首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Whole cell voltage-clamp recordings of freshly isolated cells were used to study changes in the currents through voltage-gated Ca(2+) channels during the postnatal development of immature radial glial cells into Müller cells of the rabbit retina. Using Ba(2+) or Ca(2+) ions as charge carriers, currents through transient low-voltage-activated (LVA) Ca(2+) channels were recorded in cells from early postnatal stages, with an activation threshold at -60 mV and a peak current at -25 mV. To increase the amplitude of currents through Ca(2+) channels, Na(+) ions were used as the main charge carriers, and currents were recorded in divalent cation-free bath solutions. Currents through transient LVA Ca(2+) channels were found in all radial glial cells from retinae between postnatal days 2 and 37. The currents activated at potentials positive to -80 mV and displayed a maximum at -40 mV. The amplitude of LVA currents increased during the first postnatal week; after postnatal day 6, the amplitude remained virtually constant. The density of LVA currents was highest at early postnatal days (days 2-5: 13 pA/pF) and decreased to a stable, moderate level within the first three postnatal weeks (3 pA/pF). A significant expression of currents through sustained, high-voltage-activated Ca(2+) channels was found after the third postnatal week in approximately 25% of the investigated cells. The early and sole expression of transient currents at high-density may suggest that LVA Ca(2+) channels are involved in early developmental processes of rabbit Müller cells.  相似文献   

2.
Rapid exposure of cardiac muscle to high concentrations of caffeine releases Ca(2+) from the sarcoplasmic reticulum (SR). This Ca(2+) is then extruded from the cell by the Na(+)/Ca(2+) exchanger. Measurement of the current carried by the exchanger (I(Na/Ca)) can therefore be used to estimate of the Ca(2+) content of the SR. Previous studies have shown that caffeine, however, can also inhibit K(+) currents. We therefore investigated whether the inhibitory effects of caffeine on these currents could contaminate measurements of I(Na/Ca). Caffeine caused partial inhibition of the inward rectifier K(+) current (I(K1)): the outward current at -40 mV was 1.15+/-0.24 pA/pF in control and decreased to 0.34+/-0.15 pA/pF in the presence of 10 mmol/l caffeine (P<0.05, n=15). This was similar to the effect of caffeine on the holding current observed at -40 mV in the absence of K(+) channel block and could therefore account for the contaminating effects of caffeine observed during measurements of I(Na/Ca). Moreover, caffeine also partially inhibited the transient outward ( I(to)) and the delayed rectifier (I(K)) K(+) currents.  相似文献   

3.
D F Reiff  E Guenther 《Neuroscience》1999,92(3):1103-1117
Ca2(+)-independent voltage-activated potassium currents were investigated during the differentiation of rat retinal ganglion cells. Whole-cell patch-clamp recordings of Ca2(+)-independent voltage-activated potassium currents and their individual current components, i.e. a sustained, tetraethylammonium-sensitive current, a transient, 4-aminopyridine-sensitive current, and a slowly decaying current that was blocked by Ba2+, revealed distinct ontogenetic modifications in current densities and in activation and inactivation parameters. All three current types were expressed simultaneously at embryonic day 17/18 and were present in all retinal ganglion cells thereafter without showing any significant changes until the end of the first postnatal week. Ca2(+)-independent voltage-activated potassium current densities then increased strongly from postnatal day 8 onwards. Tetraethylammonium-sensitive current density increased about eightfold from 74 pA/pF in embryonic stages to 586 pA/pF in adult cells, whereas the transient potassium currents blocked by 4-aminopyridine increased only about 2.5-fold from 174 pA/pF to 442 pA/pF. The Ba2(+)-sensitive current increased simultaneously from 35 pA/pF to 332 pA/pF. The much higher increase in the sustained current components during retinal ganglion cell differentiation accounted for the changes in decay kinetics of Ca2(+)-independent voltage-activated potassium current observed in later postnatal stages. Alterations in current densities were paralleled by pronounced changes in current kinetics. From postnatal day 8 onwards, activation of Ca2(+)-independent voltage-activated potassium current was right-shifted for about 10 mV owing to a shift in tetraethylammonium-sensitive current-activation, whereas activation of other K+ components remained unaltered. Tetraethylammonium-sensitive current steady-state inactivation was incomplete at all developmental stages. About 50% of the tetraethylammonium-sensitive current elicited by a depolarization to +36 mV did not inactivate after prepulse potentials positive to -10 mV. In contrast, transient potassium current blocked by 4-aminopyridine almost fully inactivated during embryonic stages, whereas in adult retinal ganglion cells about 40% of this current component did not inactivate after prepulse potentials positive to -20 mV. Parallel investigation of the resting membrane potential during retinal ganglion cells differentiation showed an exponential increase from -3 mV at embryonic day 15/16 when no voltage-activated ion currents were expressed to a final value of -58 mV at postnatal day 8. These results show that fundamental potassium current modifications occur relatively late in retinal ganglion cell development and only after the resting potential is at its final value.  相似文献   

4.
Ca(2+) currents and their modulation by neurotrophin-4/5 were studied in cultured mesencephalic neurons. Tyrosine hydroxylase-positive neurons consistently had larger somas than tyrosine hydroxylase-negative neurons. Neurons with larger somas were therefore targeted for recording. In both control and neurotrophin-4/5-treated cultured neurons, isolation of Ca(2+) currents in cultured mesencephalic neurons revealed prominent low- and high-voltage-activated currents. These currents were separable based upon their voltage dependence of activation, the response to replacement of Ca(2+) with Ba(2+) and the response to Ca(2+) channel blockers. Replacement of Ca(2+) with Ba(2+) resulted in a slight reduction of low-voltage-activated currents and a significant enhancement of high-voltage-activated currents. Cd(2+) blocked a larger fraction of the high-voltage-activated current than Ni(2+). The synthetic conotoxins SNX-124 and SNX-230 selectively blocked high-voltage-activated currents. Morphological analysis of mesencephalic cultures pretreated with neurotrophin-4/5 revealed an increase in soma size and dendritic length in tyrosine hydroxylase-positive neurons. In agreement with the neurotrophin-4/5 induction of growth, neurotrophin-4/5 also increased cell capacitance in whole-cell recordings. Neurotrophin-4/5 significantly enhanced both low- and high-voltage-activated currents, but normalization for changes in capacitance revealed only a significant increase in high-voltage-activated current density.This study demonstrates the existence of low-voltage-activated and multiple classes of high-voltage-activated calcium currents in cultured mesencephalic neurons. Morphological and physiological data demonstrate that the increases in calcium currents due to neurotrophin-4/5 pretreatment are associated with somatodendritic growth, but an increase in high-voltage-activated Ca(2+) channel expression also occurred.  相似文献   

5.
In this study, we examined whether nitric oxide synthase (NOS) is upregulated in small dorsal root ganglion (DRG) neurons after axotomy and, if so, whether the upregulation of NOS modulates Na(+) currents in these cells. We identified axotomized C-type DRG neurons using a fluorescent label, hydroxystilbamine methanesulfonate and found that sciatic nerve transection upregulates NOS activity in 60% of these neurons. Fast-inactivating tetrodotoxin-sensitive (TTX-S) Na(+) ("fast") current and slowly inactivating tetrodotoxin-resistant (TTX-R) Na(+) ("slow") current were present in control noninjured neurons with current densities of 1.08 +/- 0. 09 nA/pF and 1.03 +/- 0.10 nA/pF, respectively (means +/- SE). In some control neurons, a persistent TTX-R Na(+) current was observed with current amplitude as much as approximately 50% of the TTX-S Na(+) current amplitude and 100% of the TTX-R Na(+) current amplitude. Seven to 10 days after axotomy, current density of the fast and slow Na(+) currents was reduced to 0.58 +/- 0.05 nA/pF (P < 0.01) and 0.2 +/- 0.05 nA/pF (P < 0.001), respectively. Persistent TTX-R Na(+) current was not observed in axotomized neurons. Nitric oxide (NO) produced by the upregulation of NOS can block Na(+) currents. To examine the role of NOS upregulation on the reduction of the three types of Na(+) currents in axotomized neurons, axotomized DRG neurons were incubated with 1 mM N(G)-nitro-L-arginine methyl ester (L-NAME), a NOS inhibitor. The current density of fast and slow Na(+) channels in these neurons increased to 0.82 +/- 0.08 nA/pF (P < 0.01) and 0.34 +/- 0.04 nA/pF (P < 0.05), respectively. However, we did not observe any persistent TTX-R current in axotomized neurons incubated with L-NAME. These results demonstrate that endogenous NO/NO-related species block both fast and slow Na(+) current in DRG neurons and suggest that NO functions as an autocrine regulator of Na(+) currents in injured DRG neurons.  相似文献   

6.
Neurotrophin-mediated signalling cascades can be initiated by activation of either the p75 neurotrophin receptor (p75(NTR)) or the more selective tyrosine kinase receptors. Previously, we demonstrated that nerve growth factor (NGF) increased the excitability of sensory neurons through activation of p75(NTR) to liberate sphingosine 1-phosphate. If neurotrophins can modulate the excitability of small diameter sensory neurons through activation of p75(NTR), then brain-derived neurotrophic factor (BDNF) should produce the same sensitizing action as did NGF. In this report, we show that focally applied BDNF increases the number of action potentials (APs) evoked by a ramp of depolarizing current by reducing the rheobase without altering the firing threshold. This increased excitability results, in part, from the capacity of BDNF to enhance a tetrodotoxin-resistant sodium current (TTX-R I(Na)) and to suppress a delayed rectifier-like potassium current (I(K)). The idea that BDNF acts via p75(NTR) is supported by the following observations. The sensitizing action of BDNF is prevented by pretreatment with a blocking antibody to p75(NTR) or an inhibitor of sphingosine kinase (dimethylsphingosine), but not by inhibitors of tyrosine kinase receptors (K252a or AG879). Furthermore, using single-cell RT-PCR, neurons that were sensitized by BDNF expressed the mRNA for p75(NTR) but not TrkB. These results demonstrate that neurotrophins can modulate the excitability of small diameter capsaicin-sensitive sensory neurons through the activation of p75(NTR) and its downstream sphingomyelin signalling cascade. Neurotrophins released upon activation of a variety of immuno-competent cells may be important mediators that give rise to the enhanced neuronal sensitivity associated with the inflammatory response.  相似文献   

7.
We assessed the functional determinants of the properties of L-type Ca(2+) currents in hair cells by co-expressing the pore-forming Ca(V)1.3alpha(1) subunit with the auxiliary subunits beta(1A) and/or alpha(2delta). Because Ca(2+) channels in hair cells are poised to interact with synaptic proteins, we also co-expressed the Ca(V)1.3alpha(1) subunit with syntaxin, vesicle-associated membrane protein (VAMP), and synaptosome associated protein of 25 kDa (SNAP25). Expression of the Ca(V)1.3alpha(1) subunit in human embryonic kidney cells (HEK 293) produced a dihydropyridine (DHP)-sensitive Ca(2+) current (peak current density -2.0 +/- 0.2 pA/pF; n = 11). Co-expression with beta(1A) and alpha(2delta) subunits enhanced the magnitude of the current (peak current density: Ca(V)1.3alpha(1) + beta(1A) = -4.3 +/- 0.8 pA/pF, n = 10; Ca(V)1.3alpha(1) + beta(1A) + alpha(2delta) = -4.1 +/- 0.6 pA/pF, n = 9) and produced a leftward shift of approximately 9 mV in the voltage-dependent activation of the currents. Furthermore, co-expression of Ca(V)1.3alpha(1) with syntaxin/VAMP/SNAP resulted in at least a twofold increase in the peak current density (-4.7 +/- 0.2 pA/pF; n = 11) and reduced the extent of inactivation of the Ca(2+) currents. Botulinum toxin, an inhibitor of syntaxin, accelerated the inactivation profile of Ca(2+) currents in hair cells. Immunocytochemical data also indicated that the Ca(2+) channels and syntaxin are co-localized in hair cells, suggesting there is functional interaction of the Ca(V)1.3alpha(1) with auxiliary subunits and synaptic proteins, that may contribute to the distinct properties of the DHP-sensitive channels in hair cells.  相似文献   

8.
The effect of a nitric oxide (NO) donor on high-voltage-activated Ca(2+) channel currents (I(Ca)) was examined using the whole cell patch-clamp technique in L(6)-S(1) dorsal root ganglion (DRG) neurons innervating the urinary bladder. The neurons were labeled by axonal transport of a fluorescent dye, Fast Blue, injected into the bladder wall. Approximately 70% of bladder afferent neurons exhibited tetrodotoxin (TTX)-resistant action potentials (APs), and 93% of these neurons were sensitive to capsaicin, while the remaining neurons had TTX-sensitive spikes and were insensitive to capsaicin. The peak current density of nimodipine-sensitive L-type Ca(2+) channels activated by depolarizing pulses (0 mV) from a holding potential of -60 mV was greater in bladder afferent neurons with TTX-resistant APs (39.2 pA/pF) than in bladder afferent neurons with TTX-sensitive APs (28.9 pA/pF), while the current density of omega-conotoxin GVIA-sensitive N-type Ca(2+) channels was similar (43-45 pA/pF) in both types of neurons. In both types of neurons, the NO donor, S-nitroso-N-acetylpenicillamine (SNAP) (500 microM), reversibly reduced (23.4-26.6%) the amplitude of I(Ca) elicited by depolarizing pulses to 0 mV from a holding potential of -60 mV. SNAP-induced inhibition of I(Ca) was reduced by 90% in the presence of omega-conotoxin GVIA but was unaffected in the presence of nimodipine, indicating that NO-induced inhibition of I(Ca) is mainly confined to N-type Ca(2+) channels. Exposure of the neurons for 30 min to 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 microM), an inhibitor of NO-stimulated guanylyl cyclase, prevented the SNAP-induced reduction in I(Ca). Extracellular application of 8-bromo-cGMP (1 mM) mimicked the effects of NO donors by reducing the peak amplitude of I(Ca) (28.6% of reduction). Action potential configuration and firing frequency during depolarizing current pulses were not altered by the application of SNAP (500 microM) in bladder afferent neurons with TTX-resistant and -sensitive APs. These results indicate that NO acting via a cGMP signaling pathway can modulate N-type Ca(2+) channels in DRG neurons innervating the urinary bladder.  相似文献   

9.
The effect of sciatic nerve injury on the somatic expression of voltage-gated calcium currents in adult rat cutaneous afferent dorsal root ganglion (DRG) neurons identified via retrograde Fluoro-gold labeling was studied using whole cell patch-clamp techniques. Two weeks after a unilateral ligation and transection of the sciatic nerve, the L(4)-L(5) DRG were dissociated and barium currents were recorded from cells 3-10 h later. Cutaneous afferents (35-50 microm diam) were classified as type 1 (possessing only high-voltage-activated currents; HVA) or type 2 (having both high- and low-voltage-activated currents). Axotomy did not change the percentage of neurons exhibiting a type 2 phenotype or the properties of low-threshold T-type current found in type 2 neurons. However, in type 1 neurons the peak density of HVA current available at a holding potential of -60 mV was reduced in axotomized neurons (83.9 +/- 5.6 pA/pF, n = 53) as compared with control cells (108.7 +/- 6.9 pA/pF, n = 58, P < 0.01, unpaired t-test). A similar reduction was observed at more negative holding potentials, suggesting differences in steady-state inactivation are not responsible for the effect. Separation of the type 1 cells into different size classes indicates that the reduction in voltage-gated barium current occurs selectively in the larger (capacitance >80 pF) cutaneous afferents (control: 112.4 +/- 10.6 pA/pF, n = 30; ligated: 72.6 +/- 5.0 pA/pF, n = 36; P < 0.001); no change was observed in cells with capacitances of 45-80 pF. Isolation of the N- and P?Q-type components of the HVA current in the large neurons using omega-conotoxin GVIA and omega-agatoxin TK suggests a selective reduction in N-type barium current after nerve injury, as the density of omega-CgTx GVIA-sensitive current decreased from 56.9 +/- 6.6 pA/pF in control cells (n = 13) to 31.3 +/- 4.6 pA/pF in the ligated group (n = 12; P < 0.005). The HVA barium current of large cutaneous afferents also demonstrates a depolarizing shift in the voltage dependence of inactivation after axotomy. Injured type 1 cells exhibited faster inactivation kinetics than control neurons, although the rate of recovery from inactivation was similar in the two groups. The present results indicate that nerve injury leads to a reorganization of the HVA calcium current properties in a subset of cutaneous afferent neurons.  相似文献   

10.
In the retina of teleost fish, continuous neuronal development occurs at the margin, in the peripheral growth zone (PGZ). We prepared tissue slices from the retina of rainbow trout that include the PGZ and that comprise a time line of retinal development, in which cells at progressive stages of differentiation are present side by side. We studied the changes in dendritic structure and voltage-dependent Ca(2+), Na(+), and K(+) currents that occur as ganglion cells mature. The youngest ganglion cells form a distinct bulge. Cells in the bulge have spare and short dendritic trees. Only half express Ca(2+) currents and then only high-voltage-activated currents with slow inactivation (HVAslow). Bulge cells are rarely electrically excitable. They express a mixture of rapidly inactivating and noninactivating K(+) currents (IKA and IKdr). The ganglion cells next organize into a transition zone, consisting of a layered structure two to three nuclei thick, before forming the single layered structure characteristic of the mature retina. In the transition zone, the dendritic arbor is elaborately branched and extends over multiple laminae in the inner plexiform layer, without apparent stratification. The arbor of the mature cells is stratified, and the span of the dendritic arbor is well over five times the cell body's diameter. The electrical properties of cells in the transition and mature zones differ significantly from those in the bulge cells. Correlated with the more elaborate dendritic structures are the expression of both rapidly inactivating HVA (HVAfast) and of low-voltage-activated (LVA) Ca(2+) currents and of a high density of Na(+) currents that renders the cells electrically excitable. The older ganglion cells also express a slowly activating K(+) current (IKsa).  相似文献   

11.
Electrophysiological and microfluorimetric techniques were used to determine whether intracellular photorelease of caged IP(3), and the consequent release of Ca(2+), could trigger a Ca(2+)-activated K(+) current (I(IP3)). Photorelease of caged IP(3) evoked an I(IP3) that averaged 2.36 +/- 0.35 (SE) pA/pF in 24 of 28 rabbit primary vagal sensory neurons (nodose ganglion neurons, NGNs) voltage-clamped at -50 mV. I(IP3) was abolished by intracellular BAPTA (2 mM), a Ca(2+) chelator. Changing the K(+) equilibrium potential by increasing extracellular K(+) ion concentration caused a predicted Nernstian shift in the reversal potential of I(IP3). These results indicated that I(IP3) was a Ca(2+)-dependent K(+) current. I(IP3) was unaffected by three common antagonists of Ca(2+)-activated K(+) currents: bath-applied iberiotoxin (50 nM) or apamin (100 nM), and intracellular 8-Br-cAMP (100 microM) included in the patch pipette. We have previously demonstrated that both IP(3)-evoked Ca(2+) release and Ca(2+)-induced Ca(2+) release (CICR) are co-expressed in NGNs and that CICR can trigger a Ca(2+)-activated K(+) current. In the present study, using caffeine, a CICR agonist, to selectively attenuate intracellular Ca(2+) stores, we showed that IP(3)-evoked Ca(2+) release occurs independently of CICR, but interestingly, that a component of I(IP3) requires CICR. These data suggest that IP(3)-evoked Ca(2+) release activates a K(+) current that is pharmacologically distinct from other Ca(2+)-activated K(+) currents in NGNs. We describe several models that explain our results based on Ca(2+) signaling microdomains in NGNs.  相似文献   

12.
We have studied the properties of a non-selective cation current (NSC(Ca)) in macrovascular endothelial cells derived from human umbilical vein (EA cells) that is activated by an increase of intracellular Ca(2+) concentration, [Ca(2+)](i). Current-voltage relationships are linear and the kinetics of the current is time-independent. Current-[Ca(2+)](i) relationships were fitted to a Ca(2+) binding site model with a concentration for half-maximal activation of 417 +/- 76 nM, a Hill coefficient of 2.3 +/- 0.8 and a maximum current of -23.9 +/- 2.7 pA/pF at -50 mV. The Ca(2+)-activated channel is more permeable to Na(+) than for Cs(+) ( P(Cs)/ P(Na)=0.58, n=7), but virtually impermeable to Ca(2+). Current activation was transient if ATP was omitted from the pipette solution. The maximal currents at 300 and 500 nM [Ca(2+)](i) were smaller than in the absence of ATP, but were not significantly different at 2 microM. The intracellular Ca(2+) concentration for half-maximal activation of the Ca(2+)-activated current was shifted to 811 +/- 12 nM in the absence of ATP. Substitution of ATP by the non-hydrolysable ATP analogue adenylylimidodiphosphate (AMP-PNP) did not affect current activation. Sodium nitroprusside (SNP) decreased NSC(Ca) in a concentration-dependent manner. The nitric oxide (NO) donors S-nitroso- N-acetylpenicillamine (SNAP) and 3-morpholinosydnonimine (SIN-1) also inhibited NSC(Ca). In contrast, nitro- L-arginine (NLA), which inhibits all NO-synthases, potentiated NSC(Ca), whereas superoxide dismutase (SOD), which inhibits the breakdown of NO, inhibited NSC(Ca). It is concluded that the Ca(2+)-activated non-selective action channel in EA cells is modulated by the metabolic state of the cell and by NO.  相似文献   

13.
The aim of this study was to explore the role of endogenous neurotrophins for inhibitory synaptic transmission in the dentate gyrus of adult mice. Heterozygous knockout (+/-) mice or neurotrophin scavenging proteins were used to reduce the levels of endogenous brain-derived neurotrophic factor and neurotrophin-3. Patch-clamp recordings from dentate granule cells in brain slices showed that the frequency, but not the kinetics or amplitude, of miniature inhibitory postsynaptic currents was modulated in brain-derived neurotrophic factor +/- compared to wild-type (+/+) mice. Furthermore, paired-pulse depression of evoked inhibitory synaptic responses was increased in brain-derived neurotrophic factor +/- mice. Similar results were obtained in brain slices from brain-derived neurotrophic factor +/+ mice incubated with tyrosine receptor kinase B-immunoglobulin G, which scavenges endogenous brain-derived neurotrophic factor. The increased inhibitory synaptic activity in brain-derived neurotrophic factor +/- mice was accompanied by decreased excitability of the granule cells. No differences in the frequency, amplitude or kinetics of miniature inhibitory postsynaptic currents were seen between neurotrophin-3 +/- and +/+ mice.From these results we suggest that endogenous brain-derived neurotrophic factor, but not neurotrophin-3, has acute modulatory effects on synaptic inhibition onto dentate granule cells. The site of action seems to be located presynaptically, i.e. brain-derived neurotrophic factor regulates the properties of inhibitory interneurons, leading to increased excitability of dentate granule cells. We propose that through this mechanism, brain-derived neurotrophic factor can change the gating/filtering properties of the dentate gyrus for incoming information from the entorhinal cortex to hippocampus. This will have consequences for the recruitment of hippocampal neural circuitries both under physiological and pathological conditions, such as epileptogenesis.  相似文献   

14.
The octopus arm provides a unique model for neuromuscular systems of flexible appendages. We previously reported the electrical compactness of the arm muscle cells and their rich excitable properties ranging from fast oscillations to overshooting action potentials. Here we characterize the voltage-activated ionic currents in the muscle cell membrane. We found three depolarization-activated ionic currents: 1) a high-voltage-activated L-type Ca(2+) current, which began activating at approximately -35 mV, was eliminated when Ca(2+) was substituted by Mg(2+), was blocked by nifedipine, and showed Ca(2+)-dependent inactivation. This current had very rapid activation kinetics (peaked within milliseconds) and slow inactivation kinetics (tau in the order of 50 ms). 2) A delayed rectifier K(+) current that was totally blocked by 10 mM TEA and partially blocked by 10 mM 4-aminopyridine (4AP). This current exhibited relatively slow activation kinetics (tau in the order of 15 ms) and inactivated only partially with a time constant of ~150 ms. And 3) a transient A-type K(+) current that was totally blocked by 10 mM 4AP and was partially blocked by 10 mM TEA. This current exhibited very fast activation kinetics (peaked within milliseconds) and inactivated with a time constant in the order of 60 ms. Inactivation of the A-type current was almost complete at -40 mV. No voltage-dependent Na(+) current was found in these cells. The octopus arm muscle cells generate fast (~3 ms) overshooting spikes in physiological conditions that are carried by a slowly inactivating L-type Ca(2+) current.  相似文献   

15.
Influx of Ca(2+) and Na(+) ions during an action potential can strongly affect the repolarization and the fast afterhyperpolarization (fAHP) if a neuron expresses Ca(2+)- and Na(+)-dependent K(+) currents (K(Ca) and K(Na)). This applies to cockroach abdominal dorsal unpaired median neurons (DUMs). Here the rapid activation of K(Ca) depends mainly on the P/Q-type Ca(2+) current. Adipokinetic hormones (AKHs)-insect counterparts to mammalian glucagon-mobilize energy reserves but also modulate neuronal activity and lead to enhanced locomotor activity. Cockroach AKH I accelerates spiking and enhances the fAHP of octopaminergic DUM neurons, and it is generally held that enhanced release of the biogenic amine from these and other neurons may lead to general arousal. AKH I modulates the voltage-gated Na(+) and P/Q-type Ca(2+) current and the background Ca(2+) current. Upregulation of P/Q-type Ca(2+) current increases the K(Ca) current, whereas enhanced inactivation of Na(+) current decreases the K(Na) current. We quantified the hormone-induced changes in ion currents in terms of Hodgkin-Huxley models and simulated the resulting activity of DUM neurons. Upregulation of P/Q-type Ca(2+) and K(Ca) current enhanced the hyperpolarization but had a weak effect on spiking. Downregulation of Na(+) and K(Na) current decreased hyperpolarization and slightly accelerated spiking. Superposition of these modulations produced an increase in fAHP while the spike frequency remained unchanged. Only when the upregulation of the pacemaking Ca(2+) background current was included in the simulated modulation the model reproduced the experimentally observed AKH-I-induced changes. The possible physiological relevance of this dual effect is discussed in respect to transmitter release and synaptic integration.  相似文献   

16.
Adult neuronal phenotype is maintained, at least in part, by the sensitivity of individual neurons to a specific selection of neurotrophic factors and the availability of such factors in the neurons' environment. Nerve growth factor (NGF) increases the functional expression of Na(+) channel currents (I(Na)) and both N- and L-type Ca(2+) currents (I(Ca,N) and I(Ca,L)) in adult bullfrog sympathetic ganglion (BFSG) B-neurons. The effects of NGF on I(Ca) involve the mitogen-activated protein kinase (MAPK) pathway. Prolonged exposure to the ganglionic neurotransmitter luteinizing hormone releasing hormone (LHRH) also increases I(Ca,N) but the transduction mechanism remains to be elucidated as does the transduction mechanism for NGF regulation of Na(+) channels. We therefore exposed cultured BFSG B-neurons to chicken II LHRH (0.45 microM; 6-9 days) or to NGF (200 ng/ml; 9-10 days) and used whole cell recording, immunoblot analysis, and ras or rap-1 pulldown assays to study effects of various inhibitors and activators of transduction pathways. We found that 1) LHRH signals via ras-MAPK to increase I(Ca,N), 2) this effect is mediated via protein kinase C-beta (PKC-beta-IotaIota), 3) protein kinase A (PKA) is necessary but not sufficient to effect transduction, 4) NGF signals via phosphatidylinositol 3-kinase (PI3K) to increase I(Na), and 5) long-term exposure to LHRH fails to affect I(Na). Thus downstream signaling from LHRH has access to the ras-MAPK pathway but not to the PI3K pathway. This allows for differential retrograde and anterograde neurotrophic regulation of sodium and calcium channels in an adult sympathetic neuron.  相似文献   

17.
Embryonic or neonatal rat neurons retain plasticity and are readily grown in tissue culture, but neurons of the adult brain were thought to be terminally differentiated and therefore difficult to culture. Recent studies, however, suggest that it may be possible to culture differentiated neurons from the hippocampus of adult rats. We modified these procedures to grow differentiated neurons from adult rat hypothalamus and brain stem. At day 7 in tissue culture and beyond, the predominant cell types in hypothalamic and brain stem cultures had a stellate morphology and could be subdivided into two distinct groups, one of which stained with antibodies to the immature neuron marker alpha-internexin, while the other stained with the astrocyte marker GFAP. The alpha-internexin positive cells were mitotic and grew to form a characteristic two-dimensional cellular network. These alpha-internexin positive cells coimmunostained for the neuronal markers MAP2, type III beta-tubulin, and tau, and also bound tetanus toxin, but were negative for the oligodendrocyte marker GalC and also for the neurofilament triplet proteins NF-L, NF-M, and NF-H, markers of more mature neurons. Patch-clamp analysis of these alpha-internexin positive cells revealed small Ca(2+) currents with a peak current of -0.5 +/- 0.1 pA/pF at a membrane potential of -20 mV (n = 5) and half-maximal activation at -30 mV (n = 5). Na(+) currents with a peak current density of -154.5 +/- 49.8 pA/pF at a membrane potential of -15 mV (n = 5) were also present. We also show that these cells can be frozen and regrown in tissue culture and that they can be efficiently infected by viral vectors. These cells therefore have the immunological and electrophysiological properties of immature mitotic neurons and should be useful in a variety of future studies of neuronal differentiation and function.  相似文献   

18.
Effects of three neurotrophins, i.e., nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3, on the expression of four neurotransmitter-synthesizing enzymes, i.e. choline acetyltransferase (ChAT), tyrosine hydroxylase (TH), dopamine beta hydroxylase (DBH), and glutamate decarboxylase 65 were investigated in cultured mouse neural stem cells. All three neurotrophins enhanced the mRNA expression of ChAT, TH, or DBH of the cells caused to differentiate by the removal of fibroblast growth factor (FGF)-2 from the culture medium, and increased the protein and mRNA levels of ChAT and TH of even the undifferentiated proliferating neural stem cells due to the presence of FGF-2. These results demonstrate that neurotrophins stimulate the synthesis of ChAT and TH of the neural stem cells prior to neuronal differentiation, and suggest that neurotrophins may play roles in the commitment to neuronal cells and choice of specific neurotransmitter phenotypes in early stages of neurogenesis.  相似文献   

19.
Experimental evidence has been presented to suggest that protein kinase Cbeta isoform-selective inhibitor LY333531 is effective at alleviating diabetic hyperalgesia. In the present study, we isolated small (< or =25 microm in soma diameter) dorsal root ganglion (DRG) neurons from control and streptozocin (STZ)-induced diabetic rats, and examined the acute action of LY333531 (1-1000 nM) on the tetrodotoxin-resistant Na(+) current (TTX-R I(Na)), which plays an essential role in transmitting nociceptive impulses, using the whole-cell patch-clamp method. TTX-R I(Na) in diabetic DRG neurons was enhanced in amplitude (71.5+/-3.6pA/pF, n=10 versus 41.2+/-3.3pA/pF, n=8) and was activated at more negative potentials (V(1/2), -15.1+/-1.3 mV versus -9.6+/-1.4 mV), compared with that in control neurons. Bath application of LY333531 acutely inhibited TTX-R I(Na) in both control and diabetic DRG neurons, and the degree of inhibition by the drug at concentrations of 1, 10 and 100 nM was significantly greater in diabetic DRG neurons than in control DRG neurons. Thus, TTX-R I(Na), which is upregulated in the diabetic state, is likely to be more potently inhibited by submicromolar concentrations of LY333531. These results suggest that an acute inhibition of TTX-R I(Na) by LY333531 attenuates the exaggerated excitability of DRG neurons in the diabetic state, which appears to be related at least partly to anti-hyperalgesic actions of the drug in diabetic neuropathy.  相似文献   

20.
Starodub AM  Wood JD 《Neuroscience》2000,99(2):389-396
Biophysical properties of A-type K(+) currents (I(A)) in myenteric neurons from guinea-pig small intestine were studied. I(A) was present in both AH- and S-type myenteric neurons. Reduction of external Ca(2+) did not affect the current. Current density was 13.5+/-10.2 pA/pF in 68 AH-type neurons and 23.4+/-8.2 pA/pF in 31 S-type neurons. S-type neurons appeared to be a homogeneous group based on density of I(A). AH-type neurons were subdivided into two groups with current densities of 9.4+/-4.3 and 25.4+/-4.3 pA/pF. All other biophysical properties of the current were not statistically different for AH- and S-type neurons. Steady-state activation and inactivation curves showed half-activation potentials at -7 mV (k=15. 0 mV) and -86 mV (k=11.5 mV). The curves overlapped at potentials near the resting potential of approximately -55 mV. Time constants for activation ranged from 3.6 to 0.52 ms at test potentials between -20 and 50 mV. Inactivation time constants fell between 41.5 and 11 ms at test potentials between -20 and 50 mV. Time constants for recovery from inactivation fit a double-exponential curve with fast and slow recovery times of 11 and 550 ms. 4-Aminopyridine suppressed I(A) when it was activated at -20 mV following a pre-pulse to -110 mV. Addition of Zn(2+) in the external solution resulted in a concentration-dependent shift of the activation and inactivation curves in the depolarized direction. Zn(2+) slowed the activation and inactivation kinetics of I(A) by factors of 3.3- and 1.2-fold over a wide range of potentials. Elevation of external H(+) suppressed the effect of Zn(2+) with a pK of 7.3-7.4. The effects of Zn(2+) were interpreted as not being due to surface charge screening, because the affinity of Zn(2+) for its binding site on the A-channel was estimated to be between 170 and 312 microM, while the background concentration of Mg(2+) was 10 mM.The enteric nervous system is perceived as an independent integrative nervous system (brain-in-the-gut) that is responsible for local organizational control of motility and secretory patterns of gut behavior. AH- and S-type neurons are synaptically interconnected to form the microcircuits of the enteric nervous system. The results suggest that I(A) is a significant determinant of neuronal excitability for both the firing of nerve impulses and the various synaptic events in the two types of neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号