首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
T‐cell receptor (TCR)‐derived peptides are recognized by the immune system and are capable of modulating autoimmune responses. Using the myelin basic protein (MBP) TCR 1501 transgenic mouse model, we demonstrated that TCR CDR3 peptides from the transgenic TCR can provide a protective effect when therapy is initiated before the induction of experimental autoimmune encephalomyelitis (EAE). More importantly, TCR CDR3 peptide therapy can ameliorate the disease when administered after EAE onset. Concurrent with the therapeutic effects, we observed reduced T‐cell proliferation and reduced interleukin‐2 (IL‐2) levels in response to stimulation with MBP‐85‐99 peptide in splenocyte cultures from mice receiving TCR CDR3 peptides compared with that of control mice. Moreover, we found that Foxp3+ CD4 T cells from mice protected with TCR CDR3 peptide are preferentially expanded in the presence of IL‐2. This is supportive of a proposed mechanism where Foxp3+ T‐regulatory cells induced by therapy with MBP‐85‐99 TCR CDR3 peptides limit expansion and the encephalitogenic activity of MBP‐85‐99‐specific T cells by regulating the levels of secreted IL‐2.  相似文献   

2.
In experimental autoimmune encephalomyelitis (EAE) of LEW rats, BV8S2(+) (V(beta)8.2) T cells dominate the RT1B(l)-restricted response to guinea pig myelin basic protein (gpMBP), and respond to the superantigens (SAg) Staphylococcus enterotoxin C1 (SEC1), Mycoplasma arthritidis SAg (MAS) and Yersinia pseudotuberculosis mitogen (YPM). T cells expressing the closely related BV8S4 differ from BV8S2 T cells in their response to gpMBP, and the SAg SEC1 and MAS, but not in their response to YPM. The functional differences between BV8S2 and BV8S4, which vary in complementarity-determining/hypervariable region 4 (CDR4/HV4) and CDR2, were analyzed by cloning and mutating a TCR with features typical for gpMBP-specific BV8S2(+) TCR. The wild-type BV8S2 receptor and the BV8S4-like CDR2 + 4beta double mutant of BV8S2 showed the same differences in ligand specificity as polyclonal BV8S2(+) and BV8S4(+) lymphocyte populations. The CDR2beta mutant lost its reactivity for SEC1 and gpMBP(68-88), but the CDR4/HV4beta mutation abolished only activation by SEC1. Thus, CDR2 and HV4 contribute not only differently to recognition of peptide antigens, but also to recognition of different types of bacterial SAg.  相似文献   

3.
Sabet S  Ochoa MT  Sieling PA  Rea TH  Modlin RL 《Immunology》2007,120(3):354-361
Human infection with Mycobacterium leprae, an intracellular bacterium, presents as a clinical and immunological spectrum; thus leprosy provides an opportunity to investigate mechanisms of T-cell responsiveness to a microbial pathogen. Analysis of the T-cell receptor (TCR) repertoire in leprosy lesions revealed that TCR BV6(+) T cells containing a conserved CDR3 motif are over-represented in lesions from patients with the localized form of the disease. Here, we derived a T-cell clone from a leprosy lesion that expressed TCR BV6 and the conserved CDR3 sequence L-S-G. This T-cell clone produced a T helper type 1 cytokine pattern, directly lysed M. leprae-pulsed antigen-presenting cells by the granule exocytosis pathway, and expressed the antimicrobial protein granulysin. BV6(+) T cells may therefore functionally contribute to the cell-mediated immune response against M. leprae.  相似文献   

4.
Both estrogen (E2) and T-cell receptor (TCR) peptides have beneficial effects on the clinical course of experimental autoimmune encephalomyelitis (EAE) and possibly multiple sclerosis (MS) that involve distinct but congruent mechanisms. Of interest, these two approaches share an ability to enhance expression of the FoxP3 gene and associated activity of regulatory T (Treg) cells. E2 increases the number and activity of FoxP3(+) T cells through Esr-1 signaling during TCR activation of CD4(+)CD25(-) T cells. In contrast, TCR peptide therapy appears to increase the frequency of regulatory FoxP3(+) T cells specific for self-TCR determinants expressed by targeted pathogenic T cells. The combined effects on Treg expansion and activation induced by these distinct immunoregulatory approaches may account for their potent effects on clinical EAE and argue for a similar combined therapeutic approach for MS.  相似文献   

5.
6.
目的:研究细胞膜表面异位表达钙网蛋白(calreticulin,CALR)对T细胞疫苗(T-cell vaccine,TCV)诱导的保护性免疫效果的影响。方法:采用小鼠髓鞘少突胶质细胞糖蛋白35-55(MOG_(35-55))免疫C57BL/6小鼠建立实验性自身免疫性脑脊髓炎(EAE)模型,分别以MOG_(35-55)特异性T细胞(CALR~+T及CALR~-T)为疫苗,通过尾静脉注射免疫小鼠。检测指标包括EAE小鼠临床评分比较、脾CD4~+ CD25~+ Foxp3~+调节性T细胞百分比测定及血清中细胞因子干扰素γ(IFN-γ)、白细胞介素4(IL-4)、IL-10和IL-17A含量测定。结果:射线照射可诱导活化CD4~+T细胞表面异位表达CALR;CALR~+T免疫组症状显著轻于CALR~-T免疫组(P0.01);CALR~+T免疫组小鼠脾CD4~+ CD25~+ Foxp3~+调节性T细胞百分比及血清中IL-4和IL-10含量显著高于对照组(P0.01),而IFN-γ和IL-17A含量显著低于对照组(P0.01),结论:细胞膜表面异位表达CALR与TCV诱导的保护性免疫效果有关。  相似文献   

7.
A predominant response to myelin oligodendrocyte glycoprotein (MOG) was recently observed in patients with multiple sclerosis (MS). To study the possible pathogenic role of T cell response to MOG in MS, we have investigated the encephalitogenic potential of MOG. Synthetic MOG peptides, pMOG 1-21, 35–55, 67–87, 104–117 and 202–218, representing predicted T cell epitopes, were injected into C57BL/6J and C3H.SW (H-2b) mice. The mice developed significant specific T cell responses to pMOG 1–21, pMOG 35–55 and pMOG 104–117. However, pMOG 35–55 was the only MOG peptide which could induce neurological impairment. The highly reproducible disease was chronic, with ascending paralysis and neuropathology comparable with those observed in experimental autoimmune encephalomyelitis (EAE) induced by myelin basic protein or proteolipid protein, except that in H-2b mice the disease was consistently non-remitting. These features differ markedly from those which we recently observed in PL (H-2u) mice with pMOG 35–55-induced disease. In PL mice, pMOG 35–55-induces atypical chronic relapsing EAE, the expression and progression of which are unpredictable. Hence, in different mouse strains, the same MOG peptide can induce typical EAE characterized by ascending paralysis, or atypical EAE with unpredictable clinical signs. pMOG 35–55-specific T cells from H-2b mice recognized an epitope within amino acids 40–55 of the MOG molecule, and pMOG 40–55-reactive T cell lines were encephalitogenic upon transfer into syngeneic recipients. The encephalitogenic pMOG 35–55-reactive C57BL/6J T cell lines expressed Vβ1, Vβ6, Vβ8, Vβ14 and Vβ15 gene segments, and the pMOG 35–55-reactive C3H.SW T cell lines expressed Vβ1, Vβ2, Vβ6, Vβ8, Vβ10, Vβ14, and Vβ15 gene segments. However, in both mouse strains, the utilization of the Vβ8 gene product was predominant (40–43 %). The highly reproducible encephalitogenic activity of pMOG 35–55 strongly suggests a pathogenic role for T cell reactivity to MOG in MS and supports the possibility that MOG may also be a primary target antigen in the disease.  相似文献   

8.
9.
Oestrogen (17β‐oestradiol, E2) is a highly effective treatment for experimental autoimmune encephalomyelitis (EAE) that may potentiate Foxp3+ regulatory T (Treg) cells, which in turn limit the expansion of encephalitogenic T‐cell specificities. To determine if Treg cells constitute the major non‐redundant protective pathway for E2, we evaluated E2 protection of EAE after targeted deletion of Foxp3 expression in Foxp3‐DTR mice. Unexpectedly, E2‐treated Foxp3‐deficient mice were completely protected against clinical and histological myelin oligodendrocyte glycoprotein (MOG)‐35‐55 peptide‐induced EAE before succumbing to diphtheria toxin‐induced mortality. This finding indicated the presence of alternative E2‐dependent EAE‐protective pathways that could compensate for the lack of Treg cells. Further investigation revealed that E2 treatment inhibited proliferation and expression of CCL2 and CXCL2, but enhanced secretion of interleukin‐10 (IL‐10) and IL‐13 by MOG‐35‐55‐specific spleen cells. These changes occurred concomitantly with increased expression of several chemokines and receptors, including CXCL13 and CXCR5, and the negative co‐activation molecules, PD‐L1 and B7.2, by B cells and dendritic cells. Furthermore, E2 treatment resulted in higher percentages of spleen and lymph node T cells expressing IL‐17, interferon‐γ and tumour necrosis factor‐α, but with lower expression of CCR6, suggesting sequestration of MOG‐35‐55 peptide‐specific T cells in peripheral immune organs. Taken together, these data suggest that E2‐induced mechanisms that provide protection against EAE in the absence of Foxp3+ Treg cells include induction of regulatory B cells and peripheral sequestration of encephalitogenic T cells.  相似文献   

10.
The use of altered peptide ligands (APL) with TCR antagonist properties holds promise as an antigen-specific therapy for autoimmune disorders. We are investigating the therapeutic potential of APL in experimental autoimmune encephalomyelitis (EAE) using the Ac1-9 peptide of myelin basic protein in H-2u mice. Encephalitogenic T cells recognize Ac1-9 using residues 3Gln and 6Pro as the major TCR contact sites. Use of position 6 APL is compromised by the heterogeneous nature of the Ac1-9-specific repertoire. Here we identify two position 3 APL that act as TCR antagonists on transgenic T cells expressing Ac1-9-specific TCR and that inhibit EAE in H-2u mice. However, the therapeutic capacity of these two APL correlated directly with the ability to maximally inhibit activation of a heterogeneous T cell pool. The implications of these findings for the requirements for EAE induction, the relative contribution of a given T cell subpopulation to pathology and the mechanism underlying EAE inhibition in this model are discussed.  相似文献   

11.
T-lymphocytes play an important role in rheumatoid arthritis (RA). In this study, we evaluated the hypothesis that common T-cell receptor (TCR) structural features may exist among infiltrating T cells of different RA patients, if the TCR repertoire is shaped by interaction with common self or microbial antigens in the context of susceptible HLA genes in RA. Synovial lesion tissue (ST), synovial fluid (SF) and blood specimens from RA patients and controls were analyzed for TCR V gene repertoire by real-time PCR. There was highly skewed BV14 and BV16 usage in synovial T cells of RA as opposed to those of controls, which was accompanied with a trend for correlation between skewed BV16 and DRB1(*)0405. Immunoscope analysis of the V-D-J region of ST-derived T cells demonstrated oligoclonal and polyclonal expansion of BV14(+) and BV16(+) T cells. Detailed characterization using specific BV and BJ primers further revealed common clonotypes combining the same BV14/BV16, BJ and CDR3 length. DNA cloning and sequence analysis of the clonotypes confirmed identical CDR3 sequences and common CDR3 sequence motifs among different RA patients. The findings are important in the understanding of BV gene skewing and CDR3 structural characteristics among synovial infiltrating T cells of RA.  相似文献   

12.
In organ-specific autoimmune diseases, T cells involved in the disease development bear a particular type of TCR and infiltrate the target organ predominantly. However, it is difficult to identify disease-inducing T cells in peripheral blood lymphocytes (PBL) because such T cells are very few in number in a large pool of unrelated T cells. In the present study, we demonstrate that CDR3 spectratyping can identify experimental autoimmune encephalomyelitis (EAE)-specific patterns (oligoclonal expansion of Vβ8.2 with the shortest CDR3) in PBL at the preclinical and clinical stages of acute EAE. Analysis of nucleotide and predicted amino acid sequences of Vβ8.2 CDR3 of spectratype-derived clones revealed that CASSDSSYEQYFGPG, which is one of the representative sequences of encephalitogenic T cell clones, constituted the predominant population in both PBL and spinal cord T cells. In chronic relapsing EAE, the EAE-specific spectratype pattern in PBL was observed during the 1st and 2nd attacks, but not at the remission and full recovery stage. These findings indicate that the spectratyping pattern in PBL reflects the disease activity of acute and chronic relapsing EAE. Thus, CDR3 spectratyping using PBL can be used for diagnosis and assessment of T cell-mediated autoimmune diseases and is applicable to human autoimmune diseases.  相似文献   

13.
The use of HLA class II-transgenic (Tg) mice has facilitated identification of antigenic T cell epitopes that may contribute to inflammation in T cell-mediated diseases such as rheumatoid arthritis and multiple sclerosis (MS). In this study, we compared the encephalitogenic activity of three DR2-restricted myelin determinants [mouse (m) myelin oligodendrocyte glycoprotein (MOG)-35-55, human (h)MOG-35-55 and myelin basic protein (MBP)-87-99] in Tg mice expressing the MS-associated DR2 allele, DRB1*1501. We found that mMOG-35-55 peptide was strongly immunogenic and induced moderately severe chronic experimental autoimmune encephalomyelitis (EAE) with white matter lesions after a single injection in Freund's complete adjuvant followed by pertussis toxin. hMOG-35-55 peptide,which differs from mMOG-35-55 peptide by a proline for serine substitution at position 42, was also immunogenic, but not encephalitogenic, and was only partially cross-reactive with mMOG-35-55. In contrast, MBP-87-99, which can induce EAE in double-Tg mice expressing both HLA-DR2 and a human MBP-specific TCR, was completely non-encephalitogenic in HLA-DR2-Tg mice lacking the human TCR transgene. These findings demonstrate potent encephalitogenic activity of the mMOG-35-55 peptide in association with HLA-DR2, thus providing a strong rationale for further study of hMOG-35-55 peptide as a potential pathogenic determinant in humans.  相似文献   

14.
Previous strategies to ameliorate experimental autoimmune encephalitis (EAE) include the treatment of autoreactive T cells with altered peptide ligands, which contain amino acid substitutions at TCR contact residues. We recently showed that a variant of myelin oligodendrocyte glycoprotein (MOG) 35-55 possessing low affinity for MHC (45D) induced anergy in MOG 35-55-specific T cells and reduced their encephalitogenicity upon adoptive transfer. Here we investigate the characteristics of the primary immune response to this MHC anchor-substituted peptide. Overall, we observed that immunization with 45D resulted in the production of IFN-gamma and anti-MOG 35-55 autoantibodies at levels similar to those of MOG 35-55-immunized mice with active EAE. However, no symptoms of clinical or histological EAE or overt histological optic neuritis were observed in 45D-immunized mice. Consistent with this finding, 45D-immunized mice did not exhibit CD4(+) infiltrates into the CNS. Therefore, MOG 35-55-specific precursors stimulated with a weak ligand (45D) mediate some EAE-associated effector functions but are unable to fully initiate the inflammatory process in the central nervous system that leads to clinical manifestation of EAE.  相似文献   

15.
The autoreactive response in murine experimental autoimmune encephalomyelitis (EAE) is dominated by an oligoclonal expansion of V beta 8(+) CD4(+) T cells. These T cells recognize the immunodominant N-terminal nonapeptide of myelin basic protein (MBP1-9) associated with the MHC class II molecule, I-A(u). Amongst the autoreactive cells, T cells bearing TCR containing the CDR3 beta motif Asp-Ala-Gly-Gly-Gly-Tyr (DAGGGY) play a dominant role in the disease process. Here we have investigated the molecular basis for antigen recognition by a representative TCR (172.10) that contains the DAGGGY motif. The roles of the three glycines in this motif in the corresponding TCR-peptide-MHC interactions have been analyzed using a combination of site-directed mutagenesis and surface plasmon resonance. Our data show that mutation of either of the first two glycines (G97, G98) to alanine results in soluble, recombinant TCR that do not bind to recombinant antigen at detectable levels. Mutation of the third glycine (G99) of the 172.10 TCR results in a substantial decrease in affinity. The importance of the triple glycines for antigen recognition provides an explanation at the molecular level for the recruitment of T cells bearing the DAGGGY motif into the responding repertoire during EAE induction.  相似文献   

16.
Experimental autoimmune encephalomyelitis (EAE) is a CD4(+) T cell-dependent, organ-specific autoimmune model commonly used to investigate mechanisms involved in the activation of autoreactive T(h)1 cells. Mitogen-activated protein kinases such as c-Jun N-terminal kinase (Jnk) 1 and 2 play an important role in the differentiation of naive precursors into T(h)1 or T(h)2 effector cells. To investigate the role of Jnk2 on autoimmunity, Jnk2(-/-) and wild-type mice were immunized with the myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide and the onset of EAE studied. Surprisingly, Jnk2(-/-) mice were as susceptible to EAE as wild-type mice, regardless of whether low or high antigen doses were used to induce disease. In vitro stimulation of lymph node cells from Jnk2(-/-) and wild-type mice resulted in comparable proliferation in response to MOG35-55, Mycobacterium tuberculosis and concanavalin A. MOG35-55-specific T cells lacking Jnk2 showed a T(h)1 cytokine profile with IFN-gamma, but no IL-4 or IL-5 production. No differences in the types of infiltrating cells or myelin destruction in the central nervous system were found between Jnk2(-/-) and wild-type mice, indicating that lack of Jnk2 does not alter the effector phase of EAE. Our results suggest that, despite involvement in T(h)1/T(h)2 differentiation in vitro, Jnk2 is necessary neither for the induction nor effector phase of MOG35-55-induced EAE and nor is it required for antigen-specific IFN-gamma production.  相似文献   

17.
目的探讨β-榄香烯对实验性自身免疫性脑脊髓炎(experimental autoimmune encephalomyelitis,EAE)小鼠早期炎性损伤的治疗作用及可能的免疫学机制。方法 6~8周龄健康雌性野生型C57BL/6小鼠(SPF15)共64只,均分为对照组、模型组和β-榄香烯治疗组。采用髓鞘少突胶质细胞糖蛋白(myelinoligodendrocyte glycoprotein peptide35-55,MOG35-55)多肽作为抗原诱发EAE小鼠模型。于免疫后15日剥离脊髓组织进行病理学研究,MTT实验检测EAE小鼠MOG抗原特异性增殖反应及β-榄香烯(β-elemene)对MOG抗原特异性增殖反应的影响,定量PCR技术分别检测各组小鼠脊髓及淋巴结细胞白细胞介素17(interleukin-17,IL-17)、转录因子孤儿核受体(retinoid acid-related orphan receptors-γt,RORγt)、白细胞介素6(interleukin-6,IL-6)、白细胞介素23(interleukin-23,IL-23)、转化生长因子β(transforming growth factor-β,TGF-β)以及叉头蛋白3(Foxp3)的mRNA的表达。结果模型组的神经功能评分高于治疗组(<0.05),治疗组小鼠脊髓炎症及轴索损伤较模型组减轻。免疫后11d,与模型组比较,治疗组小鼠脊髓IL-17、RORγt、IL-6、IL-23的mRNA的表达减少(<0.05),Foxp3mRNA的表达增加(<0.05),并持续至免疫后15d。体外研究发现模型组T淋巴细胞增殖较对照组更明显(<0.05),治疗组β-榄香烯对T淋巴细胞增殖抑制呈现明显的量效关系(<0.05);与模型组比较,治疗组体外培养的淋巴细胞IL-17、RORγt、IL-6、IL-23mRNA表达水平增加,Foxp3mRNA表达水平减少(<0.05)。结论β-榄香烯减轻EAE小鼠早期炎性损伤,可能与其抑制髓鞘少突胶质细胞糖蛋白多肽反应性T细胞的激活以及维持Th17细胞/调节T细胞亚群的平衡密切相关。  相似文献   

18.
CD4(+)CD25(+) regulatory T cells (Treg) control the immune response to a variety of antigens, including self-antigens. Several models support the idea of the peripheral generation of CD4(+)CD25(+) Treg from CD4(+)CD25(-) T cells. Little is known about the endogenous factors and mechanisms controlling the peripheral expansion of CD4(+)CD25(+) Treg. In this study we report on the capacity of the vasoactive intestinal peptide (VIP), an immunosuppressive neuropeptide, to induce functional Treg in vivo during the development of experimental autoimmune encephalomyelitis (EAE), a multiple sclerosis model. The administration of VIP to EAE mice results in the expansion of the CD4(+)CD25(+), Foxp3-expressing T cells in the periphery and the nervous system, which inhibit encephalitogenic T cell activation. In addition to the increase in the number of CD4(+)CD25(+) Treg, VIP induces more efficient suppressors on a per cell basis. The VIP-generated CD4(+)CD25(+) Treg transfer suppression and significantly ameliorate the progression of the disease.  相似文献   

19.
CD25(+)CD4(+) regulatory T cells inhibit the activation of autoreactive T cells in vitro and in vivo, and suppress organ-specific autoimmune diseases. The mechanism of CD25(+)CD4(+) T cells in the regulation of experimental autoimmune encephalomyelitis (EAE) is poorly understood. To assess the role of CD25(+)CD4(+) T cells in EAE, SJL mice were immunized with myelin proteolipid protein (PLP)(139-151) to develop EAE and were treated with anti-CD25 mAb. Treatment with anti-CD25 antibody following immunization resulted in a significant enhancement of EAE disease severity and mortality. There was increased inflammation in the central nervous system (CNS) of anti-CD25 mAb-treated mice. Anti-CD25 antibody treatment caused a decrease in the percentage of CD25(+)CD4(+) T cells in blood, peripheral lymph node (LN) and spleen associated with increased production of IFN-gamma and a decrease in IL-10 production by LN cells stimulated with PLP(130-151) in vitro. In addition, transfer of CD25(+)CD4(+) regulatory T cells from naive SJL mice decreased the severity of active EAE. In vitro, anti-CD3-stimulated CD25(+)CD4(+) T cells from naive SJL mice secreted IL-10 and IL-10 soluble receptor (sR) partially reversed the in vitro suppressive activity of CD25(+)CD4(+) T cells. CD25(+)CD4(+) T cells from IL-10-deficient mice were unable to suppress active EAE. These findings demonstrate that CD25(+)CD4(+) T cells suppress pathogenic autoreactive T cells in actively induced EAE and suggest they may play an important natural regulatory function in controlling CNS autoimmune disease through a mechanism that involves IL-10.  相似文献   

20.
Myelin oligodendrocyte glycoprotein (MOG) is an important myelin target antigen, and MOG-induced EAE is now a widely used model for multiple sclerosis. Clonal dissection revealed that MOG-induced EAE in H-2(b) mice is associated with activation of an unexpectedly large number of T cell clones reactive against the encephalitogenic epitope MOG35-55. These clones expressed extremely diverse TCR with no obvious CDR3alpha/CDR3beta motif(s). Despite extensive TCR diversity, the cells required MOG40-48 as their common core epitope and shared MOG44F as their major TCR contact. Fine epitope-specificity analysis with progressively truncated peptides suggested that the extensive TCR heterogeneity is mostly related to differential recognition of multiple overlapping epitopes nested within MOG37-52, each comprised of a MOG40-48 core flanked at the N- and/or the C-terminus by a variable number of residues important for interaction with different TCR. Abrogation of both the encephalitogenic potential of MOG and T cell reactivity against MOG by a single mutation (MOG44F/MOG44A), together with effective down-regulation of MOG-induced EAE by MOG37-44A-52, confirmed in vivo the primary role for MOG44F in the selection/activation of MOG-reactive T cells. We suggest that such a highly focused T cell autoreactivity could be a selective force that offsets the extensive TCR diversity to facilitate a more "centralized control" of pathogenic MOG-related T cell autoimmunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号