene at positions -11391, -11377, 45, and 276. Thirty-six age- (52 +/- 2 years) and gender-matched (64% males) healthy subjects served as control subjects. RESULTS: Markedly (P < 0.0001) elevated median plasma adiponectin levels were observed in ESRD patients (22.2 microg/mL), especially type 1 diabetic patients (36.8 microg/mL), compared to control subjects (12.2 microg/mL). Log plasma adiponectin correlated to visceral fat mass (R=-0.29; P < 0.01) and Log hs-CRP (R=-0.26; P < 0.01). In a stepwise (forward followed by backward) multiple regression model only type-1 diabetes (P < 0.001) and visceral fat mass (P < 0.05) were independently associated with plasma adiponectin levels. The adiponectin gene -11377 C/C genotype was associated with a lower prevalence of CVD (25 vs. 42%) compared to the G/C genotype. CONCLUSION: The present cross-sectional study demonstrates that, whereas genetic variations seem to have a minor impact on circulating adiponectin levels, lower visceral fat mass and type 1 diabetes mellitus are associated with elevated plasma adiponectin levels in ESRD patients. Furthermore, low levels of adiponectin are associated with inflammation in ESRD.  相似文献   

4.
Phenotypic variability in Bartter syndrome type I   总被引:1,自引:0,他引:1  
Limited phenotypic variability has been reported in patients with Bartter syndrome type I, with mutations in the Na-K-2Cl cotransporter gene (BSC). The diagnosis of this hereditary renal tubular disorder is usually made in the antenatal-neonatal period, due to the presence of polyhydramnios, premature delivery, hypokalemia, metabolic alkalosis, hypercalciuria, and nephrocalcinosis. Among nine children with hypercalciuria and nephrocalcinosis, we identified new mutations consistent with a loss of function of the mutant allele of the BSC gene in five. Three of the five cases with BSC gene mutations were unusual due to the absence of hypokalemia and metabolic alkalosis in the first years of life. The diagnosis of incomplete distal renal tubular acidosis was considered before molecular evaluation. Three additional patients with hypokalemia and hypercalciuria, but without nephrocalcinosis in the first two and with metabolic acidosis instead of alkalosis in the third, were studied. Two demonstrated the same missense mutation A555T in the BSC gene as one patient of the previous group, suggesting a single common ancestor. The third patient presented with severe hypernatremia and hyperchloremia for about 2 months, and a diagnosis of nephrogenic diabetes insipidus was hypothesized until the diagnosis of Bartter syndrome type I was established by molecular evaluation. We conclude that in some patients with Bartter syndrome type I, hypokalemia and/or metabolic alkalosis may be absent in the first years of life and persistent metabolic acidosis or hypernatremia and hyperchloremia may also be present. Molecular evaluation can definitely establish the diagnosis of atypical cases of this complex hereditary tubular disorder, which, in our experience, may exhibit phenotypic variability.  相似文献   

5.
6.
The associations of the adiponectin (APM1) gene with parameters of the metabolic syndrome are inconsistent. We performed a systematic investigation based on fine-mapped single nucleotide polymorphisms (SNPs) highlighting the genetic architecture and their role in modulating adiponectin plasma concentrations in a particularly healthy population of 1,727 Caucasians avoiding secondary effects from disease processes. Genotyping 53 SNPs (average spacing of 0.7 kb) in the APM1 gene region in 81 Caucasians revealed a two-block linkage disequilibrium (LD) structure and enabled comprehensive tag SNP selection. We found particularly strong associations with adiponectin concentrations for 11 of the 15 tag SNPs in the 1,727 subjects (five P values <0.0001). Haplotype analysis provided a thorough differentiation of adiponectin concentrations with 9 of 17 haplotypes showing significant associations (three P values <0.0001). No significant association was found for any SNP with the parameters of the metabolic syndrome. We observed a two-block LD structure of APM1 pointing toward at least two independent association signals, one including the promoter SNPs and a second spanning the relevant exons. Our data on a large number of healthy subjects suggest a clear modulation of adiponectin concentrations by variants of APM1, which are not merely a concomitant effect in the course of type 2 diabetes or coronary artery disease.  相似文献   

7.
BACKGROUND: Disorders that manifest hypokalemic metabolic alkalosis, such as Bartter's syndrome and Gitelman's syndrome, are caused by the malfunction of renal tubular electrolyte transporters. Bartter's syndrome may be linked to dysfunction of Na-K-2Cl cotransporter (NKCC2), renal outer medullary K channel (ROMK), or Cl channel Kb (ClC-Kb), while Gitelman's syndrome may be linked to Na-Cl cotransporter (NCCT) dysfunction. However, previous genetic analyses in these syndromes have included many heterozygotes for each gene and there has been no further analysis of other genes. Thus, to clarify the interaction of these transporter genes, in the present study we investigated all 4 transporter genes in 7 patients with hypokalemic metabolic alkalosis. METHODS: Seven patients from 5 families (patients A-G) were collected, and a mutation analysis of the 4 renal electrolyte transporter genes was performed by direct sequencing. RESULTS: We identified 12 mutations in these 7 patients. Three mutations (del245Y in NKCC2, R1009X in NCCT, V524I in ClC-Kb) have not been reported previously. In NKCC2 gene screening, patient A was homozygous for del245Y. In ClC-Kb gene screening, L27R was detected in patients B, D, and E. V524I was detected in patient C. Both T562M and E578K were observed in patients B and E. In NCCT gene screening, patients B-G shared a common novel mutation, R1009X, and patients D, E, F, and G carried this mutation in both alleles. Patients B and C carried R1009X in one allele, and a 6-amino acid insertion in exon 6 and L849H in another allele, respectively. The 4 other mutations did not result in any amino acid exchange. Despite the NCCT gene mutation, patients C and E showed normomagnesemia. CONCLUSION: Our findings demonstrate that in Bartter's and Gitelman's syndromes, it may not be uncommon to see mutations in several causative transporter genes.  相似文献   

8.
Adiponectin is an adipose tissue-specific protein with insulin-sensitizing and antiatherogenic properties. Therefore, the adiponectin gene is a promising candidate gene for type 2 diabetes. We investigated the single nucleotide polymorphisms (SNPs) +45T/G and +276G/T of the adiponectin gene as predictors for the conversion from impaired glucose tolerance to type 2 diabetes in the STOP-NIDDM trial, which aimed to investigate the effect of acarbose compared with placebo on the prevention of type 2 diabetes. Compared with the TT genotype, the G-allele of SNP +45 was associated with a 1.8-fold risk for type 2 diabetes (95% CI 1.12-3.00, P = 0.015) in the placebo group. Subjects treated with placebo and simultaneously having the G-allele of SNP +45 and the T-allele of SNP +276 (the risk genotype combination) had a 4.5-fold (1.78-11.3, P = 0.001) higher risk of developing type 2 diabetes compared with subjects carrying neither of these alleles. Women carrying the risk genotype combination had an especially high risk of conversion to diabetes (odds ratio 22.2, 95% CI 2.7-183.3, P = 0.004). In conclusion, the G-allele of SNP +45 is a predictor for the conversion to type 2 diabetes. Furthermore, the combined effect of SNP +45 and SNP +276 on the development of type 2 diabetes was stronger than that of each SNP alone.  相似文献   

9.
We previously reported a family in which a heterozygous missense mutation in Akt2 led to a dominantly inherited syndrome of insulin-resistant diabetes and partial lipodystrophy. To determine whether genetic variation in AKT2 plays a broader role in human metabolic disease, we sequenced the entire coding region and splice junctions of AKT2 in 94 unrelated patients with severe insulin resistance, 35 of whom had partial lipodystrophy. Two rare missense mutations (R208K and R467W) were identified in single individuals. However, insulin-stimulated kinase activities of these variants were indistinguishable from wild type. In two large case-control studies (total number of participants 2,200), 0 of 11 common single nucleotide polymorphism (SNPs) in AKT2 showed significant association with type 2 diabetes. In a quantitative trait study of 1,721 extensively phenotyped individuals from the U.K., no association was found with any relevant intermediate metabolic trait. In summary, although heterozygous loss-of- function mutations in AKT2 can cause a syndrome of severe insulin resistance and lipodystrophy in humans, such mutations are uncommon causes of these syndromes. Furthermore, genetic variation in and around the AKT2 locus is unlikely to contribute significantly to the risk of type 2 diabetes or related intermediate metabolic traits in U.K. populations.  相似文献   

10.
We have recently shown that permanent neonatal diabetes can be caused by activating mutations in KCNJ11 that encode the Kir6.2 subunit of the beta-cell ATP-sensitive K(+) channel. Some of these patients were diagnosed after 3 months of age and presented with ketoacidosis and marked hyperglycemia, which could have been diagnosed as type 1 diabetes. We hypothesized that KCNJ11 mutations could present clinically as type 1 diabetes. We screened the KCNJ11 gene for mutations in 77 U.K. type 1 diabetic subjects diagnosed under the age of 2 years. One patient was found to be heterozygous for the missense mutation R201C. She had low birth weight, was diagnosed at 5 weeks, and did not have a high risk predisposing HLA genotype. A novel variant, R176C, was identified in one diabetic subject but did not cosegregate with diabetes within the family. In conclusion, we have shown that heterozygous activating mutations in the KCNJ11 gene are a rare cause of clinically defined type 1 diabetes diagnosed before 2 years. Although activating KCNJ11 mutations are rare in patients diagnosed with type 1 diabetes, the identification of a KCNJ11 mutation may have important treatment implications.  相似文献   

11.
12.
Adiponectin (APM1) is an adipocyte-derived peptide. The APM1 gene is located on chromosome 3q27 and linked to type 2 diabetes. In patients with type 2 diabetes, the adiponectin level in plasma is decreased in comparison to healthy subjects. To identify genetic defects of the APM1 gene that contribute to the development of type 2 diabetes, we genotyped 13 single nucleotide polymorphisms (SNPs) in 106 patients with type 2 diabetes, 325 patients with impaired glucose tolerance (IGT), and 497 nondiabetic control subjects in Swedish Caucasians by using dynamic allele-specific hybridization (DASH). We found that SNPs -11426(A/G) and -11377(G/C) in the proximal promoter region had significant differences of allele frequencies between type 2 diabetic patients and nondiabetic control subjects (P = 0.02 and P = 0.04, respectively). SNP-11426(A/G) was significantly associated with fasting plasma glucose in type 2 diabetic patients (P = 0.02) and in IGT subjects (P = 0.04), while the patients carrying CC and CG genotypes for SNP-11377(G/C) had a higher BMI than the patients with the GG genotype (P = 0.03). Haplotype analysis of 13 SNPs in the APM1 gene showed that estimates of haplotype frequencies in Swedish Caucasians are similar to those estimated in French Caucasians. However, no significant association of haplotypes with type 2 diabetes and IGT was detected in our study. The present study provides additional evidence that SNPs in the proximal promoter region of the APM1 gene contribute to the development of type 2 diabetes.  相似文献   

13.
Three of 20 patients with juvenile osteoporosis were found to have a heterozygous mutation in the LRP5 gene. No mutations were found in the type I collagen genes. Mutations in the other family members with similar bone phenotype confirmed that LRP5 has a role in both juvenile and adult osteoporosis. INTRODUCTION: The gene encoding the low-density lipoprotein receptor-related protein 5 (LRP5) gene has recently been shown to affect bone mass accrual during growth and to be involved in osteoporosis-pseudoglioma syndrome and a high bone mass phenotype. Mutations in the type I collagen genes (COL1A1 and COL1A2) are known to cause osteogenesis imperfecta, characterized by increased bone fragility. MATERIALS AND METHODS: Here we analyzed COL1A1, COL1A2, and LRP5 for mutations in 20 pediatric patients with primary osteoporosis characterized by low BMD, recurrent fractures, and absent extraskeletal manifestations. RESULTS AND CONCLUSIONS: No mutations were detected in the type I collagen genes, but two missense mutations (A29T and R1036Q) and one frameshift mutation (C913fs) were found in the LRP5 gene in three of the patients. The frameshift mutation was also seen in the proband's father and brother, who both were found to have significant osteoporosis. R1036Q was observed in the proband's mother and two brothers, who all had osteoporosis. These results indicate that heterozygous mutations in the LRP5 gene can cause osteoporosis in both children and adults.  相似文献   

14.
Bartter syndrome is a genetic disorder with hypokalemic metabolic alkalosis and is classified into five types. Type IV Bartter syndrome is a type of neonatal Bartter syndrome with sensorineural deafness and has been recently shown to be caused by mutations in the BSND gene. Owing to the rarity of this disease, only a limited number of mutations have been reported. We analyzed the BSND gene in a patient with type IV Bartter syndrome. The patient was delivered at 37 weeks, with normal body weight, and his neonatal course was uneventful. He was examined for developmental delay and polyuria at age 1 year 8 months and was found to have hypokalemia, metabolic alkalosis, hyperreninemic hyperaldosteronism, and sensorineural deafness. He developed end-stage renal failure at age 15 years, and renal transplantation was performed. We identified compound heterozygous mutations (Q32X and G47R) in the BSND gene. Each mutation was inherited from the parents. The Q32X mutation is a novel mutation and the first nonsense mutation identified in this gene. The mild perinatal clinical features of the patient were similar to those of a patient reported with a homozygous G47R mutation. However, the severity of renal failure suggested that factors other than this gene might affect the manifestation of renal abnormalities.  相似文献   

15.
16.
Adiponectin is an abundant adipose tissue-derived protein with important metabolic effects. Plasma adiponectin levels are decreased in obese individuals, and low adiponectin levels predict insulin resistance and type 2 diabetes. Two variants in the adiponectin gene ACDC have been previously associated with plasma adiponectin levels, obesity, insulin resistance, and type 2 diabetes. To determine the role of genetic variation in ACDC in susceptibility to obesity and type 2 diabetes in Pima Indians, we screened the promoter, exons, and exon-intron boundaries of the gene to identify allelic variants. We identified 17 informative polymorphisms that comprised four common (minor allele frequency >15%) linkage disequilibrium clusters consisting of 1-4 variants each. We genotyped one representative polymorphism from each cluster in 1,338 individuals and assessed genotypic association with type 2 diabetes, BMI, serum lipid levels, serum adiponectin levels, and measures of insulin sensitivity and secretion. None of the ACDC variants were associated with type 2 diabetes, BMI, or measures of insulin sensitivity or secretion. One variant, single nucleotide polymorphism (SNP)-12823, was associated with serum adiponectin levels (P = 0.002), but this association explained only 2% of the variance of serum adiponectin levels. Our findings suggest that these common ACDC polymorphisms do not play a major role in susceptibility to obesity or type 2 diabetes in this population.  相似文献   

17.
Peroxisome proliferator-activated receptor (PPAR)-gamma is a major regulator of adipogenesis and insulin sensitivity. The PPAR-gamma gene generates two isoforms through alternative splicing, PPAR-gamma1 and -gamma2, the latter having an additional stretch of 28 amino acids at its NH2-terminus in the ligand-independent activation domain. This extension renders PPAR-gamma2 more sensitive to insulin action. Since there is a Pro12Ala substitution in this domain, we tested whether it is related to type 2 diabetes or insulin resistance. Therefore, 131 type 2 diabetic patients and 312 normoglycemic control subjects were screened for the presence of the mutation and for major clinical and metabolic features. The frequency of the mutation did not differ significantly between diabetic patients and control subjects. BMI, insulin, and other metabolic and anthropometric variables were also not associated with the mutation. Although the study was carried out on a sufficiently large sample, the conclusions do not support a major role for the Pro12Ala substitution of the PPAR-gamma gene in the etiology of type 2 diabetes.  相似文献   

18.
ObjectiveTo describe the clinical characteristics, and to analyze the AGXT gene mutation in three siblings with primary hyperoxaluria type I (PHI). MethodsAGXT gene mutation was analyzed by direct sequencing analysis in this family, and the minor allele status was also tested. One hundred unrelated healthy subjects were also analyzed as controls. ResultsThree mutations in AGXT were identified in each of three patients including two novel heterozygous missense mutations and one previously reported variant. One mutation was a methionine to leucine substitution at position 49 (p. M49L, c.145A>C) in exon 1, one was an asparagine to isoleucine transition at codon 72 (p.N72I, c.215A>T) in exon 2, and another was a heterozygous nonsense mutation at codon 333 (p.R333*). Both p.M49L and p.R333* occured in cis configuration with the minor allele IVS1+74 bp. ConclusionsTwo novel mutations are identified probably in association with PHI, however their pathogenicity and potential molecular mechanisms should be explored by further investigations. This is the first investigation on mutant gene analysis of PHI in China.  相似文献   

19.
Genetic susceptibility to type 2 diabetes involves many genes, most of which are still unknown. The lipid phosphatase SHIP2 is a potent negative regulator of insulin signaling and sensitivity in vivo and is thus a good candidate gene. Here we report the presence of SHIP2 gene mutations associated with type 2 diabetes in rats and humans. The R1142C mutation specifically identified in Goto-Kakizaki (GK) and spontaneously hypertensive rat strains disrupts a potential class II ligand for Src homology (SH)-3 domain and slightly impairs insulin signaling in cell culture. In humans, a deletion identified in the SHIP2 3' untranslated region (UTR) of type 2 diabetic subjects includes a motif implicated in the control of protein synthesis. In cell culture, the deletion results in reporter messenger RNA and protein overexpression. Finally, genotyping of a cohort of type 2 diabetic and control subjects showed a significant association between the deletion and type 2 diabetes. Altogether, our results show that mutations in the SHIP2 gene contribute to the genetic susceptibility to type 2 diabetes in rats and humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号