首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human mast cells express the G protein coupled receptor (GPCR) for C5a (CD88). Previous studies indicated that C5a could cause mast cell degranulation, at least in part, via a mechanism similar to that proposed for basic neuropeptides such as substance P, possibly involving Mas-related gene 2 (MrgX2). We therefore sought to more clearly define the receptor specificity for C5a-induced mast cell degranulation. We found that LAD2, a human mast cell line, and CD34(+) cell-derived primary mast cells express functional MrgX1 and MrgX2 but the immature human mast cell line HMC-1 does not. A potent CD88 antagonist, PMX-53 (10 nM) inhibited C5a-induced Ca(2+) mobilization in HMC-1 cells, but at higher concentrations (≥30 nM) it caused degranulation in LAD2 mast cells, CD34(+) cell-derived mast cells, and RBL-2H3 cells stably expressing MrgX2. PMX-53 did not, however, activate RBL-2H3 cells expressing MrgX1. Although C5a induced degranulation in LAD2 and CD34(+) cell-derived mast cells, it did not activate RBL-2H3 cells expressing MrgX1 or MrgX2. Replacement of Trp with Ala and Arg with dArg abolished the ability of PMX-53 to inhibit C5a-induced Ca(2+) mobilization in HMC-1 cells and to cause degranulation in RBL-2H3 cells expressing MrgX2. These findings demonstrate that C5a does not use MrgX1 or MrgX2 for mast cell degranulation. Moreover, it reveals the novel finding that PMX-53 functions as a potent CD88 antagonist and a low-affinity agonist for MrgX2. Furthermore, Trp and Arg residues are required for the ability of PMX53 to act as both a CD88 antagonist and a MrgX2 agonist.  相似文献   

2.
Although human mast cells express G protein coupled receptors for the anaphylatoxin C3a, previous studies indicated that C3a causes mast cell degranulation, at least in part, via a C3a receptor-independent mechanism similar to that proposed for polycationic molecules such as compound 48/80. The purpose of the present study was to delineate the receptor specificity of C3a-induced degranulation in human mast cells. We found that C3a, a C3a receptor "superagonist" (E7) and compound 48/80 induced Ca(2+) mobilization and degranulation in a differentiated human mast cell line, LAD2. However, C3a and E7 caused Ca(2+) mobilization in an immature mast cell line, HMC-1 but compound 48/80 did not. We have previously shown that LAD2 cells express MrgX1 and MrgX2 but HMC-1 cells do not. To delineate the receptor specificity for C3a and compound 48/80 further, we generated stable transfectants expressing MrgX1 and MrgX2 in a rodent mast cell line, RBL-2H3 cells. We found that compound 48/80 caused degranulation in RBL-2H3 cells expressing MrgX1 and MrgX2 but C3a did not. By contrast, E7 activated RBL-2H3 cells expressing MrgX2 but not MrgX1. These findings demonstrate that in contrast to previous reports, C3a and compound 48/80 do not use a shared mechanism for mast cell degranulation. It shows that while compound 48/80 utilizes MrgX1 and MrgX2 for mast cell degranulation C3a does not. It further reveals the novel finding that the previously characterized synthetic peptide, C3a receptor "superagonist" E7 activates human mast cells via two mechanisms; one involving the C3a receptor and the other MrgX2.  相似文献   

3.
Human mast cells express functional A(2A) and A(2B) adenosine receptors. However, only stimulation of A(2B), not A(2A), leads to secretion of interleukin (IL)-4, an important step in adenosine receptor-mediated induction of IgE synthesis by B-cells. In this study, we investigate intracellular pathways that link stimulation of A(2B) receptors to IL-4 up-regulation in HMC-1 mast cells. Both A(2A) and A(2B) receptors couple to G(s) proteins and stimulate adenylate cyclase, but only A(2B) stimulates phospholipase Cbeta through coupling to G(q) proteins leading to activation of protein kinase C and calcium mobilization. Inhibition of phospholipase Cbeta completely blocked A(2B) receptor-dependent IL-4 secretion. The protein kinase C inhibitor 2-{8-[(dimethylamino)-methyl]-6,7,8,9-tetrahydropyrido[1,2-a]indol-3-yl}-3-(1-methyl-1H-indol-3-yl)maleimide (Ro-32-0432) had no effect on A(2B) receptor-mediated IL-4 secretion but inhibited phorbol 12-myristate 13-acetate-stimulated IL-4 secretion. In contrast, chelation of intracellular Ca(2+) inhibited both A(2B) receptor- and ionomycin-dependent IL-4 secretion. This Ca(2+)-sensitive pathway probably includes calcineurin and nuclear factor of activated T cells, because A(2B) receptor-dependent IL-4 secretion was blocked with cyclosporin A or 11R-VIVIT peptide. G(s)-linked pathways also play a role in the A(2B) receptor-dependent stimulation of IL-4 secretion; inhibition of adenylate cyclase or protein kinase A attenuated A(2B) receptor-dependent IL-4 secretion. Although stimulation of adenylate cyclase with forskolin did not increase IL-4 secretion on its own, it potentiated the effect of Pasteurella multocida toxin by 2-fold and ionomycin by 3-fold. Both forskolin and stimulation of A(2B) receptors up-regulated NFATc1 protein levels. We conclude that A(2B) receptors up-regulate IL-4 through G(q) signaling that is potentiated via cross-talk with G(s)-coupled pathways.  相似文献   

4.
Olopatadine hydrochloride (olopatadine) is an anti-allergic drug that functions as a histamine H(1) antagonist and inhibits both mast cell degranulation and the release of arachidonic acid metabolites in various types of cells. In this study, we examined the ability of olopatadine to inhibit the expression of cytokine genes in vitro via high-affinity receptors for immunoglobulin E in mast cells, using a rat basophilic leukemia (RBL-2H3) cell line and an in vivo mouse model. Levels of gene expression in RBL-2H3 cells were determined by semi-quantitative RT-PCR, and serum interleukin-4 (IL-4) level in mice was quantified by ELISA. Olopatadine inhibited significantly the induction of IL-4 expression by mast cells both in vivo and in vitro. Olopatadine inhibited Ca(2+) influx through receptor-operated channels (ROC) without affecting Ca(2+) release from intracellular stores. Comparative analysis of olopatadine with other anti-allergic drugs and the ROC blocker SKF-96365 demonstrated that the potency of inhibition of Ca(2+) influx correlated with the degree of suppression of degranulation and arachidonic acid release. Inhibition of Ca(2+) influx decreased phosphorylation of p38 mitogen-activated protein kinase and c-Jun NH(2)-terminal kinase, which participate in regulation of cytokine (e.g. IL-4) gene expression. However, the rank order of inhibition of Ca(2+) influx did not correspond to reduction of IL-4 expression, suggesting that an unknown mechanism(s) of action, in addition to inhibition of Ca(2+) influx, is involved in the expression of cytokines in mast cells.  相似文献   

5.
Endogenously produced reactive oxygen species reportedly stimulate insulin secretion from islet β-cells. However, the molecular machinery that governs the oxidant-induced insulin secretion has yet to be determined. The present study demonstrates, using rat islet β-cell-derived RINm5F cells, the involvement of the transient receptor potential (TRP) cation channels in the insulin secretion induced by the lipid peroxidation product 4-hydroxy-2-nonenal. Short-term (1 h) exposure of 4-hydroxy-2-nonenal induced a transient increase in intracellular Ca(2+) concentration and subsequent insulin secretion in a concentration-dependent manner. The increase in intracellular Ca(2+) concentration seemed to be due to an influx through the L-type voltage-dependent Ca(2+) channel, since it was not observed when extracellular Ca(2+) was absent and was inhibited almost completely by diltiazem or nifedipine. Ruthenium red, a non-specific inhibitor of TRP channels, inhibited the Ca(2+) influx and insulin secretion evoked by 4-hydroxy-2-nonenal. Among the TRP channels, TRPA1 was found to be predominantly expressed, not only in RINm5F cells, but also rat islets. TRPA1 agonists, allylisothiocyanate and 15-deoxy-Δ(12,14)-prostaglandin J(2), significantly induced Ca(2+) influx, and a specific inhibitor TRPA1, HC-030031, blocked the effects elicited by 4-hydroxy-2-nonenal. These results suggest that 4-hydroxy-2-nonenal induces Ca(2+) influx via the activation of TRP channels, including TRPA1, which appears to be coupled with the L-type voltage-dependent Ca(2+) channel, and ultimately insulin secretion in RINm5F cells.  相似文献   

6.
The effect of carvedilol on intracellular free Ca(2+) levels ([Ca(2+)](i)) has not been explored previously. This study was aimed to examine the effect of carvedilol on Ca(2+) handling in renal tubular cells. Madin-Darby canine kidney cells were used as a model for renal tubular cells and fura-2 was used as a fluorescent Ca(2+) probe. Carvedilol increased [Ca(2+)](i) in a concentration-dependent manner with an EC(50) value of 5 microM. Extracellular Ca(2+) removal partly inhibited the [Ca(2+)](i) signals. Carvedilol-induced Ca(2+) influx was verified by measuring Mn(2+)-induced quench of fura-2 fluorescence. Carvedilol-induced store Ca(2+) release was reduced by pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) but not with 5 microM ryanodine or 2 microM carbonylcyanide m-chlorophenylhydrazone (a mitochondrial uncoupler). Carvedilol (30 microM)-induced Ca(2+) release was not affected by inhibiting phospholipase C with 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-l)amino)hexyl)-1H-pyrrole-2,5-dione (U73122; 2 microM), but was potentiated by increasing cAMP levels or inhibiting protein kinase C. The carvedilol-induced Ca(2+) mobilization was not significantly sequestered by the endoplasmic reticulum or mitochondria. This study shows that carvedilol increased [Ca(2+)](i) in renal tubular cells by causing Ca(2+) release from the endoplasmic reticulum and other unknown stores in an inositol-1,4,5-trisphosphate-independent manner, and by inducing Ca(2+) influx. The Ca(2+) release was modulated by cAMP and protein kinase C.  相似文献   

7.
(1) The vasorelaxation produced by the phosphodiesterase 3 (PDE3) inhibitor, amrinone was investigated in isolated rat aorta denuded of endothelium. In the presence of extracellular Ca(2+), amrinone, milrinone and 3-isobutyl-1-methylxanthine (IBMX), relaxed endothelium-denuded rat aortic rings constricted with phenylephrine. While the actions of milrinone and IBMX were inhibited by the protein kinase G (PKG) inhibitor, Rp-8-Bromo guanosine-3',5' monophosphothioate (Rp-8-Br-cGMPS; 0.5 mM), that of amrinone was only slightly affected; whereas the protein kinase A (PKA) inhibitor, Rp-adenosine-3',5' cyclic monophosphothioate (Rp-cAMPS; 0.5 mM) had no effect on any agent. (2) Amrinone (100 microM) inhibited (45)Ca(2+) influx through receptor- or store-operated Ca(2+) channels following stimulation with phenylephrine (1 microM) or thapsigargin (1 microM). In contrast, amrinone had no effect on KCl (120 mM)-stimulated Ca(2+) influx. (3) In the absence of extracellular Ca(2+), amrinone (30 microM) inhibited the constriction produced by phenylephrine, 5-hydroxytryptamine (5HT) and U46619, and this effect was not affected by Rp-cAMPS or Rp-8-Br-cGMPS. (4) The intracellular mechanism of action of amrinone may involve the phospholipase C (PLC)-inositol 1,4,5 trisphosphate (IP(3))-intracellular Ca(2+) signal transduction pathway. However, amrinone (100 microM) had no effect on either basal- or noradrenaline (100 microM)-stimulated PLC activity. Similarly, IP(3) stimulated a concentration-dependent release of Ca(2+) from rat brain microsomes that was not affected by amrinone (30 and 100 microM). (5) In conclusion, the vasorelaxant action of amrinone does not involve adenosine 3',5' cyclic monophosphate (cAMP) or involve guanosine 3',5' cyclic monophosphate (cGMP) but may include an inhibition of Ca(2+) influx through receptor- or store-operated Ca(2+) channels, although it does not directly affect intracellular Ca(2+) release.  相似文献   

8.
In human osteosarcoma MG63 cells, the effect of Y-24180, a presumed specific platelet-activating factor (PAF) receptor antagonist, on intracellular Ca(2+) concentration ([Ca(2+)](i)) and proliferation was measured by using fura-2 and tetrazolium as fluorescent dyes, respectively. Y-24180 (1-5 microM) caused a rapid and sustained [Ca(2+)](i) rise in a concentration-dependent manner. The [Ca(2+)](i) rise was inhibited by 35% by dihydropyridines or removal of extracellular Ca(2+), but was not altered by verapamil and diltiazem. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca(2+)](i) rise, after which 5 microM Y-24180 failed to increase [Ca(2+)](i); conversely, depletion of Ca(2+) stores with 5 microM Y-24180 abolished thapsigargin-induced [Ca(2+)](i) rise. U73122, an inhibitor of phoispholipase C, inhibited histamine-induced, but not 5 microM Y-24180-induced [Ca(2+)](i) rise. Overnight treatment with 0.1-5 microM Y-24180 inhibited cell proliferation in a concentration-dependent manner. Together, these findings suggest that Y-24180 acts as a potent and cytotoxic Ca(2+) mobilizer in human osteosarcoma cells, by inducing both extracellular Ca(2+) influx and intracellular Ca(2+) release. Alterations in cytosolic Ca(2+) regulation may lead to interferences of various cellular functions; thus, attention should be exercised in using Y-24180 as a selective PAF receptor antagonist.  相似文献   

9.
Ro JY  Kim JY  Kim KH 《Pharmacology》2001,63(3):175-184
This study aim was to assess the effects of rebamipide on the mechanism of histamine release and biosynthesis and release of leukotrienes caused by mast cell activation. We purified mast cells from guinea pig lung tissues by the use of enzyme digestion, the rough and the discontinuous density percoll gradient method. Mast cells were sensitized with IgG1 (anti-OVA) antibody and challenged with ovalbumin. Mast cells were also stimulated with A23187 and the intracellular Ca(2+) level was measured. Histamine and leukotrienes were measured by automated fluorometric analyzer and radioimmunoassay, respectively. The intracellular Ca(2+) level was analyzed using a confocal laser scanning microscope. Protein kinase C (PKC) activity was determined by protein phosphorylated with [gamma-(32)P]ATP. The phospholipase D activity was assessed by the labeled phosphatidylalcohol. Mass 1,2-diacylglycerol (DAG) was measured by the [(3)H]DAG produced when prelabeled with [(3)H]myristic acid. PLA(2) activity was determined by measuring the arachidonic acid released from the labeled phospholipids. Rebamipide decreased the releases of histamine and leukotrienes, and completely blocked Ca(2+) influx during mast cell activation by antigen-antibody reactions. It also decreased the release of histamine and leukotrienes during mast cell activation by A23187. The PKC and PLD activities were also decreased by rebamipide in a dose-dependent manner. Rebamipide inhibited the mass DAG production and PLA(2) activity during mast cell activation. The data suggest that rebamipide inhibits intracellular signals and blocks Ca(2+) influx in mast cells activated by specific antigen-antibody reactions, which in turn inhibits histamine release and leukotriene generation.  相似文献   

10.
The effects of a soluble guanylyl cyclase (sGC) activator, 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1), on formyl-methionyl-leucyl-phenylalanine (fMLP)-stimulated [Ca(2+)](i) elevation in rat neutrophils were examined. YC-1 produced a concentration-dependent inhibition of [Ca(2+)](i) elevation. Pretreatment of neutrophils with YC-1 did not enhance its inhibitory effect. YC-1 also inhibited the [Ca(2+)](i) changes caused by ionomycin. In a biphasic model, measuring the [Ca(2+)](i) stimulation by fMLP in a Ca(2+)-free medium followed by reintroduction of Ca(2+), YC-1 mainly affected Ca(2+) influx. YC-1 also inhibited active and passive Mn(2+) influx, and this inhibitory effect was not attenuated by the sGC inhibitor 6-anilino-5,8-quinolinequinone (LY83583). Sodium nitroprusside did not affect the fMLP-stimulated [Ca(2+)](i) changes. Pretreatment of neutrophils with the cyclic GMP-dependent protein kinase inhibitor 8-(4-chlorophenylthio) guanosine-3',5'-monophosphorothioate, Rp-isomer (Rp-8-pCPT-cGMPS), LY83583, the protein phosphatase 2B inhibitor cyclosporin A, or the protein kinase inhibitor staurosporine did not attenuate the inhibition of [Ca(2+)](i) by YC-1. YC-1 inhibited the fMLP-stimulated protein tyrosine phosphorylation. These results indicate that cyclic GMP does not play an important role in the regulation of [Ca(2+)](i) in rat neutrophils. Inhibition of fMLP-stimulated [Ca(2+)](i) changes by YC-1 is mainly via the blockade of Ca(2+) entry through the inhibition of tyrosine kinase activity, but not the stimulation of protein kinase C and protein phosphatase 2B.  相似文献   

11.
The mechanism for noradrenaline (NA)-induced increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) and physiological significance of Na(+) influx through receptor-operated channels (ROCs) and store-operated channels (SOCs) were studied in Chinese hamster ovary (CHO) cells stably expressing human alpha(1A)-adrenoceptor (alpha(1A)-AR). [Ca(2+)](i) was measured using the Ca(2+) indicator fura-2. NA (1 microM) elicited transient and subsequent sustained [Ca(2+)](i) increases, which were inhibited by YM-254890 (G(alphaq/11) inhibitor), U-73122 (phospholipase C (PLC) inhibitor), and bisindolylmaleimide I (protein kinase C (PKC) inhibitor), suggesting their dependence on G(alphaq/11)/PLC/PKC. Both phases were suppressed by extracellular Ca(2+) removal, SK&F 96365 (inhibitor of SOC and nonselective cation channel type-2 (NSCC-2)), LOE 908 (inhibitor of NSCC-1 and NSCC-2), and La(3+) (inhibitor of transient receptor potential canonical (TRPC) channel). Reduction of extracellular Na(+) and pretreatment with KB-R7943, a Na(+)/Ca(2+) exchanger (NCX) inhibitor, inhibited both phases of [Ca(2+)](i) increases. These results suggest that 1) stimulation of alpha(1A)-AR with NA elicits the transient and sustained increases in [Ca(2+)](i) mediated through NSCC-2 that belongs to a TRPC family; 2) Na(+) influx through these channels drives NCX in the reverse mode, causing Ca(2+) influx in exchange for Na(+) efflux; and 3) the G(alphaq/11)/PLC/PKC-dependent pathway plays an important role in the increases in [Ca(2+)](i).  相似文献   

12.
Celecoxib has been shown to have an antitumor effect in previous studies, but the mechanisms are unclear. Ca(2+) is a key second messenger in most cells. The effect of celecoxib on cytosolic free Ca(2+) concentrations ([Ca(2+)](i)) in human suspended PC3 prostate cancer cells was explored by using fura-2 as a fluorescent dye. Celecoxib at concentrations between 5 and 30 μM increased [Ca(2+)](i) in a concentration-dependent manner. The Ca(2+) signal was reduced partly by removing extracellular Ca(2+). Celecoxib-induced Ca(2+) influx was not blocked by L-type Ca(2+) entry inhibitors or protein kinase C/A modulators [phorbol 12-myristate 13-acetate (PMA), GF109203X, H-89], but was inhibited by the phospholipase A(2) inhibitor, aristolochic acid. In Ca(2+)-free medium, 30 μM of celecoxib failed to induce a [Ca(2+)](i) rise after pretreatment with thapsigargin (an endoplasmic reticulum [ER] Ca(2+) pump inhibitor). Conversely, pretreatment with celecoxib inhibited thapsigargin-induced Ca(2+) release. Inhibition of phospholipase C with U73122 did not change celecoxib-induced [Ca(2+)](i) rises. Celecoxib induced slight cell death in a concentration-dependent manner, which was enhanced by chelating cytosolic Ca(2+) with BAPTA. Collectively, in PC3 cells, celecoxib induced [Ca(2+)](i) rises by causing phospholipase C-independent Ca(2+) release from the ER and Ca(2+) influx via non-L-type, phospholipase A(2)-regulated Ca(2+) channels. These data may contribute to the understanding of the effect of celecoxib on prostate cancer cells.  相似文献   

13.
The vasorelaxant activity of Caesalpinia sappan L., a traditional Chinese medicine, and its major component brazilin were investigated in isolated rat aorta and human umbilical vein endothelial cells. In isolated rat aorta, C. sappan L. extract and brazilin relaxed phenylephrine-induced vasocontraction and increased cyclic guanosine 3',5'-monophosphate (cGMP) content. Induction of vasorelaxation of brazilin was endothelium-dependent and could be markedly blocked by pretreatment with nitric oxide synthase (NOS) inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME); N(G)-monomethyl-L-arginine acetate (L-NMMA) and guanylyl cyclase inhibitor, methylene blue; 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and nitric oxide (NO) scavenger, hemoglobin. The increasing cGMP content induced by brazilin was also blocked by pretreatment with L-NAME, methylene blue, and the removal of extracellular Ca(2+). In human umbilical vein endothelial cells, brazilin dose-dependently induced an increase in NO formation and NOS activity, which were greatly attenuated by either the removal of extracellular Ca(2+) or the chelating of intracellular Ca(2+) chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM). Moreover, brazilin dose-dependently induced the influx of extracellular Ca(2+) in human umbilical vein endothelial cells. Collectively, these results suggest that brazilin induces vasorelaxation by the increasing intracellular Ca(2+) concentration in endothelial cells of blood vessels and hence activating Ca(2+)/calmodulin-dependent NO synthesis. The NO is released and then transferred into smooth muscle cells to activate guanylyl cyclase and increase cGMP content, resulting in vasorelaxation.  相似文献   

14.
The effect of the endogenous cannabinoid anandamide on cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and proliferation is largely unknown. This study examined whether anandamide altered Ca(2+) levels and caused Ca(2+)-dependent cell death in Madin-Darby canine kidney (MDCK) cells. [Ca(2+)](i) and cell death were measured using the fluorescent dyes fura-2 and WST-1 respectively. Anandamide at concentrations above 5 muM increased [Ca(2+)](i) in a concentration-dependent manner. The Ca(2+) signal was reduced by 78% by removing extracellular Ca(2+). The anandamide-induced Ca(2+) influx was insensitive to L-type Ca(2+) channel blockers and the cannabinoid receptor antagonist AM 251, but was inhibited differently by aristolochic acid, WIN 55,212-2 (a cannabinoid receptor agonist), phorbol ester, GF 109203X and forskolin. After pretreatment with thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor), anandamide-induced Ca(2+) release was inhibited. Inhibition of phospholipase C with U73122 did not change anandamide-induced Ca(2+) release. At concentrations of 100 muM and 200 muM, anandamide killed 50% and 95% cells, respectively. The cytotoxic effect of 100 muM anandamide was completely reversed by pre-chelating cytosolic Ca(2+) with BAPTA. Collectively, in MDCK cells, anandamide induced [Ca(2+)](i) rises by causing Ca(2+) release from endoplasmic reticulum and Ca(2+) influx from extracellular space. Furthermore, anandamide can cause Ca(2+)-dependent cytotoxicity in a concentration-dependent manner.  相似文献   

15.
The role of Ca(2+) influx in activating phospholipase C in bovine adrenal chromaffin cells has been investigated. Phospholipase C activity in response to K(+) depolarization (56 mM) was blocked by the L-type Ca(2+) channel antagonist nifedipine and partially inhibited by the omega-conotoxins GVIA and MVIIC. In contrast, phospholipase C activity in response to histamine receptor activation was unaffected by omega-conotoxin GVIA and partially inhibited by omega-conotoxin MVIIC or nifedipine. This response was however markedly inhibited by the non-selective Ca(2+) channel antagonists La(3+) or 1-[beta-[3-(4-Methoxyphenyl)propoxy]-4-methoyphenethyl]-H-imidazol e (SKF-96365). Despite this Ca(2+) dependence phospholipase C activity was not increased during periods of "capacitative" Ca(2+) inflow generated by histamine-, caffeine- or thapsigargin-mediated depletion of internal Ca(2+) stores. Thus, while Ca(2+) influx in response to K(+) depolarization or G-protein receptor activation can increase phospholipase C activity in these cells, in the latter case it appears to be ineffective unless there is concurrent agonist occupation of the receptor.  相似文献   

16.
It has been shown that intracellular Ca(2+) concentrations have multiple modulatory influences on hormone-stimulated adenylyl cyclase activity. Here, we report that increasing intracellular Ca(2+) concentration by treating cells with the Ca(2+) ionophore A23187 leads to a sensitization of the beta-adrenoceptor-stimulated adenylyl cyclase activity in Ltk(-) cells expressing the human beta(2)-adrenoceptor. The ionophore treatment led to a 20+/-5% increase of the maximal isoproterenol-stimulated cyclase activity that could be prevented by chelation of the extracellular Ca(2+) using EGTA. A similar Ca(2+)-mediated sensitization (20+/-6%) was observed when the adenylyl cyclase was directly stimulated by the diterpene forskolin indicating that the catalytic activity of the enzyme itself is modulated by the change in Ca(2+) concentration. Sensitization of both the isoproterenol- and forskolin-stimulated adenylyl cyclase activities were completely blocked by treatment with KN-62[1-[N,O-bis-(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine], an inhibitor of the Ca(2+)-calmodulin-dependent protein kinase (CamKinase). Taken together, our data reveal the existence of a CamKinase-dependent sensitization process acting at the level of the adenylyl cyclase catalytic moiety.  相似文献   

17.
We have recently found that diethylstilbestrol (DES), a synthetic estrogen agonist, inhibits thrombin-induced Ca(2+) influx in human platelets, but it remains unclear to what extend this effect might be related to the store-operated Ca(2+) influx pathway. To study the effect of DES on store-operated channels and capacitative Ca(2+) influx, we used rat basophilic leukemia (RBL) cells, vascular smooth muscle cells (SMC), and human platelets, and recorded whole-cell Ca(2+) release-activated Ca(2+) (CRAC) currents and thapsigargin (TG)-induced capacitative Ca(2+) influx. In this study, we demonstrate that extracellular DES produces a dose-dependent and reversible inhibition of CRAC currents in RBL cells (IC(50), approximately 0.5 microM), whereas intracellular DES (25 microM) has no effect. Extracellular DES (up to 30 microM) inhibited only CRAC but did not affect a whole-cell monovalent cation current mediated by TRPM7 channels. DES effectively inhibited TG-induced capacitative Ca(2+) influx in a dose-dependent manner with an IC(50) values of approximately 0.1 microM in RBL cells, <0.1 microM in SMC, and approximately 1 microM in human platelets. It is noteworthy that trans-stilbene, a close structural analog of DES that lacks hydroxyl and ethyl groups, had no effect on CRAC current and on store-operated Ca(2+) influx. Thus, we found DES to be a very effective inhibitor of store-operated channels and Ca(2+) influx in a variety of cell types.  相似文献   

18.
The effect of fendiline, an anti-anginal drug, on cytosolic free Ca(2+) levels ([Ca(2+)](i)) in MG63 human osteosarcoma cells was explored by using fura-2 as a Ca(2+) indicator. Fendiline at concentrations between 1 and 200 microM increased [Ca(2+)](i) in a concentration-dependent manner and the signal saturated at 100 microM. The Ca(2+) signal was inhibited by 65+/-5% by Ca(2+) removal and by 38+/-5% by 10 microM nifedipine, but was unchanged by 10 microM La(3+) or verapamil. In Ca(2+)-free medium, pre-treatment with 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) to deplete the endoplasmic reticulum Ca(2+) store inhibited fendiline-induced intracellular Ca(2+) release. The Ca(2+) release induced by 50 microM fendiline appeared to be independent of IP(3) because the [Ca(2+)](i) increase was unaltered by inhibiting phospholipase C with 2 microM U73122. Collectively, the results suggest that in MG63 cells fendiline caused an increase in [Ca(2+)](i) by inducing Ca(2+) influx and Ca(2+) release in an IP(3)-independent manner.  相似文献   

19.
The effect of tamoxifen on Ca(2+) signaling and viability in Madin Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca(2+) probe. Tamoxifen evoked a rise in cytosolic free Ca(2+) levels ([Ca(2+)](i)) concentration-dependently between 1 and 50 microM with an EC50 of 10 microM. The response was decreased by extracellular Ca(2+) removal. In Ca(2+)-free medium, pretreatment with 5 microM tamoxifen abolished the [Ca(2+)](i) increase induced by the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (1 microM), but pretreatment with brefeldin A (50 microM; a Ca(2+) mobilizer of the Golgi complex), thapsigargin (an inhibitor of the endoplasmic reticulum Ca(2+) pump), and carbonylcyanide m-chlorophenylhydrazone (CCCP; a mitochondrial uncoupler), only partly inhibited tamoxifen-induced [Ca(2+)](i) increases. This suggests that tamoxifen released Ca(2+) from multiple pools. Addition of 3 mM Ca(2+) induced a [Ca(2+)](i) rise after pretreatment with 5 microM tamoxifen in Ca(2+)-free medium. Inhibiting inositol 1,4,5-trisphosphate formation with the phospholipase C inhibitor U73122 (2 microM) did not alter 5 microM tamoxifen-induced Ca(2+) release. The [Ca(2+)](i) increase induced by 5 microM tamoxifen was not altered by La(3+), nifedipine, verapamil, or diltiazem. Tamoxifen (1-10 microM) decreased cell viability in a concentration- and time-dependent manner. Tamoxifen (5 microM) also increased [Ca(2+)](i) in neutrophils, bladder cancer cells, and prostate cancer cells from humans and glioma cells from rats. Collectively, it was found that tamoxifen increased [Ca(2+)](i) in MDCK cells by releasing Ca(2+) from multiple Ca(2+) stores in a manner independent of the production of inositol 1,4, 5-trisphosphate and also by triggering Ca(2+) influx from extracellular space. The [Ca(2+)](i) increase was accompanied by cytotoxicity.  相似文献   

20.
1. We evaluated the role of the cross-linking of Fc epsilon RI-mediated inositol 1,4,5-triphosphate (IP(3)) in the increase in cytosolic Ca(2+) level ([Ca(2+)](i)) using xestospongin C, a selective membrane permeable blocker of IP(3) receptor, in RBL-2H3 mast cells. 2. In the cells sensitized with anti-dinitrophenol (DNP) IgE, DNP-human serum albumin (DNP-HSA) and thapsigargin induced degranulation of beta-hexosaminidase and a sustained increase in [Ca(2+)](i). Xestospongin C (3 - 10 microM) inhibited both of these changes that were induced by DNP-HSA without changing those induced by thapsigargin. 3. In the absence of external Ca(2+), DNP-HSA induced a transient increase in [Ca(2+)](i). Xestospongin C (3 - 10 microM) inhibited this increase in [Ca(2+)](i). 4. In the cells permeabilized with beta-escin, the application of IP(3) decreased Ca(2+) in the endoplasmic reticulum (ER) as evaluated by mag-fura-2. Xestospongin C (3 - 10 microM) inhibited the effect of IP(3). 5. After the depletion of Ca(2+) stores due to stimulation with DNP-HSA or thapsigargin, the addition of Ca(2+) induced capacitative calcium entry (CCE). Xestospongin C (3 - 10 microM) inhibited the DNP-HSA-induced CCE, whereas it did not affect the thapsigargin-induced CCE. 6. These results suggest that Fc epsilon RI-mediated generation of IP(3) contributes to Ca(2+) release not only in the initial phase but also in the sustained phase of the increase in [Ca(2+)](i), resulting in prolonged Ca(2+) depletion in the ER. The ER Ca(2+) depletion may subsequently activate CCE to achieve a continuous [Ca(2+)](i) increase, which is necessary for degranulation in the RBL-2H3 mast cells. Xestospongin C may inhibit Ca(2+) release and consequently may attenuate degranulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号