共查询到20条相似文献,搜索用时 15 毫秒
1.
Physical and chemical stability of drug nanoparticles 总被引:1,自引:0,他引:1
As nano-sizing is becoming a more common approach for pharmaceutical product development, researchers are taking advantage of the unique inherent properties of nanoparticles for a wide variety of applications. This article reviews the physical and chemical stability of drug nanoparticles, including their mechanisms and corresponding characterization techniques. A few common strategies to overcome stability issues are also discussed. 相似文献
2.
3.
Chakraborty S Shukla D Vuddanda PR Mishra B Singh S 《The Journal of pharmacy and pharmacology》2011,63(6):774-779
Objectives Lipid nanoparticles as carrier for oral drug administration improve gastrointestinal solubility of poorly soluble drugs and thus enhance bioavailability. However, basic drugs may undergo rapid dissolution from such solid dispersions in the stomach and precipitate in the intestine due to their higher solubility in acidic medium. Therefore, the objective of this work was to study the enhancement in bioavailability of carvedilol phosphate (basic drug) by providing an alkaline gastric environment to drug‐loaded solid lipid nanoparticles. Methods An alkaline gastric environment in rats was created and maintained with oral administration of an antacid suspension 5 min before and 30 min post dosing. Key findings The formulation administered orally exhibited enhanced bioavailability (~27%) when compared with drug suspension and sustained release behaviour when compared with formulation under ideal gastric conditions. The enhanced bioavailability is due to the presence of lipid nanoparticles as drug carrier while the sustained‐release characteristic may be attributed to the presence of antacid, which resulted in elevation of gastric pH and reduced the drug's solubility. Conclusions It may be concluded that although lipid nanoparticles can be instrumental in improving bioavailability, additional sustained release may be achieved by targeting intestinal release of basic drugs from lipid vehicles, which is possible by incorporating them into suitable enteric‐coated formulations. 相似文献
4.
5.
6.
7.
脂质立方液晶纳米粒作为药物载体的研究进展 总被引:2,自引:0,他引:2
由两亲性脂质分散在水性环境中自发形成各种几何形态构成的药物输送载体正成为制剂载药系统研究的热点之一。脂质立方液晶纳米粒是一定浓度的两亲性脂质分散在水溶液中自组装成含双连续水区和脂质区的闭合脂质双层“蜂窝状(海绵状)”结构,该独特的内部双水道结构和巨大膜表面积使其能够包封各种不同极性和剂量的药物,具有多样化的药物包裹性。作为药物载体,脂质立方液晶纳米粒还具有载药量大、保护多肽蛋白类药物和制备工艺简单等优点;可口服、局部黏膜和注射等多种途径给药,在多种剂型中有广泛的应用。本文对脂质立方液晶纳米给药系统的研究进行归纳和总结,并展望了脂质立方液晶纳米粒新型药物载体的应用前景。 相似文献
8.
A polymeric emulsion bead, which consists of core and capsule, was prepared. The core is composed of lipid nanoparticles containing lipophilic drug and semi-interpenetrating networks (semi-IPNs) are prepared to provide the capsule composed of sodium alginate and hydroxypropylmethyl cellulose (HPMC). The lipid nanoparticles were encapsulated into the polymeric emulsion bead with high drug loading efficiency, and lovastatin was used as a model drug. For the application as an oral drug delivery system, the enteric coating was performed with polymeric emulsion bead. The drug release pattern was controlled by the composition of capsule materials and environmental pH. 相似文献
9.
《Pharmaceutical science & technology today》1998,1(9):387-393
The advent of automated in vitro screening of hundreds of thousands of compounds has introduced biases into the drug discovery process that have significant implications for subsequent drug development. Screening biases that impact oral absorption adversely are discussed, and approaches are suggested for the prediction, assessment and communication of absorption-related physical chemical properties in drug discovery and exploratory development. 相似文献
10.
Solid lipid nanoparticles for parenteral drug delivery 总被引:30,自引:0,他引:30
This review describes the use of nanoparticles based on solid lipids for the parenteral application of drugs. Firstly, different types of nanoparticles based on solid lipids such as "solid lipid nanoparticles" (SLN), "nanostructured lipid carriers" (NLC) and "lipid drug conjugate" (LDC) nanoparticles are introduced and structural differences are pointed out. Different production methods including the suitability for large scale production are described. Stability issues and drug incorporation mechanisms into the particles are discussed. In the second part, the biological activity of parenterally applied SLN and biopharmaceutical aspects such as pharmacokinetic profiles as well as toxicity aspects are reviewed. 相似文献
11.
《Drug delivery》2013,20(7):467-489
Ocular drug delivery remains challenging because of the complex nature and structure of the eye. Conventional systems, such as eye drops and ointments, are inefficient, whereas systemic administration requires high doses resulting in significant toxicity. There is a need to develop novel drug delivery carriers capable of increasing ocular bioavailability and decreasing both local and systemic cytotoxicity. Nanotechnology is expected to revolutionize ocular drug delivery. Many nano-structured systems have been employed for ocular drug delivery and yielded some promising results. Solid lipid nanoparticles (SLNs) have been looked at as a potential drug carrier system since the 1990s. SLNs do not show biotoxicity as they are prepared from physiological lipids. SLNs are especially useful in ocular drug delivery as they can enhance the corneal absorption of drugs and improve the ocular bioavailability of both hydrophilic and lipophilic drugs. SLNs have another advantage of allowing autoclave sterilization, a necessary step towards formulation of ocular preparations. This review outlines in detail the various production, characterization, sterilization, and stabilization techniques for SLNs. In-vitro and in-vivo methods to study the drug release profile of SLNs have been explained. Special attention has been given to the nature of lipids and surfactants commonly used for SLN production. A summary of previous studies involving the use of SLNs in ocular drug delivery is provided, along with a critical evaluation of SLNs as a potential ocular delivery system. 相似文献
12.
Solid lipid nanoparticles as drug delivery systems 总被引:7,自引:0,他引:7
Manjunath K Reddy JS Venkateswarlu V 《Methods and findings in experimental and clinical pharmacology》2005,27(2):127-144
For a decade, trials have been made to utilize solid lipid nanoparticles (SLNs) as alternative drug delivery systems to colloidal drug delivery systems such as lipid emulsions, liposomes, and polymeric nanoparticles. Various lipid matrices, surfactants, and other excipients used in formulation, preparation methods, sterilization and lyophilization of SLNs are discussed in this article. Entrapment efficiency of drug carrier and its effect on physical parameters, drug release, and release mechanisms of various compositions are reviewed and discussed. Important points in characterization and stability of SLNs are outlined. Various in vitro studies carried out by different research groups are mentioned in addition to in vivo evaluation. Exploitation potential of SLNs to administer by various routes of administration are covered. Passive and active drug targeting using SLNs are presented. 相似文献
13.
Solid lipid nanoparticles (SLN) have shown interesting potential as a drug delivery system for the topical delivery of various drugs. However, their performance when applied to the skin has not been fully investigated because of the complexity of their composition and structure. Theoretically, drug can be targeted systemically to the vasculature in the dermis, locally to the skin strata, or superficially to the surface of the skin. Therefore, the topical delivery vehicle should be designed according to the desired therapeutic purposes. To understand drug permeation behavior, it is essential to elucidate the pattern of drug release from the SLN formulations. A number of different drug release patterns have been outlined in the literature, and these patterns have been found to be related to the manufacturing process of the vehicle. In this paper, we summarize the results of SLN-mediated skin penetration data in the literature and illustrate several theoretical mechanisms of SLN-skin interactions that might take place at the site of action. Substantial research dedicated to the development of this promising drug delivery system is still required. 相似文献
14.
《Expert opinion on drug delivery》2013,10(12):1743-1757
ABSTRACTIntroduction: Although eye drops are widely used as drug delivery systems for the anterior segment of the eye, they are also associated with poor drug bioavailability due to transient contact time and rapid washout by tearing. Moreover, effective drug delivery to the posterior segment of the eye is challenging, and alternative routes of administration (periocular and intravitreal) are generally needed, the blood–retinal barrier being the major obstacle to systemic drug delivery.Areas covered: Nanotechnology, and especially lipid nanoparticles, can improve the therapeutic efficiency, compliance and safety of ocular drugs, administered via different routes, to both the anterior and posterior segment of the eye. This review highlights the main ocular barriers to drug delivery, as well as the most common eye diseases suitable for pharmacological treatment in which lipid nanoparticles have proved efficacious as alternative delivery systems.Expert opinion: Lipid-based nanocarriers are among the most biocompatible and versatile means for ocular delivery. Mucoadhesion with consequent increase in pre-corneal retention time, and enhanced permeation due to cellular uptake by corneal epithelial cells, are the essential goals for topical lipid nanoparticle delivery. Gene delivery to the retina has shown very promising results after intravitreal administration of lipid nanoparticles as non-viral vectors. 相似文献
15.
Casadei MA Cerreto F Cesa S Giannuzzo M Feeney M Marianecci C Paolicelli P 《International journal of pharmaceutics》2006,325(1-2):140-146
Solid lipid nanoparticles (SLN) containing or not (S)-(+)-2-(4-isobutylphenyl)propionic acid (ibuprofen) were prepared with Preciol ATO 5 as lipid phase by the hot homogenization technique and characterized through particle size analyses and zeta potential measurements. DSC experiments carried out on the freeze-dried samples of loaded SLN showed a shift of the melting endotherm of the lipid phase, with the maximum at a temperature value higher then that of the "empty" SLN. (1)H NMR of the nanosuspension allowed to calculate the encapsulation efficiency of the particles that was 52+/-3%. By adding dextran methacrylate (DEX-MA) to the aqueous phase and submitting the mixture to UV irradiation, systems of SLN (drug-loaded and unloaded) incorporated into a dextran hydrogel were prepared. Finally, dissolution studies of ibuprofen from the freeze-dried samples were performed. The comparison among the release profiles of ibuprofen from SLN, DEX-MA hydrogel and SLN/DEX-MA-hydrogel allows to affirm that this last system, retaining about 60% of the drug after 2h in acid medium and releasing it slowly in neutral solution, is suitable for modified delivery oral formulations. 相似文献
16.
17.
Solid lipid nanoparticles for targeted brain drug delivery 总被引:4,自引:0,他引:4
The present review discusses the potential use of solid lipid nanoparticles for brain drug targeting purposes. The state of the art on surfactant-coated poly(alkylcyanoacrylate) nanoparticles specifically designed for brain targeting is given by emphasizing the transfer of this technology to solid lipid matrices. The available literature on solid lipid nanoparticles and related carriers for brain drug targeting is revised as well. The potential advantages of the use of solid lipid nanoparticles over polymeric nanoparticles are accounted on the bases of a lower cytotoxicity, higher drug loading capacity, and best production scalability. Solid lipid nanoparticles physicochemical characteristics are also particularly regarded in order to address the critical issues related to the development of suitable brain targeting formulations. A critical consideration on the potential application of such technology as related to the current status of brain drug development is also given. 相似文献
18.
19.
Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, Cm) is a natural compound which possesses antioxidant, anti-inflammatory and anti-tumor ability. Here, phospholipid vesicles or lipid-nanospheres embedding Cm (CmVe or CmLn) were formulated to deliver Cm into tissue macrophages through intravenous injection. Cm could be solubilized in hydrophobic regions of these particles to form nanoparticle dispersions, and these formulations showed ability to scavenge reactive oxygen species as antioxidants in dispersions. At 6h after intravenous injection in rats via the tail vein (2mg Cm/kg bw), confocal microscopic observations of tissue sections showed that Cm was massively distributed in cells assumed as macrophages into the bone marrow and spleen. Taken together, these results indicate that the lipid-based nanoparticulates provide improved intravenous delivery of Cm to tissues macrophages, specifically bone marrow and splenic macrophages in present formulation, which has therapeutic potential as an antioxidant and anti-inflammatory. 相似文献
20.
Enzymatic characterization of lipid-based drug delivery systems 总被引:2,自引:0,他引:2
Ljusberg-Wahren H Seier Nielsen F Brogård M Troedsson E Müllertz A 《International journal of pharmaceutics》2005,298(2):328-332
The present work introduces a simple and robust in vitro method for enzymatic characterisation of surface properties of lipid dispersions in aqueous media. The initial lipolysis rate in biorelevant media, using pancreatic lipase and a self-microemulsifying formulation (SMEDDS) containing digestible lipids as substrate, was determined. The impact of incorporating two sparingly water soluble model drugs, probucol and halofantrine, into the SMEDDS was studied. It was found that both model drugs reduced the initial rate of lipolysis compared with the vehicle, probucol having a larger effect than halofantrine. The reduction of initial lipolysis rate indicates that probucol and halofantrine are bound in the water/emulsion interface limiting the substrate availability. 相似文献