首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
目的 在整体水平上揭示海马区习得性突触传递长时程增强(LTP)的形成机制,并进一步探讨谷氨酸(Glu)浓度与LTP和行为学习之间的关系.方法 使用脑部微量透析法、高效液相色谱法、慢性埋植电极技术进行电生理记录以及对学习行为监测相结合的实验方法 .结果 未进行条件反射训练大鼠海马齿状回(DG)注射α-氨基羟甲基恶唑丙酸(AMPA)受体阻断剂DNQX后,不影响DG区细胞外液中的Glu水平,但其群体峰电位(PS)幅值与给药前相比明显下降P<0.01.在条件反射的训练中,注射DNQX后明显抑制条件反射的形成,且随着训练天数的增加,Glu浓度逐渐增加与开始训练前相比P<0.01,但PS幅值却没有明显的变化P>0.05.结论 AMPA受体在海马DG区习得性LTP的形成过程中起触发作用,此受体的激活是海马DG区习得性LTP形成的必要条件.  相似文献   

2.
目的 观察老年大鼠脑出血后海马齿状回神经干细胞(NSCs)的增殖与分化,探讨脑出血后NSCs的变化规律.方法 制作老年大鼠脑出血模型,5-溴脱氧尿核苷(BrdU)腹腔注射标记增殖细胞,用免疫组化法检测大鼠海马齿状回BrdU、神经元核抗原(NeuN)、胶质纤维酸性蛋白(GFAP)阳性细胞数的变化.结果 正常组和假手术组老年大鼠海马齿状回均有少量BrdU阳性细胞,脑出血后大鼠各时间段的BrdU阳性细胞数目均较正常组和假手术组明显增加,7d组达到峰值后逐渐下降,28d组仍高于正常组和假手术组.正常老年大鼠海马齿状回可见少量BrdU/NeuN和BrdU/GFAP双标阳性细胞,脑出血后双标阳性细胞数较正常组明显增加.结论 脑出血后老年大鼠海马齿状回NSCs增殖明显,且可以向神经元和神经胶质细胞分化.  相似文献   

3.
目的 检测癫痫大鼠模型Ephrin-B3的动态表达,探讨其在颞叶癫痫中致痫作用.方法 SD雄性大鼠随机分成对照组和实验组,构建氯化锂-匹罗卡品癫痫大鼠模型,在癫痫持续状态(SE)诱导成功后7 d(急性期)、14 d(静止期)、60 d(慢性期)分别采用Real-time qPCR、Western blot及免疫组化方法...  相似文献   

4.
目的研究颞叶癫癎模型海马区神经元Akt1表达变化,探讨其在癫癎发生发展中的作用。方法采用氯化锂-匹罗卡品方法制备颞叶癫癎大鼠模型,Western blotting检测海马区总蛋白、Quantity one软件行灰度值分析;免疫组织化学染色观察海马各区Akt1蛋白表达变化,计数不同处理组阳性神经元数目。结果 Western blotting检测结果显示,与正常对照组相比,癫癎模型组大鼠于癫癎持续状态发作即刻海马区Akt1蛋白表达升高(t=2.445,P=0.034),并于第30天时达峰值水平(t=1.214,P=0.002),发作后24 h表达水平迅速降低,并低于正常值范围(t=4.294,P=0.000),其余各测量时间点表达无明显改变;与氯化锂组相比,癫癎模型组大鼠于癫癎持续状态后1h海马区Akt1蛋白表达开始降低,24 h降至最低水平(t=4.134,P=0.000),至发作48 h后开始逐渐升高(t=2.481,P=0.002),并于发作第7天时升至氯化锂组水平。免疫组织化学染色显示,癫癎持续状态发作后海马CA3区Akt1蛋白表达阳性神经元数目立即增加,12h达高峰(t=16.586,P=0.000),48 h减少并降至正常值水平(t=0.357,P=0.089),发作后第10天再次增加(t=3.123,P=0.000),于第30天时阳性神经元数目再次达峰值水平(t=18.339,P=0.000),第50天开始恢复至正常值水平(t=3.219,P=0.000);氯化锂组仅海马CA3区Akt1蛋白表达于实验初始(0 h)升高并高于正常对照组(P<0.05),海马CA1和CA2区Akt1蛋白表达变化组间差异均无统计学意义(P>0.05)。结论海马及海马CA3区Akt1蛋白表达均呈现癫癎持续状态后升高、降低、再升高的动态过程,提示可能存在神经元保护作用,对抗细胞凋亡、促进细胞存活。  相似文献   

5.
目的 探讨颞叶癫痫发作大鼠海马TrkB mRNA及其蛋白表达的动态变化特征。方法 建立匹罗卡品(PILO)颞叶癫痢大鼠模型,应用原位杂交及免疫组织化学方法分别检测致(?)大鼠海马齿状回、CA3区及CA1区TrkB nRNA及其蛋白质表达的变化。结果 PILO致(?)后3~6 h,海马齿状回颗粒细胞层、CA1、CA3区锥体细胞层TrkB mRNA表达显著增高(P<0.01),稍后TrkB蛋白表达也随之增高。第7-30 d,TrkB mRNA及其蛋白在齿状回、CA3区呈现第二次表达增强。结论在癫(?)发作早期,TrkB表达增强,提示其可能参与急性癫痫状态的发生;后期表达增强则可能参与了海马的可塑性反应而与慢性自发性发作形成有关。  相似文献   

6.
目的探讨慢性脑缺血大鼠海马区和齿状回突触素表达水平变化与学习记忆之间的关系。方法永久性结扎大鼠双侧颈总动脉,制备慢性前脑缺血大鼠致痴呆实验动物模型,通过水迷宫实验动态观察大鼠空间学习能力;应用免疫组织化学染色法测定慢性脑缺血后大鼠海马区与齿状回突触素表达水平的变化。结果手术后,实验组大鼠的学习记忆能力下降,游迷宫时间延长,进入盲端次数增加,并随缺血时间的延长而逐渐加重,缺血4周后与对照组相比差异有显著性意义(P<0.05)。手术后,实验组大鼠海马区等部位的神经细胞胞浆深染、变性并发生坏死,随着缺血时间的延长,神经细胞逐渐减少,胶质细胞增多。手术后第4周,海马区和齿状回突触素阳性产物表达明显减少(均P<0.05),至第16周或第12周减少最为明显(P<0.05)。结论慢性脑缺血大鼠空间学习记忆力减退可能与海马区和齿状回突触数量减少相关。  相似文献   

7.
BACKGROUND: The present study analyzed the effect of 3 days (2 h/d) intrauterine hypoxia on learning and memory in juvenile rats, as well as the therapeutic effects of Angelica sinensis on dentate gyrus neurons, as well as learning and memory. OBJECTIVE: To explore the effects of intrauterine hypoxia on hippocampal dentate gyrus neurons, as well as learning and memory, in juvenile rats; to explore N-methyI-D-aspartate receptor-1 (NMDAR1) expression in the dentate gyrus of neonatal rats following intrauterine hypoxia, as well as prolonged hypoxia; to investigate the regulatory mechanisms of Angelica sinensis. DESIGN, TIME AND SETTING: A randomized and controlled experiment based on developmental neurobiology was performed at the Department of Histology and Embryology in Luzhou Medical College from October 2007 to October 2008. MATERIALS: Angelica sinensis solution (250 g/L) was obtained from Central South Hospital of Wuhan University, China. Neuron-specific enolase and NMDAR1 mRNA in situ hybridization reagents were provided by Wuhan Boster Biological Technology, China. Image-Pro Plus 6.0 analysis system was purchased from Media Cybernetics, USA. METHODS: Healthy pregnant Sprague Dawley rats (n = 30) were randomly divided into control (n = 10), hypoxia (n = 10), and Angelica (n = 10) groups. The Angelica and hypoxia pregnant rats were placed in a three-gas incubator (oxygen concentration: 13%) starting with day 14 of pregnancy for 2 hours/day for 5 consecutive days to establish a fetal rat intrauterine hypoxia model. One hour prior to modeling, the pregnant rats from the Angelica and hypoxia groups received Angelica sinensis and normal saline (8 mL/kg) injections, respectively, through the caudal vein. The control group procedures were identical to the hypoxia group, but lacked the hypoxic conditions. MAIN OUTCOME MEASURES: Brain tissues of neonatal rats were used to detect expression of NMDAR1 mRNA, and brain tissues of juvenile rats aged 30 days were used to determine neuron-specific enolase mRNA expression by in situ hybridization. Microscopic images (400x) of the hippocampal dentate gyrus were collected. The integral optical density (IOD) value of positive NMDAR1 mRNA cells in the dentate gyrus of neonatal rats, as well as the quantity and the IOD value of positive neuron-specific enolase mRNA cells in the dentate gyrus of juvenile rats, were analyzed with Image-Pro IPP6.0 software. At 30 days after birth, learning and memory parameters were measured in the juvenile rats using Morris water maze. RESULTS: The quantity and the IOD value of positive neuron-specific enolase mRNA cells in the dentate gyrus of the hypoxia group juvenile rats were significantly less than the control group (P 〈 0.05), and also less than the Angelica group (P 〈 0.05). The IOD value of positive NMDAR1 mRNA cells in the dentate gyrus of the hypoxia group neonatal rats was significantly greater than the control group, and also greater than the Angelica group (P 〈 0.05). In the Morris water maze, the searching time during the probe trial and reversal probe trial was shorter in the hypoxia group juvenile rats compared with the control group, and the Angelica group was prolonged compared with the hypoxia group (P 〈 0.05). CONCLUSION: Intrauterine hypoxia increased expression of NMDAR1 mRNA in the dentate gyrus of neonatal rats, reduced the number of dentate gyrus neurons, and negatively affected learning and memory in juvenile rats. In contrast, Angelica sinensis injection improved the intrauterine hypoxic condition, increased the number of dentate gyrus neurons, and improved the learning and memory deficits of the juvenile rats.  相似文献   

8.
BACKGROUND: The mobilization of endogenous stem cells is an effective way to promote repair following ischemic brain damage. Buyang Huanwu decoction (BHD) can effectively improve cerebral blood flow and protect against cerebral ischemia/reperfusion damage. OBJECTIVE: To study the effects of BHD on cell proliferation and differentiation in the hippocampal dentate gyrus of rats following cerebral infarction, to investigate the protective effects of BHD against cerebral infarction, and to analyze the dose-effect relationship. DESIGN, TIME AND SETTING: This randomized, controlled, animal study was performed at the Laboratory of Department of Physiology, Henan College of Traditional Chinese Medicine, China from June 2007 to February 2008. MATERIALS: A total of 36 male, Sprague Dawley rats, aged 20-21 months, were equally and randomly assigned to the following groups: sham operation, model control, and nimodipine, as well as high-dose, moderate-dose, and low-dose BHD. BHD was composed of milkvetch root, Chinese angelica, red peony root, earthworm, peach seed, safflower, and Szechwan Iovage rhizome, which were provided by the Outpatient Department, Henan College of Traditional Chinese Medicine, China. METHODS: The Chinese medicinal ingredients described above were decocted. The external carotid artery was ligated in rats from the sham operation group. Rat models of focal cerebral infarction were established by middle cerebral artery occlusion in the model control and nimodipine groups, as well as the high-dose, moderate-dose, and low-dose BHD groups. The drugs were administered by gavage 5 days, as well as 2 hours, prior to model induction. Rats in the nimodipine group were daily administered a 6 mg/kg nimodipine suspension by gavage. Rats in the high-dose, moderate-dose, and low-dose BHD groups were administered daily 26, 13, and 6.5 g/kg BHD, respectively. Rats in the sham operation and model control groups were treated with an equal volume of saline. MAIN OUTCOME MEASURES: The effects of BHD on neurological dysfunction score, brain water content, cell proliferation and differentiation in the hippocampal dentate gyrus, and pathological changes in the ischemic brain hemisphere were measured in cerebral infarction rats. RESULTS: Compared with the sham operation group, the neurological dysfunction score, brain water content, number of BrdU-positive cells, BrdU/NeuN-positive cells, and BrdU/GFAP-positive cells in the hippocampal dentate gyrus significantly increased in the model control group (P 〈 0.01 ). Compared with the model control group, neurological dysfunction score and brain water content were significantly decreased (P 〈 0.01 or 0.05), as were the number of BrdU-positive and BrdU/NeuN-positive cells (P 〈 0.01 or 0.05). The number of BrdU/GFAP-positive cells was significantly reduced (P 〈 0.05) in the nimodipine group, high-dose, moderate-dose, and low-dose BHD groups. Compared with the nimodipine group, the neurological dysfunction score was significantly reduced in the moderate-dose BHD group (P 〈 0.05). However, the number of BrdU-positive cells was significantly increased in the rat hippocampal dentate gyrus in the high-dose and moderate-dose BHD groups (P 〈 0.01 or 0.05). The following was determined by microscopy: slightly disarranged neural cells, mild vascular dilatation, inflammatory cell infiltration, and light tissue edema were observed in the nimodipine group; inflammatory celt infiltration was reduced in the low-dose BHD group; cerebral edema and inflammatory cell infiltration were significantly reduced in the high-dose and in the moderate-dose BHD group. Electron microscopy revealed lipofuscin, slightly swollen mitochondria, and normal rough endoplasmic reticulum in the high-dose and moderate-dose BHD groups. Improvement was best in the moderate-dose BHD group. CONCLUSION: Cerebral ischemia activated proliferation of neural stem cells in the rat hippocampal dentate gyrus. The actions of BHD against cerebral ischemia/reperfusion damage correlated with proliferation and differentiation of neural stem cells in the hippocampal dentate gyrus. A moderate-dose of BHD resulted in the most effective outcome.  相似文献   

9.
GAD在颞叶癫痫大鼠海马内源性促痫机制中的作用   总被引:1,自引:0,他引:1  
目的:探讨GAD65、GAD67在颞叶癫痫发生后海马内源性促痫机制中的作用。方法:112只雄性SD大鼠随机分为实验组(n=70)与对照组(n=42),实验组大鼠选用海人酸腹腔注射法建立颞叶癫痫模型,对照组大鼠腹腔注射无菌生理盐水。选取腹腔注射后3小时、6小时、12小时、24小时、48小时、7天、30天为研究的时间点,颞叶海马的CA1区、CA3区、齿状回为研究部位。腹腔给药后每天观察大鼠的行为学变化,大鼠处死前进行EEG描记。用原位杂交方法检测不同时间点海马不同区域GAD65、GAD67mRNA的表达,免疫组织化学法检测GAD65、GAD67蛋白的表达。结果:实验组大鼠海马GAD65 mRNA及其蛋白的表达随时间呈逐渐增高趋势,致痫后48小时~30天,GAD65 mRNA及其蛋白表达较对照组增高(48小时P<0.05;7~30天P<0.01);海人酸致痫后6小时、24小时实验组大鼠海马的GAD67mRNA及其蛋白表达较对照组增高(分别为P<0.01、P<0.05)。结论:颞叶癫痫急性期海马GAD67表达的增高及慢性期海马GAD65表达的增高是癫痫发生后机体的内源性抗痫机制。  相似文献   

10.
目的了解难治性癫癎患者脑组织中单核细胞趋化蛋白-1(monocyte chemoattractant protein-1, MCP-1)的表达,探索其在难治性癫癎发病机制中的作用。方法在基因芯片扫描获阳性结果基础上,用免疫组织化学方法研究40例难治性癫癎患者脑组织中MCP-1的表达,并与对照组进行比较。结果基因芯片扫描显示MCP-1 mRNA表达上调,免疫组化结果进一步证实MCP-1在难治性癫癎患者脑组织中的表达较对照组明显增多(P<0.05)。结论MCP-1在难治性癫癎的发病机制中可能起着重要作用,阻断MCP-1有可能改变难治性癫癎的预后。  相似文献   

11.

Background and Purpose

There is recent evidence of various types of morphological changes in the hippocampus of a rodent model of medial temporal lobe epilepsy (mTLE). However, little is known about such changes in humans. We examined the histological changes [i.e., neuronal loss, cell genesis, and granule cell dispersion (GCD)] in surgical hippocampal specimens taken from patients with mTLE.

Methods

Nissl staining, and nestin and Prox1 immunohistochemistry were performed on human hippocampal specimens obtained from patients with medically intractable mTLE, thus allowing the analysis of neuronal loss, cell genesis, and GCD, respectively. We also assessed the correlations between clinical parameters and the histopathologic findings.

Results

The degree of cell genesis in the granule cell layer was significantly correlated with the severity of GCD, history of childhood febrile seizures, and frequent generalized seizures. Cell genesis was not correlated with cell death, age at seizure onset, duration of epilepsy, or the mean frequency of all seizures.

Conclusions

Our results indicate that cell genesis in the dentate gyrus of patients with mTLE is associated with GCD and is influenced by the presence of febrile seizures during childhood and the frequency of episodes of generalized seizures.  相似文献   

12.
The hippocampal formation is highly vulnerable to the aging process, demonstrating functional alterations in circuitry with aging. Aging may also change the sensitivity of the hippocampal formation to excitotoxic lesions. In this study, using young adult, middle aged, and aged Fischer 344 rats, we evaluated morphometric changes in the dentate gyrus as a function of age and also in response to an administration of an excitotoxin (kainic acid) into the right lateral ventricle. The dentate gyrus was measured for changes in the area of dentate hilus and the dentate granule cell layer, alterations in the width of the dentate granule cell layer, and degree of dentate hilar cell loss. With aging, the hilar area increased in size while the area and width of the dentate granule cell layer remained constant. However, the most striking change with aging was a significant reduction in the number of dentate hilar neurons. Intracerebroventricular kainic acid produced consistent lesions in the entire ipsilateral CA3 region, and the size of CA3 lesion was identical in all three ages of animals. Following the lesion, areas of both the dentate hilus and the granule cell layer were significantly decreased in only young adult and middle aged animals whereas the width of the dentate granule cell layer was significantly increased only in the middle aged group. In contrast, dentate hilar neurons were significantly reduced in all ages of animals with the maximum reductions in neuron number observed in the aged group. Thus, aging in the dentate gyrus is characterized by a significantly decreased number of dentate hilar neurons and also a significantly increased susceptibility of dentate hilar neurons to excitotoxic damage.  相似文献   

13.
目的:动态观察小分子GTPase Rho家族的Rnd1 mRNA及其蛋白在氯化锂-毛果芸香碱(匹罗卡品)致痫大鼠模型海马中的表达变化,探讨其在颞叶癫痫发生发展中的作用。方法:在氯化锂-毛果芸香碱颞叶癫痫模型中应用逆转录聚合酶链反应(RT—PCR)检测癫痫持续发作(SE)后各时间点海马内Rnd1 mRNA的表达变化,并运用免疫组织化学染色法及Neo—Timm染色法分别检测齿状回门区、CA1区及CA3区中该蛋白在不同时间点的表达变化及苔藓纤维出芽(MFS)情况。结果:实验发现模型组于SE后8h内即出现Rnd1表达上调,SE后约1d达高峰,7d左右回复至对照组水平,此后其mRNA表达水平与对照组相似;而免疫组化染色发现Rnd1蛋白表达从SE后8h内即开始上调,约3d达高峰,至7d虽略有回落,但仍高于对照组水平,且这种情况可一直持续至慢性期。结论:急性期海马齿状回门区Rnd1表达上调可能通过促进MFS的发生参与了颞叶癫痫的发生。  相似文献   

14.
15.
Early postnatal experience shapes both inhibitory and excitatory networks in the hippocampus. However, the underlying circuit plasticity is unclear. Using an enriched environment (EE) paradigm during the preweaning period in mice of either sex, we assessed the circuit plasticity of inhibitory cell types in the hippocampus. We found that cholecystokinin (CCK)-expressing basket cells strongly increased somatic inhibition on the excitatory granular cells (GCs) following EE, whereas another pivotal inhibitory cell type, parvalbumin (PV)-expressing cells, did not show changes. Using electrophysiological analysis and the use of cannabinoid receptor 1 (CB1R) agonist WIN 55 212–2, we demonstrate that the change in somatic inhibition from CCK+ neurons increases CB1R-mediated inhibition in the circuit. By inhibiting activity of the entorhinal cortex (EC) using a chemogenetic approach, we further demonstrate that the activity of the projections from the EC mediates the developmental assembly of CCK+ basket cell network. Altogether, our study places the experience-dependent remodeling of CCK+ basket cell innervation as a central process to adjust inhibition in the dentate gyrus and shows that cortical inputs to the hippocampus play an instructional role in controlling the refinement of the synaptic connections during the preweaning period.SIGNIFICANCE STATEMENT Brain plasticity is triggered by experience during postnatal brain development and shapes the maturing neural circuits. In humans, altered experience-dependent plasticity can have long-lasting detrimental effects on circuit function and lead to psychiatric disorders. Yet, the cellular mechanisms governing how early experience fine-tunes the maturing synaptic network is not fully understood. Here, taking advantage of an enrichment-housing paradigm, we unravel a new plasticity mechanism involved in the maintenance of the inhibitory to excitatory balance in the hippocampus. Our findings demonstrate that cortical activity instructs the assembly of the CCK+ basket cell network. Considering the importance of this specific cell type for learning and memory, experience-dependent remodeling of CCK+ cells may be a critical determinant for establishing appropriate neural networks.  相似文献   

16.
目的 探讨丰富环境对颞叶癫(痫)大鼠齿状回新生细胞分化和存活的影响及其相关分子机制.方法 成年Wistar 大鼠随机分为4组:假手术组、丰富环境+假手术组、癫(痫)组、丰富环境+癫(痫)组,各组均n=15.大鼠侧脑室注射海人酸制作颞叶癫(痫)模型.丰富环境干预30 d后,应用免疫荧光技术观察大鼠海马齿状回的新生细胞分化和存活情况,用Western blot方法检测各组海马脑源性神经营养因子(BDNF)、cAMP应答元件结合蛋白(pCREB)、蛋白激酶A(PKA)表达水平.结果 丰富环境+假手术组、丰富环境+癫(痫)组齿状回新生细胞标记物(BrdU)和新生成熟神经细胞标记物(BrdU/NeuN)阳性细胞数分别多于假手术组、癫(痫)组(P<0.05),而新生星形胶质细胞BrdU/GFAP阳性细胞数无统计学意义,并且丰富环境+假手术组、丰富环境+癫(痫)组海马BDNF和pCREB蛋白表达水平分别高于假手术组、癫(痫)组(P<o.05),而PKA蛋白表达水平无增高.结论 丰富环境可能通过增强pCREB/BDNF通路促进成年颞叶癫(痫)大鼠海马齿状回的神经发生.  相似文献   

17.
Masako Isokawa 《Epilepsia》2000,41(S6):S14-S17
Summary: Purpose : To study when dendritic alteration can occur in the epileptic hippocampus and how it is influenced by epileptic axonal reorganization.
Methods : Human specimens and the rat pilocarpine model were used. Dentate granule cells (DGCs) were visualized by intracellular biocytin injection for spine count.
Results : In the rat pilocarpine model, dendrites of DGCs revealed a generalized spine loss immediately after the acute status epilepticus induced by pilocarpine. However, this generalized damage was transient and was followed by recovery and plastic changes in spine shape and density, which occurred 15 to 35 days after the initial acute status, i.e., during the period of establishing a chronic phase of this model with the induction of spontaneous seizures. In human epileptic hippocampi, spine density was significantly higher when DGCs generated aberrant mossy fiber collaterals. This was particularly so in the proximal dendrite of DGCs, where the aberrant collaterals were densely localized. These findings suggest that initial acute seizures do not cause permanent damage in dendrites and spines of DGCs and that dendritic spines of epileptic neurons can respond to changes in the local cellular environment, including newly formed afferents, in a plastic manner.
Conclusion : Dendritic spines are dynamically maintained in chronic epilepsy during the course of establishment and maintenance of spontaneous seizures. Local dendritic spine alteration, detected later in the chronic phase of epilepsy, must have a separate cause from initial acute insults.  相似文献   

18.
The proliferation of hippocampal dentate gyrus granule cells was investigated using 3H-thymidine incorporation in control and estrogen-treated rats. Newborn 3-day old female Wistar rats were treated with a single dose of 1 mg of estradiol and 30 μCi 3H-thymidine, and were sacrificed when 10 days old. The total number of neurons and the number of labeled granule cells in the granular layer and its subdivisions of both suprapyramidal and infrapyramidal limbs were analyzed using a stereological method. In both limbs, the total number of neurons as well as the total number of labeled granule cells in the granular layer were significantly increased in treated rats compared to corresponding controls. The thicknesses of the molecular and the granular layers and their subdivisions of both suprapyramidal and infrapyramidal limbs were analyzed using a stereological method. In treated female rats the molecular layer (ML) in both limbs was significantly decreased, and the granular layer (GL) was significantly increased in suprapyramidal limb. However, in the infrapyramidal limb an increased number of labeled cells in treated animals were significant in all particular zones of the granular layer. In the suprapyramidal limb's granular layer a significant increase in labeled cells was observed in subgranular zone (SGZ). Our results suggest a differential effect of estradiol on thicknesses of the ML and the GL, and dentate gyrus granule cells proliferation through the early rat life.  相似文献   

19.
In temporal lobe epilepsy, the ability of the dentate gyrus to limit excitatory cortical input to the hippocampus breaks down, leading to seizures. The dentate gyrus is also thought to help discriminate between similar memories by performing pattern separation, but whether epilepsy leads to a breakdown in this neural computation, and thus to mnemonic discrimination impairments, remains unknown. Here we show that temporal lobe epilepsy is characterized by behavioral deficits in mnemonic discrimination tasks, in both humans (females and males) and mice (C57Bl6 males, systemic low-dose kainate model). Using a recently developed assay in brain slices of the same epileptic mice, we reveal a decreased ability of the dentate gyrus to perform certain forms of pattern separation. This is because of a subset of granule cells with abnormal bursting that can develop independently of early EEG abnormalities. Overall, our results linking physiology, computation, and cognition in the same mice advance our understanding of episodic memory mechanisms and their dysfunction in epilepsy.SIGNIFICANCE STATEMENT People with temporal lobe epilepsy (TLE) often have learning and memory impairments, sometimes occurring earlier than the first seizure, but those symptoms and their biological underpinnings are poorly understood. We focused on the dentate gyrus, a brain region that is critical to avoid confusion between similar memories and is anatomically disorganized in TLE. We show that both humans and mice with TLE experience confusion between similar situations. This impairment coincides with a failure of the dentate gyrus to disambiguate similar input signals because of pathologic bursting in a subset of neurons. Our work bridges seizure-oriented and memory-oriented views of the dentate gyrus function, suggests a mechanism for cognitive symptoms in TLE, and supports a long-standing hypothesis of episodic memory theories.  相似文献   

20.
Oestrogens are known to exert significant structural and functional effects in the hippocampus of adult rodents. The dentate gyrus of the hippocampus retains the ability to produce neurones throughout adulthood and 17β-oestradiol has been shown to influence hippocampal neurogenesis in adult female rats. The effects of other oestrogens, such as oestrone and 17α-oestradiol, on neurogenesis have not been investigated. The present study aimed to investigate the effects of 17β-oestradiol, oestradiol benzoate, oestrone, and 17α-oestradiol on cell proliferation in ovariectomised adult female rats at two different time points. Young ovariectomised female rats were injected with one of the oestrogens at one of three doses. In Experiment 1, rats were exposed to the hormone for 4 h and, in Experiment 2, rats were exposed to the hormone for 30 min prior to 5-bromo-2-deoxyuridine injection to label proliferating cells and their progeny. We found that young ovariectomised females responded with increased cell proliferation to most oestrogens, except oestradiol benzoate, after 30 min of exposure. However, administration of oestrogens for a longer time interval was ineffective at increasing cell proliferation. After 30 min, 17β-oestradiol and oestrone increased cell proliferation at low (0.3 μg) and high (10 μg) doses, whereas 17α-oestradiol increased cell proliferation at medium (1 μg) and high doses. The results of the present study indicate that different oestrogens rapidly increase cell proliferation in a dose-dependent manner, possibly through a nonclassical, nongenomic mechanism. Future experiments should focus on further elucidating the specific pathways utilised by each oestrogen. These results have important therapeutic implications because it may be possible to use 17α-oestradiol and lower doses of oestrogens in hormone replacement therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号