首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protective effect of 2-(4-chlorobenzoylamino)-3-[2(1H)-quinolinon-4-yl]-propionic acid (rebamipide) on gastric mucosa is well established. Here we demonstrate that rebamipide acts on pancreatic acinar cells to generate oscillations of intracellular Ca(2+) concentration ([Ca(2+)](i)) through the activation of cholecystokinin subtype 1 (CCK(1)) receptors. At concentrations higher than 5 microM, rebamipide induced [Ca(2+)](i) oscillations in individual fura-2-loaded pancreatic acinar cells. The frequency of oscillations increased with increasing concentrations of rebamipide, while the latency between stimulation of cells and initiation of [Ca(2+)](i) oscillations decreased with increasing concentration. The [Ca(2+)](i) oscillations evoked by rebamipide were inhibited by the CCK(1) receptor antagonist L-364,718 but not by atropine or the CCK(2) receptor antagonist L-365,260 indicating that rebamipide is a nonpeptide CCK(1) receptor agonist.  相似文献   

2.
Caffeine has been found to inhibit the formation and action of Ca2+-mobilizing inositol 1,4,5-trisphosphate (IP3) in pancreatic acinar cells. The aim of the present study was to investigate the effects of caffeine on cytoplasmic Ca2+ concentrations ([Ca2+]i) and amylase release in response to different agonists. [Ca2+]i was determined by cytofluorometry using fura-2 as indicator and amylase release with a substrate reagent. Stimulation with low concentrations of carbachol or cholecystokinin octapeptide (CCK-8) induces [Ca2+]i oscillations whereas higher concentrations cause sustained elevation of [Ca2+]i. The less efficacious agonists pilocarpine and CCK-JMV-180 evoke oscillations only. Caffeine inhibited carbachol-induced elevation of [Ca2+]i and amylase responses in a competitive manner, abolishing the responses to low and incompletely inhibiting the responses to high concentrations of the agonist. Also, the [Ca2+]i elevations by pilocarpine were abolished by caffeine. The effects on CCK-8-induced elevation of [Ca2+]i and amylase secretion were paradoxical, the caffeine inhibition being more pronounced at high than at low concentrations of CCK-8. This enigma was further emphasized by moderate effects of caffeine on the responses to CCK-JMV-180. The results indicate that carbachol, pilocarpine and high concentrations of CCK-8 elicit IP3-mediated responses and that CCK-JMV-180 and low concentrations of CCK-8 elevate [Ca2+]i and stimulate amylase release by another signal transduction mechanism.  相似文献   

3.
The effects of vanadate were examined by monitoring intracellular free calcium concentration ([Ca2+]i) and amylase secretion in collagenase-dispersed rat pancreatic acinar cells. Vanadate increased [Ca2+]i by mobilizing calcium from agonist-releasable intracellular calcium stores, since this increase was observed in the absence of extracellular calcium and vanadate failed to increase [Ca2+]i after treatment with thapsigargin in calcium-free medium. Moreover, pretreatment of acinar cells with vanadate prevented the cholecystokinin octapeptide (CCK-8)-induced signal of [Ca2+]i, whereas co-incubation with CCK-8 potentiated the plateau phase of calcium response to CCK-8 without modifying the transient calcium spike. The effects of vanadate on calcium mobilization were reversed by the presence of the sulfhydryl reducing agent dithiothreitol. Vanadate also activated the calcium influx, since an additional enhancement of calcium influx induced by thapsigargin-evoked intracellular store depletion was observed and vanadate reversed the inhibitory effect of lanthanum (an inhibitor of calcium entry) into acinar cells. In addition, vanadate evoked a concentration-dependent release of amylase from pancreatic acinar cells and moreover, reduced the secretory response to CCK-8. We conclude that, in pancreatic acinar cells, vanadate releases calcium from the agonist-releasable intracellular calcium pool and consequently induces amylase secretion. These effects are likely due to the oxidizing effects of this compound.  相似文献   

4.
1. The effects of chlorobutanol, a widely used drug preservative, on exocrine response and intracellular Ca2+ dynamics were examined in isolated pancreatic acini of the rat. 2. Chlorobutanol (1 mg ml-1) markedly inhibited the secretory response to cholecystokinin octapeptide (CCK-8), carbamylcholine chloride (carbachol), or sodium fluoride, a direct G-protein activator. However, chlorobutanol itself induced a maximal release of amylase when the dose was increased to 4 mg ml-1. 3. An oscillatory fluctuation of cytoplasmic Ca2+ concentration, [Ca2+]c, induced by 5 pM CCK-8 or 0.3 microM carbachol was totally abolished in the presence of 1 mg ml-1 chlorobutanol. 4. A biphasic change in [Ca2+]c induced by 100 pM CCK-8, a rapid rise followed by a gradual decay, was transformed to an oscillatory fluctuation by the preservative. 5. Chlorobutanol inhibited 13 pM [125I]-CCK-8 or 0.5 nM [3H]-methylscopolamine chloride binding to the acinar cells in a dose-dependent manner. 6. These results indicate that chlorobutanol produces discernible pharmacological effects on the secretory response in rat pancreatic acinar cells through changes in the Ca2+ dynamics. Possible sites of action could be at a binding process of secretagogues to their receptors, at an activation process of a G-protein located in the plasma membrane, or at the processes following G-protein activation. However, the possibility that the preservative may distort the Ca(2+)-transport function of the plasma membrane or the membrane of intracellular organella, especially Ca(2+)-sequestering pools, cannot be excluded.  相似文献   

5.
Many behavior studies indicate that cholecystokinin (CCK) is related to nociception and anxiety/panic actions in the midbrain periaqueductal gray (PAG). We previously reported that a sulfated form of CCK octapeptide (CCK-8S) produced excitatory effects at both pre- and postsynaptic loci in PAG neurons using slice preparations and whole-cell patch-clamp recordings. Here, we further examined the detailed mechanism of CCK-8S in acutely isolated PAG neurons of the rat using fura-2-based imaging of intracellular Ca2+ concentration ([Ca2+]i) and whole-cell patch-clamp recordings. Application of 1 microM CCK-8S produced an increase of [Ca2+]i, and its effect did not desensitize. This CCK-8S-induced [Ca2+]i increase was inhibited by the CCK2 receptor antagonist L-365260 but not by the CCK1 receptor antagonist L-364718. In addition, the effect of CCK-8S was eliminated by removing extracellular Ca2+, but not by an addition of the intracellular Ca2+ reuptake inhibitor thapsigargin. When simultaneous recordings of [Ca2+]i imaging and whole-cell patch-clamp were performed, CCK-8S-induced [Ca2+]i increase was significantly reduced at a membrane holding potential of -60 mV while CCK-8S-induced inward current was still observed. Current-voltage plots revealed that CCK-8S-induced inward current reversed near the equilibrium potential for K+ ions with a decreased membrane conductance. However, CCK-8S produced a significant inhibition on high-voltage-activated Ca2+ channel currents. These results suggest that CCK-8S can excite PAG neurons by inhibiting K+ channels, and CCK-8S-induced [Ca2+]i increase occurs secondary to depolarization. The evidence presented here expands our understanding of cellular mechanisms for CCK-mediated anti-analgesic and anxiogenic actions in the PAG.  相似文献   

6.
The effect of ?2-[4-(4-chloro-2, 5-dimethoxy-phenyl)-5-[2-cyclohexyl-ethyl)-thiazol-2-ylcarbamoy l]-5, 7-dimethyl-indol-1-yl?-acetic acid (SR146131), a novel non-peptide agonist of cholecystokinin (CCK) CCK(1) receptors, was compared to the effect of sulphated cholecystokinin octapeptide (CCK-8-S) on CCK(1) receptors of the human neuroblastoma cell line IMR-32. SR146131 inhibited [125I]CCK-8-S binding to IMR-32 cells at nanomolar concentrations. SR146131 and CCK-8-S increased intracellular free Ca(2+) levels ([Ca(2+)](i)) in the same concentration range (EC(50)=6+/-2.3 and 1.3+/-0.14 nM, respectively). Although the shape of the [Ca(2+)](i) increase induced by CCK-8-S and SR146131 was slightly different, extracellular Ca(2+) removal affected the response of both compounds to a similar degree, and the response of both compounds was essentially due to Ca(2+) release from intracellular stores. This was also confirmed by measuring the [Ca(2+)](i) response of single cells: both compounds induced [Ca(2+)](i) oscillations at subnanomolar concentrations and elicited a large peak increase in [Ca(2+)](i) at higher concentrations (EC(50)=0.5+/-0.04 and 5.7+/-1.9 nM for CCK-8-S and SR146131, respectively). Both CCK-8-S and SR146131 induced a sustained increase of phosphoinositide turnover in these cells, and acted at similar concentrations (EC(50)=2.7+/-0.7 and 6+/-3.1 nM, respectively), although the maximal effect of SR146131 was somewhat lower than the effect of CCK-8-S. These data show that SR146131 activates human CCK(1) receptors on IMR-32 cells in a manner and with a potency similar to that of CCK-8-S.  相似文献   

7.
1. Procaine (0.03-10 mM) inhibited carbachol (CCh)-induced amylase release from rat isolated pancreatic acini in a competitive manner. Kinetic analysis of the relation between CCh concentrations and the amount of amylase released in the presence of various procaine concentrations indicated that procaine caused competitive inhibition with the affinity constant (pA2) value of 5.00 +/- 0.08. 2. Receptor binding assay confirmed that procaine (0.01-10 mM) competitively inhibited [N-methyl-3H]-scopolamine chloride ([3H]-NMS) binding to its receptor with binding affinity (pKi) of 4.63 +/- 0.10. 3. Procaine transformed CCh-evoked [Ca2+]i dynamics: the initial rise in [Ca2+]i followed by a gradual decay during continuous stimulation with 3 microM CCh was transformed by 0.3 mM procaine to the oscillatory [Ca2+]i dynamics, which resembled the response to 0.3 microM CCh in the absence of procaine. The initial phase of [Ca2+]i oscillation corresponded to the initial phase of CCh-induced amylase release in isolated perfused acini. 4. Procaine (0.3-3 mM) did not inhibit the secretory response to cholecystokinin octapeptide (CCK-8) in isolated incubated acini. A higher concentration of procaine (10 mM) caused weak but significant inhibition of the response to only limited concentrations of CCK-8, 30 and 100 pM. Procaine lower than 10 mM was ineffective on [125I]-BH-CCK-8 binding, although procaine (10 mM) caused weak but significant inhibition of the binding.  相似文献   

8.
We have investigated whether the cytochrome P450 system is involved in Ca(2+) signalling in rat pancreatic acinar cells. Intracellular free [Ca(2+)] ([Ca(2+)](i)) was measured in collagenase-isolated cells using fura-2 microspectrofluorimetry and imaging. The imidazole P450 inhibitor ketoconazole (5 - 50 microM) inhibited [Ca(2+)](i) oscillations induced by cholecystokinin octapeptide (CCK). However, ketoconazole also raised baseline [Ca(2+)](i) when applied in the absence of CCK. These effects were mimicked by 5 - 50 microM SKF96365, an imidazole widely used as an inhibitor of Ca(2+) entry. The non-imidazole P450 inhibitor proadifen (SKF525A) inhibited CCK-induced [Ca(2+)](i) oscillations at a concentration of 10 - 50 microM. Proadifen alone caused intracellular Ca(2+) release at 25 or 50 microM, but not at 10 microM. Octadecynoic acid and 1-aminobenzotriazole, structurally-unrelated non-imidazole P450 inhibitors, did not alter baseline [Ca(2+)](i) or CCK-evoked oscillations. We compared cumulative CCK dose-response relationship in control cells and in cells where P450 had been induced by prior injection of animals with beta-naphthoflavone. Only minor differences were apparent, with induced cells showing some decrease in responsiveness at moderate and higher concentration of CCK (30 pM - 3 nM). Direct assessment of depletion-activated Ca(2+) entry showed no clear differences between control and induced cells. In conclusion, we could find no compelling evidence for a role of P450 in controlling Ca(2+) signalling generally, or Ca(2+) entry in particular, in pancreatic acinar cells. Induction of P450 is therefore probably toxic to acinar cells via a Ca(2+)-independent mechanism.  相似文献   

9.
1 Sulphonated aluminium phthalocyanine (SALPC) photodynamic action induces amylase secretion and permanent calcium oscillation in rat pancreatic acinar cells, because of the activation of phospholipase C or signalling proteins upstream. The aim of the present study was to investigate the involvement of muscarinic acetylcholine and cholecystokinin (CCK) receptors. 2 Muscarinic receptor antagonist atropine (10 micro M) blocked amylase secretion induced by bethanechol (100 micro M), and CCK(1) receptor antagonist (S)-N-[1-(2-fluorophenyl)-3,4,6,7-tetrahydor-4-oxo-pyrrolo-[3,2,1-jk][1,4] benzodiazepine-3yl]-1H-indole-2-carboxamide (FK480) (1 micro M) blocked amylase secretion induced by CCK (100 pM). 3 Amylase secretion induced by SALPC photodynamic action was not inhibited when atropine and FK480 were present during photodynamic action. However, addition of FK480 1 micro M after initiation of photodynamic action inhibited photodynamic amylase secretion. Bethanechol (10, 100 micro M) added after photodynamic action resulted in a full secretory response. 4 Atropine (10 nM) abolished calcium oscillation induced by bethanechol (5 micro M), and FK480 (10 nM) blocked calcium oscillation induced by CCK (10 pM). 5 Atropine up to 10 micro M was without effect on Ca(2+) oscillation triggered by photodynamic action, but these oscillations were abolished by FK480 (10 nM). FK480 (10 nM) had no effect on calcium oscillations induced by bethanechol (5 micro M). Bethanechol 5 micro M, added after FK480 blockade of photodynamic calcium oscillation, still triggered regular calcium oscillation. 6 It is concluded that SALPC photodynamic action selectively and permanently activates CCK receptor in rat pancreatic acini. Such permanent and selective modulation of signalling proteins has important implications for the treatment of pancreatitis, prion diseases, and neurodegenerative disorders.  相似文献   

10.
Abstract: Pancreatic secretion can be influenced by cholecystokinin (CCK) either directly via actions on acinar cells or indirectly via actions on nerves. The presence and functional roles of CCK receptors on human pancreatic acinar cells remains unclear. In the current study human pancreatic acini were isolated and then treated with CCK‐8, gastrin and/or carbachol. Functional parameters were measured including intracellular [Ca2+] and amylase secretion. It was observed that human acini did not respond to CCK agonists but did respond to carbachol with robust increases in functional parameters. Adenoviral‐mediated gene transfer of CCK1 or CCK2 receptors to the human cells resulted in cell responses to CCK agonists. In order to determine the reason for the lack of responsiveness of the human acini, expression of receptor mRNAs was determined using quantitative RT‐PCR and localized by in situ hybridization. mRNA levels for CCK1 receptors were ~30 times lower than those of CCK2 receptors, which were ~10 times lower than those of m3 Ach receptors as measured by quantitative PCR. Neither CCK1 nor CCK2 receptors were localized in adult human pancreas by in situ hybridization. These results indicate that human pancreatic acinar cells do not respond directly to CCK receptor activation and this is likely due to an insufficient level of receptor expression.  相似文献   

11.
We investigated the effects of increasing concentrations of cholecystokinin octapeptide (CCK-8) on the exocrine pancreas of a new model of type 2 diabetic rats due to the partial protection exerted by nicotinamide against the beta-cytotoxic effect of streptozotocin. CCK-8, administered for 8 successive days, exerted a biphasic action on the growth of the pancreas in non-diabetic and type 2 diabetic rats; however, the latter were less sensitive to CCK-8. Similar results were obtained in vitro by measuring the uptake of 5-bromo-2'-deoxyuridine (BrdU) in cultured isolated acinar cells. This effect was completely blocked by 3S(-)(N'-2,3-dihydro-1-methyl-2-oxo5-phenyl-1H-1,4-benzo-diazepin-3-yl)-1H-indole-2-carboxamide (L 364,718; a CCK(1) receptor antagonist) but not by (3R)-3[N'-(3-methylphenyl)ureido]-1,3-dihydro-1-methyl-5-phenyl-2H1,4-benzo-diazepin-2-one (L 365,260; a CCK(2) receptor antagonist), suggesting a direct effect via CCK(1) receptors. Binding studies showed that these effects were mediated by a single class of low-affinity CCK(1) receptors in diabetic rats and two classes of CCK-8 binding sites (with high and low affinity) in non-diabetic rats. Thus, in our new type 2 diabetes model, the loss of sensitivity of the pancreas to CCK-8 could be attributed to the loss of CCK(1) receptors of high affinity.  相似文献   

12.
In the present study we have employed fura-2 loaded isolated mouse pancreatic acinar cells to monitor the effect that xanthine oxidase (XOD)-catalyzed reactive oxygen species generation presents on Ca(2+) mobilization by the secretagogue cholecystokinin octapeptide (CCK-8). Our results show that perfusion of pancreatic acinar cells with CCK-8 at a physiological concentration (20 pM) induced low frequency oscillations in intracellular free calcium concentration ([Ca(2+)](i)) at a rate of 1 per minute; this oscillatory pattern was completely inhibited by the introduction in the perifusion medium of 20 mU/mL XOD to generate reactive oxygen species. In addition, perfusion of pancreatic acinar cells with 20 mU/mL XOD in the absence of extracellular calcium led to a transient increase in [Ca(2+)](i,) that blocked the initiation of the Ca(2+) signals in response to 20 pM CCK-8. Similarly, XOD was also able to block acetylcholine evoked Ca(2+) spikes. However, reactive oxygen species had no effect either on Ca(2+) extrusion or on re-uptake into intracellular stores, but CCK-8-evoked Ca(2+) entry was reduced by XOD. In conclusion, our results show that XOD-evoked reactive oxygen species generation leads to a reduction either of Ca(2+) mobilization, following stimulation of pancreatic acinar cells with the Ca(2+)-mobilizing agonists CCK-8 and acetylcholine, and Ca(2+) influx evoked by CCK-8 depletion of intracellular stores. The possible XOD inhibitory mechanism on Ca(2+) mobilization by agonists is discussed.  相似文献   

13.
目的:研究三磷酸肌醇在胆囊收缩素类似物JMV-180引起的胰腺腺泡分泌反应中的作用。 方法:胰腺腺泡胞浆中钙离子浓度变化用Fura-2双波长比例测量法记录。结果:在灌流中的分离大鼠胰腺腺泡细胞,一个新的可通透细胞膜的三磷酸肌醇受体抑制性调控剂2-氨基乙氧基苯硼酸(2APB)抑制了JMV-180诱导的胞浆中钙离子波峰的出现,2APB 100μmol·L~(-1)引起了钙波峰的立即、完全的抑制。结论:JMV-180持续性刺激所诱导的重复性胞内钙离子波峰的出现是由三磷酸肌醇介导的胞内钙库中钙离子释放引发的。  相似文献   

14.
1. [125I]-Tyr4-bombesin exhibited saturable binding to pancreatic acinar cells. 2. Preincubation of cells at 37 degrees C with 0.03 nM-1 microM-bombesin for 10 min followed by acid or neutral washes reduced subsequent binding of [125I]-Tyr4-bombesin in a concentration-dependent manner by up to 90%. 3. In cell suspensions, bombesin raised the cytoplasmic Ca2+ concentration ([Ca2+]i) and the [Ca2+]i response was reduced by pre-exposure to the agonist. 4. In individual superfused cells, bombesin at 1 nM normally caused a large [Ca2+]i transient followed by sustained [Ca2+]i oscillations. The cells exhibited a variable degree of desensitization when subsequently exposed to higher agonist concentrations. 5. Preincubation with bombesin for 10 min caused a concentration-related reduction of subsequent amylase responses to bombesin. 6. Down-regulation of receptor binding is a rapid phenomenon during bombesin exposure explaining, at least partially, tachyphylaxis of [Ca2+]i and amylase responses.  相似文献   

15.
The effects of sodium nitroprusside (SNP) and 8-bromo-guanosine 3'5' cyclic monophosphate (8-Br-cyclic GMP) on nerve-mediated and acetylcholine (ACh)-evoked amylase secretion, tritiated choline ([3H]-choline) release and on intracellular free calcium concentration ([Ca2+]i) in the isolated rat pancreas were investigated. Electrical field stimulation (EFS; 10 Hz) and ACh (1 x 10(-5) M) caused large increases in amylase output from pancreatic segments. The response to ACh was blocked by atropine (1 x 10(-5) M) whereas the EFS-evoked response was markedly reduced but not abolished. In contrast, pretreatment with tetrodotoxin (1 x 10(-6) M) abolished the secretory effect of EFS. Either SNP (1 x 10(-3) M) or 8-Br-cyclic GMP (1 x 10(-4) M) inhibited amylase secretion compared to basal. Combining either SNP or 8-Br-cyclic GMP with EFS resulted in a marked decrease in amylase output compared to EFS alone. In contrast, either SNP or 8-Br-cyclic GMP had no significant effect on the amylase response to ACh. When extracellular Ca2+ concentration ([Ca2+]o) was elevated from 2.56 mM to 5.12 mM, SNP failed to inhibit the response to EFS. EFS stimulated the release of 3H from pancreatic segments preloaded with [3H]-choline. Either SNP or 8-Br-cyclic GMP had no effect on basal 3H release but significantly reduced the EFS-evoked response. In fura-2 loaded acinar cells, SNP elicited a small decrease in [Ca2+]i compared to basal and had no effect on the ACh-induced [Ca2+]i peak response. Nitric oxide may modulate the release of endogenous neural ACh in response to EFS in the rat pancreas.  相似文献   

16.
Analogues of the C-terminal octapeptide of cholecystokinin (CCK) modified in the Met28-Gly29 region, were tested for their ability to interact with peripheral cholecystokinin receptors on rat pancreatic acini and to stimulate amylase secretion. These analogues were further evaluated for their ability to recognize central CCK receptors on guinea pig brain membranes. The behavioral effect of these analogues was also tested after intrastriatal injection into mice. It appeared that these analogues were full CCK agonists in the peripheral system. Although some induced dopaminomimetic effects after intrastriatal injection into mice, being as potent as the C-terminal octapeptide of cholecystokinin (CCK-8), others did not have any effect and were able to antagonize CCK-8 actions in the striatum. The results of this study confirm that one can obtain very potent CCK analogues by modifying the peptide bond between Met28 and Gly29, and that this modification can produce either CCK agonists or antagonists of CCK-induced dopamine transmission in the striatum.  相似文献   

17.
1. The pharmacological characteristics of a newly developed serine derivative (R)-1-[3-(3-carboxypyridine-2-yl) thio-2-(indol-2-yl)carbonylamino]propionyl-4-diphenylmethyl- piperazine (TP-680), a cholecystokinin type A (CCKA) receptor antagonist, were studied and compared with those of MK-329 and loxiglumide. 2. TP-680 showed approximately 2 and 22 times greater selectivity for peripheral CCKA receptors relative to brain CCK (CCKB) receptors than MK-329 and loxiglumide, respectively, when IC50 values for inhibition of [125I]-CCK-8 binding in isolated acini and cerebral cortex were compared. 3. TP-680 was approximately 17 times less potent than MK-329, but was 106 times more potent than loxiglumide in inhibiting 100 pM CCK-8-stimulated amylase release from rat pancreatic acini. The antagonism produced by TP-680 was specific for CCK in that the effects of other receptor secretagogues or agents bypassing receptors were not altered. 4. TP-680 caused a parallel rightward shift of the dose-response curve for CCK-8-stimulated amylase release as did MK-329 and loxiglumide. However, in contrast to MK-329 and loxiglumide, TP-680 suppressed the maximal responses of CCK-8-induced amylase release in a concentration-dependent fashion, indicating that TP-680 is an unsurmountable antagonist. 5. Repeated washing of acini after a 30 min treatment with TP-680 restored the responsiveness but not the sensitivity, causing a residual inhibition on the action of CCK-8. 6. The addition of loxiglumide prior to or together with application of TP-680 protected CCK receptors from unsurmountable and irreversible antagonism by TP-680. 7. Our results indicate that TP-680 is a potent and the most selective CCKA receptor antagonist for the pancreas reported to date.  相似文献   

18.
A series of pseudopeptide analogues of the C-terminal heptapeptide of cholecystokinin in which each peptide bond, one at a time, has been replaced by a CH2NH bond were synthesized: Z-Tyr(SO3-)-Nle-Gly-Trp-Nle-Asp psi-(CH2NH)Phe-NH2 (1), Z-Tyr(SO3-)-Nle-Gly-Trp-Nle psi (CH2NH)Asp-Phe-NH2 (2), Z-Tyr(SO3-)-Nle-Gly-Trp psi-(CH2NH)Nle-Asp-Phe-NH2 (3), Z-Tyr(SO3-)-Nle-Gly psi(CH2NH)Trp-Nle-Asp-Phe-NH2 (4), Z-Tyr(SO3-)-Nle psi-(CH2NH)Gly-Trp-Nle-Asp-Phe-NH2 (5), Z-Tyr(SO3-)-Met-Gly-Trp-Nle-Asp psi (CH2NH)Phe-NH2 (6), Z-Tyr-(SO3-)-Met-Gly-Trp-Nle psi (CH2NH)Asp-Phe-NH2 (7), Z-Tyr(SO3-)-Met-Gly-Trp psi (CH2NH)Nle-Asp-Phe-NH2 (8). These derivatives were studied for their ability to stimulate amylase release from rat pancreatic acini and to inhibit the binding of labeled CCK-9 to rat pancreatic acini and to guinea pig brain membrane CCK receptors. They were compared to the potent CCK-8 analogue Boc-Asp-Tyr(SO3-)-Nle-Gly-Trp-Nle-Asp-Phe-NH2. All of these pseudopeptides were able to stimulate amylase secretion with the same efficacy as CCK-8 but with varying potencies. These compounds were also potent in inhibiting the binding of labeled CCK-9 to CCK receptors from rat pancreatic acini and from guinea pig brain membranes.  相似文献   

19.
We examined the influence of 2 gut hormones involved in the enhancement of pancreatic exocrine secretion, secretin and cholecystokinin (CCK), in the exacerbation of pancreatitis. We also examined the role of the vagal system, which was considered to be a transmission route for these hormones. Our model of pancreatitis in the rat was prepared by pancreatic bile duct ligation (PBDL), which simultaneously ligated the pancreatic duct and the common bile duct. Serum amylase activity and histopathological changes in the pancreas were used as indices of pancreatitis. We also measured the volume of pancreatic juice, as well as the amylase activity and protein level of the pancreatic juice, as indices of increased pancreatic exocrine secretion. Two gut hormones were given 6 times at 1-h intervals. Administration of secretin (1-3 microg/kg, s.c.) did not influence serum amylase activity in rats with PBDL-induced pancreatitis. However, food stimulation and administration of CCK-8 (1 microg/kg, s.c.) increased serum amylase activity and promoted vacuolation of the pancreatic acinar cells in rats with PBDL-induced pancreatitis. Administration of atropine (3 mg/kg, s.c.) or a CCK1-receptor antagonist, Z-203 (0.1 mg/kg, i.v.), inhibited food-stimulated or CCK-8-induced (1 microg/kg, s.c.) enhancement of pancreatic exocrine secretion and exacerbation after the development of PBDL-induced pancreatitis. These results suggest that not secretin, which regulates the volume of pancreatic juice, but CCK, which regulates the secretion of pancreatic enzymes via the vagal system, plays an essential role in food-stimulated exacerbation after the development of pancreatitis.  相似文献   

20.
The characteristics of cholecystokinin (CCK) receptors in rat pancreatic acini and in various regions of the brain were examined using synthetic CCK-8 or CCK-7 analogues. 3H-propionylated CCK-8 [( 3H]CCK-8) was used as a ligand. 1) The pancreatic CCK receptor had a single high affinity binding component with a dissociation constant, Kd, of 0.76 nM and a maximum number of specific binding sites, Bmax, of 271.91 fmol/mg protein. On the other hand, the CCK receptor in the cerebral cortex had a Kd of 1.66 nM and a Bmax of 30.15 fmol/mg protein. 2) The order of the potencies of CCK-7 and CCK-8 analogues with a substitution at position 3 or 4 to displace [3H]CCK-8 specific binding to the pancreatic acini was as follows: CCK-8 greater than CCK-7 = SucCCK-7 greater than Suc[Sar3]CCK-7 greater than Suc[D-Trp3]CCK-7 greater than Suc[D-Ala3]CCK-7 greater than [D-Trp4]CCK-8 = [D-Ala4] CCK-8. This order of potencies of CCK analogues was greatly different from that in the cerebral cortex. 3) The carboxy-terminal tetra-peptide (CCK-4) and penta-peptide (CCK-5) had very weak potencies in displacing [3H]CCK-8 binding in the pancreatic acini, which were 20 to 30-fold less than their potencies in the cerebral cortex. These results suggest that the recognition sites for CCK analogues in the pancreatic and brain CCK receptors are different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号