首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cutaneous sensitization to reactive haptens and subsequent challenge results in a T cell-mediated response, contact hypersensitivity (CHS). Recent results from this laboratory have indicated that hapten sensitization induces two populations of reactive T cells: CD8+ T cells producing interferon (IFN)-γ which mediate the response and CD4+ T cells producing interleukin (IL)-4 and IL-10 which negatively regulate the magnitude and duration of the response. Since CD4+ T cell development to either IFN-γ- (Th1) or IL-4/IL-10- (Th2)-producing cells is dependent upon the cytokine environment during antigen priming, we hypothesized that CD4+ T cell induction in a Th1-promoting environment would not only alter the CD4+ T cell cytokine-producing phenotype but also the course of the CHS response. Administration of the Th1-promoting cytokine IL-12 during hapten sensitization resulted in a CHS response of greater magnitude following challenge and extended the duration of the response. In hapten-sensitized mice depleted of CD8+ T cells, treatment with IL-12 induced effector CD4+ T cells. Histological examination of challenged ear tissue from these mice indicated minimal edema and an acute mononuclear cell infiltration more typical of classical delayed-type hypersensitivity than CHS. Hapten-primed CD4+ T cells from IL-12 treated, sensitized mice produced IFN-γ, but not IL-4 in response to T cell receptor-mediated stimulation. Use of neutralizing anti-IFN-γ antibody indicated that IL-12 not only directly promoted Th1 development but also indirectly inhibited Th2 development through stimulation of IFN-γ production at the time of hapten sensitization. Overall, these results demonstrate that diversion of CD4+ T cell development to Th1 effector cells rather than to Th2 cells alters the efferent nature of CHS and removes a primary regulatory mechanism of the immune response.  相似文献   

2.
Lactobacillus casei reduces CD8+ T cell-mediated skin inflammation   总被引:1,自引:0,他引:1  
Probiotics, including Lactobacilli, have been postulated to alleviate allergic and inflammatory diseases, but evidence that they exert an anti-inflammatory effect by immune modulation of pathogenic T cell effectors is still lacking. The aim of this study was to examine whether L. casei could affect antigen-specific T cell-mediated skin inflammation. To this end, we used contact hypersensitivity to the hapten 2,4-dinitrofluorobenzene, a model of allergic contact dermatitis mediated by CD8+ CTL and controlled by CD4+ regulatory T cells. Daily oral administration of fermented milk containing L. casei or L. casei alone decreased skin inflammation by inhibiting the priming/expansion of hapten-specific IFN-gamma-producing CD8+ effector T cells. The down-regulatory effect of the probiotics required the presence of CD4+ T cells, which control the size of the hapten-specific CD8+ T cell pool primed by skin sensitization. L. casei cell wall was as efficient as live L. casei to regulate both the CHS response and the hapten-specific CD8+ T cell response, suggesting that cell wall components contribute to the immunomodulatory effect of L. casei. This study provides the first evidence that oral administration of L. casei can reduce antigen-specific skin inflammation by controlling the size of the CD8+ effector pool.  相似文献   

3.
Originally recognized as a regulator of axon guidance in the nervous system, Semaphorin 4D (Sema4D, CD100) also participates in various immune responses and many immune-related diseases. However, whether Sema4D is involved in the pathogenesis of contact hypersensitivity (CHS) remains unclear. In this study, we explored the role of Sema4D in oxazolone-induced CHS using Sema4D knockout (KO) mice. We found that Sema4D KO mice developed attenuated CHS responses, as indicated by milder ear-swelling, lower expression of IL-1β, IL-6, CXCL2 and CXCL5, and decreased recruitment of neutrophils, CD8+ T cells and CD4+ T cells. CHS was impaired in the wide type (WT) mice reconstituted with bone marrow from Sema4D KO mice, indicating that deletion of Sema4D gene in hematopoietic cells played a key role in the alleviated CHS in Sema4D KO mice. CHS was also attenuated in the WT mice transferred with draining lymph nodes (dLNs) cells from oxazolone-sensitized Sema4D KO mice, and the activation and differentiation of hapten-specific CD8+ T cells were impaired in Sema4D KO mice. Furthermore, Sema4D KO mice expressed less IL-1β and CXCL2 than WT mice after oxazolone sensitization, and after transferred with dLNs cells from oxazolone-sensitized WT mice, naïve Sema4D KO mice showed attenuated CHS responses upon oxazolone challenge, indicating that the innate immune response of CHS in Sema4D KO mice was also abrogated. Taken together, our findings revealed for the first time that Sema4D positively regulated both the adaptive and innate immune responses in CHS.  相似文献   

4.
Contact hypersensitivity (CHS) is a T-cell-mediated immune response to cutaneous sensitization and subsequent challenge with haptens such as dinitrofluorobenzene and oxazolone. Clinically, contact sensitivity, also called allergic contact dermatitis, is a frequently observed dermatosis in industrialized countries. Experimental CHS in mice has been used by many laboratories as a model of T-cell-mediated immune responses to antigens deposited onto the skin to study the priming, development, and function of effector and regulatory T-cell components during these responses. In this article we discuss the mechanism of T-cell priming by hapten-presenting Langerhans cells and how the priming environment influences the development of these hapten-specific T cells to different functional phenotypes during sensitization for the CHS response. Finally, we propose a model of negative regulation of the CHS response by T-cell components that are coincidentally primed with the effector T cells mediating the response. Overall, these aspects indicate a unique immune response mediated and regulated by specialized antigen-presenting cells and T-cell populations.  相似文献   

5.
Contact hypersensitivity (CHS) is a CD8+ T cell-mediated, inflammatory response to hapten sensitization and challenge of the skin. During sensitization, the magnitude and duration of hapten-specific CD8+ T cell expansion in the skin-draining lymph nodes (LN) are restricted by CD4+CD25+ T regulatory cells (Treg). The regulation of hapten-specific CD8+ T cell priming in Class II MHC-deficient (MHC-/-) mice was investigated. Although hapten-specific CD8+ T cell priming and CHS responses were elevated in Class II MHC-/- versus wild-type mice, presensitization depletion of CD4+ or CD25+ cells in Class II MHC-/- mice further increased CD8+ T cell priming and the elicited CHS response. Flow cytometry analyses of LN cells from Class II MHC-/- mice revealed a population of CD4+ T cells with a majority expressing CD25. Forkhead box p3 mRNA was expressed in LN cells from Class II MHC-/- and was reduced to background levels by depletion of CD4+ or CD25+ cells. Isolated CD4+CD25+ T cells from wild-type and Class II MHC-/- mice limited in vitro proliferation of alloantigen- and hapten-specific T cells to antigen-presenting stimulator cells. These results identify functional CD4+CD25+ Treg in Class II MHC-/- mice, which restrict hapten-specific CD8+ T cell priming and the magnitude of CHS responses.  相似文献   

6.
Extracorporeal photochemotherapy (ECP) that takes advantage of the immunomodulatory effects of UV light has been extensively used for many years for the treatment of several T cell–mediated diseases, including graft-versus-host disease (GvHD) and systemic scleroderma. Immune mechanisms that lead to the establishment of T cell tolerance in ECP-treated patients remain poorly known. In this study, we have tested the effect of UV/psoralen-treated BM-derived dendritic cells, referred to as ECP-BMDCs on the outcome of an antigen-specific T cell-mediated reaction, that is, contact hypersensitivity (CHS), which is mediated by CD8+ effector T cells (CD8+Teff). The intravenous (i.v.) injection of antigen-pulsed ECP-BMDCs in recipient C57BL/6 mice induced specific CD8+ T cells endowed with immunomodulatory properties (referred to as CD8+TECP), which prevented the priming of CD8+Teff and the development of CHS, independently of conventional CD4+ regulatory T cells. CD8+TECP mediated tolerance by inhibiting the migration and functions of skin DC and subsequently the priming of CD8+Teff. CD8+TECP displayed none of the phenotypes of the usual CD8+T regulatory cells described so far. Our results reveal an underestimated participation of CD8+ T cells to ECP-induced immunomodulation that could explain the therapeutic effects of ECP in T cell-mediated diseases.  相似文献   

7.
Recent studies have suggested Fas‐mediated elimination of antigen‐presenting cells as an important mechanism down‐regulating the induction of autoimmune responses. It remains unknown whether this mechanism restricts the magnitude of immune responses to non‐self antigens. We used a mouse model of a cutaneous CD8+ T‐cell‐mediated immune response (contact hypersensitivity, CHS) to test if CD4+CD25+ T cells expressing FasL regulate hapten‐specific effector CD8+ T cell expansion through the elimination of Fas‐expressing hapten‐presenting DC. In WT mice, attenuation of CD4+CD25+ T regulatory cell activity by anti‐CD25 mAb increased hapten‐presenting DC numbers in skin‐draining LN, which led to increased effector CD8+ T‐cell priming for CHS responses. In contrast, CD4+CD25+ T cells did not regulate hapten‐specific CD8+ T‐cell priming and CHS responses initiated by Fas‐defective (lpr) DC. Thus, restricting DC priming functions through Fas–FasL interactions is a potent mechanism employed by CD4+CD25+ regulatory cells to restrict CD8+ T‐cell‐mediated allergic immune responses in the skin.  相似文献   

8.
Interleukin (IL)-2 functions to promote, as well as down-regulate, expansion of antigen-reactive CD4+ and CD8+ T cells, but the role of IL-2 in hapten-specific CD8+ T cell priming for contact hypersensitivity (CHS) responses remains untested. Using enzyme-linked immunospot to enumerate numbers of hapten-specific CD4+ and CD8+ T cells producing IL-2 in hapten-sensitized mice, the number of IL-2-producing CD8+ T cells was tenfold that of CD4+ T cells. Hapten-primed CD4+ T cells produced low amounts of IL-2 during culture with hapten-presenting Langerhans cells, whereas production by hapten-primed CD8+ T cells was fivefold greater. CD8+ T cells did not express CD25 during hapten priming, but treatment with anti-IL-2 or anti-CD25 monoclonal antibodies during hapten sensitization increased hapten-specific effector CD8+ T cells as well as the magnitude and duration of the CHS response. These results indicate that CD8+ T cells are the primary source of IL-2 and that this IL-2 is required for the function of a population of CD(4+)CD25+ T cells to restrict the development of the hapten-reactive effector CD8+ T cells that mediate CHS responses.  相似文献   

9.
The present study shows that Langerhans cells of the buccal mucosa and the skin share a similar phenotype, including in situ expression of MHC class II, the mannose receptor DEC-205 and CD11c, and absence of the costimulatory molecules B7.1, B7.2 and CD40 as well as Fas. Application of 2,4-dinitrofluorobenzene (DNFB) onto the buccal mucosa is associated with a rapid migration of dendritic cells (DC) to the epithelium and induction of B7.2 expression on some DC. Buccal sensitization with DNFB elicited a specific contact sensitivity (CS) in response to skin challenge, mediated by class I-restricted CD8+ effector T cells and down-regulated by class II-restricted CD4+ T cells, demonstrated by the lack of priming of class I-deficient mice and the enhanced response of class II-deficient mice, respectively. CS induced by buccal immunization is associated with priming of class I-restricted CD8+ effector T cells endowed with hapten-specific cytotoxic activity. Thus, the buccal epithelium is an inductive site, equivalent to the epidermis, for the generation of CS independent of CD4 help, and of cytotoxic T lymphocyte (CTL) responses mediated by class I-restricted CD8+ T cells. We propose that immunization through the buccal mucosa, which allows antigen presentation by epithelial DC efficient for priming systemic class I-restricted CD8+ CTL, may be a valuable approach for single-dose mucosal vaccination with subunit vaccines.  相似文献   

10.
Low zone tolerance (LZT) to contact allergens is induced by epicutaneous exposure to haptens in subsensitizing doses resulting in an inhibition of contact hypersensitivity (CHS), which, in contrast, occurs after sensitization with immunogenic doses of allergens. Performing the protocol of tolerance induction resulted in robust LZT to allergens in B cell-deficient mice in vivo, indicating that B cells are not required for the induction and effector phase of LZT. However, CHS reactions in vivo were restricted in B cell-deficient mice as compared to wild-type (WT) mice. In contrast, analysis of hapten-specific T cell activation in vitro revealed a strong proliferative response of T cells derived from both WT and B cell-deficient sensitized mice. Similar to WT animals, T cells obtained from tolerized B cell-deficient mice produced a Tc2 cytokine pattern of LZT with high levels of IL-4 and IL-10, whereas sensitization of B cell-deficient mice resulted in the typical Tc1 cytokine profile of CHS. Adoptive transfer of CD8+ effector T cells from tolerized or sensitized B cell-deficient mice induced significant LZT or CHS reactions, respectively, in WT recipients, demonstrating that the development of hapten-specific effector CD8+ T cells of LZT and CHS is independent of B cells.  相似文献   

11.
12.
The chemotherapeutic agent methotrexate is widely used in the treatment of breast cancer. Although its mechanism-of-action has been defined, less is known about its interaction with Ag-specific T cell-mediated antitumor responses. Type 1 CD8 T cell-mediated immune responses (Tc1) are cytolytic, produce IFN-gamma and are associated with effective antitumor responses. Using a murine transgenic TCR tumor model, we show that single-dose-treatment with methotrexate enhanced CD8-mediated type 1 antitumor responses when administered three days prior to Tc1 effector cell transfer. Co-treatment with methotrexate not only enhanced donor Tc1 cell accumulation and persistence at sites of primary tumor growth, but also promoted elevated levels of activated CD25+ expressing donor TIL cells. This correlated with a marked decrease in the appearance of endogenous differentiated (CD44High) CD3/CD8/CD49b and CD3/CD4/CD49b tumor-infiltrating effector T cells at both early (Days 1–8) and late (Days 12–20) stages following treatment when compared to that of corresponding groups receiving either MTX or Tc1 cell transfer alone. Moreover, such cellular response kinetics appeared to further correlate with the down-regulation of endogenous CD4/CD44High/CD49b effector T cells producing IL-10 and delays in tumor growth in vivo. This suggested that Ag-specific Tc1 cell transfer, in combination with chemotherapy, can enhance antitumor responses by modulating select CD49b-expressing T effector/memory cell subpopulations involved in homeostasis and immune tolerance within the tumor environment. These studies offer insight into mechanisms that enhance T cell-based immunotherapy in cancer. Supplementary materials are available for this article. Go to the publisher's online edition of Immunological Investigations for the following free supplemental resource(s): Addendum 1.  相似文献   

13.
14.
Specific immune responses proceed through and are regulated at several stages: activation of naive cells and their differentiation into effector cells, completion of effector functions, development of memory cells, and subsequent reactivation of memory cells. To understand the development and regulation of CD4+ T cells in immune responses, naive CD4+ T cells were enriched from T cell receptor (TCR) transgenic mice, and used to generate effector and memory populations in vivo and in vitro. The expression of a common TCR on all of these developmental subsets has allowed us to compare directly their phenotype, cytokine profiles, activation requirements, and susceptibility to apoptosis. Our experiments have revealed interesting distinctions among naive, effector, and memory subsets of CD4+ T cells and have important implications for our understanding of immune responses.  相似文献   

15.
Barrier immunity and IL-17   总被引:1,自引:0,他引:1  
CD4+ TH17 cells display a featured role in barrier immunity. This effector population of T cells is important for clearance of microorganisms but can also promote autoimmunity at barrier sites. Recent work has indicated that these effector cells share a pathway with CD4+ regulatory T cells (TR cells) that also have a critical function in barrier protection and immune regulation. The development and function of TH17 cells, and their relationship with TR cells are discussed.  相似文献   

16.
17.
《Immunology》2017,152(3):425-438
The success of immune system‐based cancer therapies depends on a broad immune response engaging a range of effector cells and mechanisms. Immune mobilizing monoclonal T cell receptors (TCRs) against cancer (ImmTAC™ molecules: fusion proteins consisting of a soluble, affinity enhanced TCR and an anti‐CD3 scFv antibody) were previously shown to redirect CD8+ and CD4+ T cells against tumours. Here we present evidence that IMCgp100 (ImmTAC recognizing a peptide derived from the melanoma‐specific protein, gp100, presented by HLA‐A*0201) efficiently redirects and activates effector and memory cells from both CD8+ and CD4+ repertoires. Using isolated subpopulations of T cells, we find that both terminally differentiated and effector memory CD8+ T cells redirected by IMCgp100 are potent killers of melanoma cells. Furthermore, CD4+ effector memory T cells elicit potent cytotoxic activity leading to melanoma cell killing upon redirection by IMCgp100. The majority of T cell subsets belonging to both the CD8+ and CD4+ repertoires secrete key pro‐inflammatory cytokines (tumour necrosis factor‐α, interferon‐γ, interleukin‐6) and chemokines (macrophage inflammatory protein‐1αβ, interferon‐γ‐inducible protein‐10, monocyte chemoattractant protein‐1). At an individual cell level, IMCgp100‐redirected T cells display a polyfunctional phenotype, which is a hallmark of a potent anti‐cancer response. This study demonstrates that IMCgp100 induces broad immune responses that extend beyond the induction of CD8+ T cell‐mediated cytotoxicity. These findings are of particular importance because IMCgp100 is currently undergoing clinical trials as a single agent or in combination with check point inhibitors for patients with malignant melanoma.  相似文献   

18.
Aging is accompanied by altered immunity, resulting in a variable state of poorly understood immunodeficiency. While both the numbers and the functionality of naïve T cells are decreased by aging, the impact of these changes upon immune defense against bacterial pathogens in vivo remains understudied. Using a model of Listeria monocytogenes (Lm), where the primary CD8+ T‐cell response is critically important for immune defense, we show that C57BL/6 (B6) mice exhibit an age‐dependent reduction in survival, with delayed bacterial clearance in old animals. Kinetic analysis of antigen‐specific CD8+ T‐cell expansion showed that CD8+ effectors begin dividing at the same time in old and adult mice, but that the proliferative burst remained incomplete during discrete windows of time and was coupled with increased effector apoptosis in old mice. Further, antilisterial CD8+ T cells in old mice showed altered expression of key phenotypic and effector molecules and diminished polyfunctionality, measured by the ability to simultaneously produce multiple effector molecules. These results suggest that defects in functional maturation of CD8+ cells in aged mice, compounded by (or perhaps coupled to) their reduced expansion in response to infection, yield effector CD8+ T‐cell populations insufficient in size and capability to effectively clear newly encountered intracellular pathogens.  相似文献   

19.
Xenogeneic graft-versus-host disease (GVHD) models in highly immunodeficient mice are currently being used worldwide to investigate human immune responses against foreign antigens in vivo. However, the individual roles of CD4+ and CD8+ T cells, and donor/host hematopoietic and nonhematopoietic antigen-presenting cells (APCs) in the induction and development of GVHD have not been fully investigated. In the present study, we comprehensively investigated the immune responses of human T cells and the antigen presentation capacity of donor/host hematopoietic and nonhematopoietic APCs in xenogeneic GVHD models using nonobese diabetic/Shi-scid-IL2rgnull mice. CD4+ T cells and, to a lesser extent, CD8+ T cells individually mediated potentially lethal GVHD. In addition to inflammatory cytokine production, CD4+ T cells also supported the activation and proliferation of CD8+ T cells. Using bone marrow chimeras, we demonstrated that host hematopoietic, but not nonhematopoietic, APCs play a critical role in the development of CD4+ T cell-mediated GVHD. During early GVHD, we detected 2 distinct populations in memory CD4+ T cells. One population was highly activated and proliferated in major histocompatibility complex antigen (MHC)+/+ mice but not in MHC?/? mice, indicating alloreactive T cells. The other population showed a less activated and slowly proliferative status regardless of host MHC expression, and was associated with higher susceptibility to apoptosis, indicating nonalloreactive T cells in homeostasis-driven proliferation. These observations are clinically relevant to donor T cell response after allogeneic hematopoietic stem cell transplantation. Our findings provide a better understanding of the immunobiology of humanized mice and support the development of novel options for the prevention and treatment for GVHD.  相似文献   

20.
Intravenous transfer of LPS-treated bone marrow-derived dendritic cells blocks development of autoimmunity induced by CD4+ T cells in vivo. However, cellular mechanisms of dendritic cell-mediated immune tolerance have not yet been fully elucidated. Here, we report that there are two new subpopulations of CD4+CD25+FoxP3+GITR+ regulatory T cells (CD127+3G11+ and CD127+3G11? cells). LPS-treated dendritic cells facilitate development of CD4+CD127+3G11? regulatory T cells but inhibit that of CD4+CD127+3G11+ regulatory T cells. LPS-induced tolerogenic dendritic cells may cause immune tolerance through modulating balance of different subsets of CD4+ regulatory T cells mediated by CD127 and 3G11. Our results imply a new potential cellular mechanism of dendritic cell-mediated immune tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号