首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The FLP "recombinase" of the 2-micron circle yeast plasmid can resolve synthetic FLP site-Holliday junctions. Mutants of the FLP protein that are blocked in recombination but are normal in substrate cleavage can also mediate resolution. The products of resolution by these mutants are almost exclusively nicked molecules with a protein-bound 3' end. There is no significant asymmetry in strand cleavage (top versus bottom) by the mutants in linear or in circular FLP substrates; nor is there a bias in resolution (toward parentals or toward recombinants) of Holliday junctions (corresponding to top- or to bottom-strand exchange) by wild-type FLP. During normal FLP recombination, a small amount of the expected Holliday intermediate can be detected.  相似文献   

2.
Escherichia coli RuvC protein is a specific endonuclease that resolves Holliday junctions during homologous recombination. Since the endonucleolytic activity of RuvC requires a divalent cation and since 3 or 4 acidic residues constitute the catalytic centers of several nucleases that require a divalent cation for the catalytic activity, we examined whether any of the acidic residues of RuvC were required for the nucleolytic activity. By site-directed mutagenesis, we constructed a series of ruvC mutant genes with similar amino acid replacements in 1 of the 13 acidic residues. Among them, the mutant genes with an alteration at Asp-7, Glu-66, Asp-138, or Asp-141 could not complement UV sensitivity of a ruvC deletion strain, and the multicopy mutant genes showed a dominant negative phenotype when introduced into a wild-type strain. The products of these mutant genes were purified and their biochemical properties were studied. All of them retained the ability to form a dimer and to bind specifically to a synthetic Holliday junction. However, they showed no, or extremely reduced, endonuclease activity specific for the junction. These 4 acidic residues, which are dispersed in the primary sequence, are located in close proximity at the bottom of the putative DNA binding cleft in the three-dimensional structure. From these results, we propose that these 4 acidic residues constitute the catalytic center for the Holliday junction resolvase and that some of them play a role in coordinating a divalent metal ion in the active center.  相似文献   

3.
Escherichia coli RecA protein catalyzes reciprocal strand-exchange reactions between duplex DNA molecules, provided that one contains a single-stranded gap or tail, to form recombination intermediates containing Holliday junctions. Recombination reactions are thought to occur within helical RecA-nucleoprotein filaments in which DNA molecules are interwound. Structures generated in vitro by RecA protein have been used to detect an activity from fractionated E. coli extracts that resolves the intermediates into heteroduplex recombinant products. Resolution occurs by specific endonucleolytic cleavage at the Holliday junction. The products of cleavage are characteristic of patch and splice recombinants.  相似文献   

4.
The Holliday junction is an essential intermediate of homologous recombination. RecA of Bacteria, Rad51 of Eukarya, and RadA of Archaea are structural and functional homologs. These proteins play a pivotal role in the formation of Holliday junctions from two homologous DNA duplexes. RuvC is a specific endonuclease that resolves Holliday junctions in Bacteria. A Holliday junction-resolving activity has been found in both yeast and mammalian cells. To examine whether the paradigm of homologous recombination apply to Archaea, we assayed and found the activity to resolve a synthetic Holliday junction in crude extract of Pyrococcus furiosus cells. The gene, hjc (Holliday junction cleavage), encodes a protein composed of 123 amino acids, whose sequence is not similar to that of any proteins with known function. However, all four archaea, whose total genome sequences have been published, have the homologous genes. The purified Hjc protein cleaved the recombination intermediates formed by RecA in vitro. These results support the notion that the formation and resolution of Holliday junction is the common mechanism of homologous recombination in the three domains of life.  相似文献   

5.
The RuvC protein of Escherichia coli resolves Holliday junctions during genetic recombination and the postreplicational repair of DNA damage. Using synthetic Holliday junctions that are constrained to adopt defined isomeric configurations, we show that resolution occurs by symmetric cleavage of the continuous (noncrossing) pair of DNA strands. This result contrasts with that observed with phage T4 endonuclease VII, which cleaves the pair of crossing strands. In the presence of RuvC, the pair of continuous strands (i.e., the target strands for cleavage) exhibit a hypersensitivity to hydroxyl radicals. These results indicate that the continuous strands are distorted within the RuvC/Holliday junction complex and that RuvC-mediated resolution events require protein-directed structural changes to the four-way junction.  相似文献   

6.
The RuvA, RuvB, and RuvC proteins of Escherichia coli are required for the recombinational repair of ultraviolet light- or chemical-induced DNA damage. In vitro, RuvC protein interacts with Holliday junctions in DNA and promotes their resolution by endonucleolytic cleavage. In this paper, we investigate the interaction of RuvA and RuvB proteins with model Holliday junctions. Using band-shift assays, we show that RuvA binds synthetic Holliday structures to form specific protein-DNA complexes. Moreover, in the presence of ATP, the RuvA and RuvB proteins act in concert to promote dissociation of the synthetic Holliday structures. The dissociation reaction requires both RuvA and RuvB and a nucleotide cofactor (ATP or dATP) and is rapid (40% of DNA molecules dissociate within 1 min). The reaction does not occur when ATP is replaced by either ADP or the nonhydrolyzable analog of ATP, adenosine 5'-[gamma-thio]triphosphate. We suggest that the RuvA and RuvB proteins play a specific role in the branch migration of Holliday junctions during postreplication repair of DNA damage in E. coli.  相似文献   

7.
Despite many years of genetic and biochemical studies on the lambda integrase (Int) recombination system, it is still not known whether the Int protein is competent for DNA cleavage as a monomer. We have addressed this question, as part of a larger study of Int functions critical for the formation of higher-order complexes, by isolating "multimer-specific" mutants. We identify a pair of oppositely charged residues, E153 and R169, that comprise an intermolecular salt bridge within a functional Int multimer. Mutation of either of these residues significantly reduces both the cleavage of full-att sites and the resolution of Holliday junctions without compromising the cleavage of half-att site substrates. Allele-specific suppressor mutations were generated at these residues. Their interaction with wild-type Int on preformed Holliday junctions indicates that the mutated residues comprise an intermolecular salt bridge. We have also shown that the most C-terminal seven residues of Int, which comprise another previously identified subunit interface, inhibit DNA cleavage by monomeric but not multimeric Int. Taken together, our results lead us to conclude that Int can cleave DNA as a monomer. We also identify and discuss unique structural features of Int that act negatively to reduce its activity as a monomer and other features that act positively to enhance its activity as a multimer.  相似文献   

8.
An enzyme from Saccharomyces cerevisiae that cleaves Holliday junctions was partially purified approximately 500- to 1000-fold by DEAE-cellulose chromatography, gel filtration on Sephacryl S300, and chromatography on single-stranded DNA-cellulose. The partially purified enzyme did not have any detectable nuclease activity when tested with single-stranded or double-stranded bacteriophage T7 substrate DNA and did not have detectable endonuclease activity when tested with bacteriophage M13 viral DNA or plasmid pBR322 covalently closed circular DNA. Analysis of the products of the cruciform cleavage reaction by electrophoresis on polyacrylamide gels under denaturing conditions revealed that the cruciform structure was cleaved at either of two sites present in the stem of the cruciform and was not cleaved at the end of the stem. The cruciform cleavage enzyme was able to cleave the Holliday junction present in bacteriophage G4 figure-8 molecules. Eighty percent of these Holliday junctions were cleaved in the proper orientation to generate intact chromosomes during genetic recombination.  相似文献   

9.
Rad54, a key protein of homologous recombination, physically interacts with a DNA structure-specific endonuclease, Mus81–Eme1. Genetic data indicate that Mus81–Eme1 and Rad54 might function together in the repair of damaged DNA. In vitro, Rad54 promotes branch migration of Holliday junctions, whereas the Mus81–Eme1 complex resolves DNA junctions by endonucleolytic cleavage. Here, we show that human Rad54 stimulates Mus81–Eme1 endonuclease activity on various Holliday junction-like intermediates. This stimulation is the product of specific interactions between the human Rad54 (hRad54) and Mus81 proteins, considering that Saccharomyces cerevisiae Rad54 protein does not stimulate human Mus81–Eme1 endonuclease activity. Stimulation of Mus81–Eme1 cleavage activity depends on formation of specific Rad54 complexes on DNA substrates occurring in the presence of ATP and, to a smaller extent, of other nucleotide cofactors. Thus, our results demonstrate a functional link between the branch migration activity of hRad54 and the structure-specific endonuclease activity of hMus81–Eme1, suggesting that the Rad54 and Mus81–Eme1 proteins may cooperate in the processing of Holliday junction-like intermediates during homologous recombination or DNA repair.  相似文献   

10.
Recombinational repair of replication forks can occur either to a crossover (XO) or noncrossover (non-XO) depending on Holliday junction resolution. Once the fork is repaired by recombination, PriA is important for restarting these forks in Escherichia coli. PriA mutants are Rec(-) and UV sensitive and have poor viability and 10-fold elevated basal levels of SOS expression. PriA sulB mutant cells and their nucleoids were studied by differential interference contrast and fluorescence microscopy of 4',6-diamidino-2-phenylindole-stained log phase cells. Two populations of cells were seen. Eighty four percent appeared like wild type, and 16% of the cells were filamented and had poorly partitioned chromosomes (Par(-)). To probe potential mechanisms leading to the two populations of cells, mutations were added to the priA sulB mutant. Mutating sulA or introducing lexA3 decreased, but did not eliminate filamentation or defects in partitioning. Mutating either recA or recB virtually eliminated the Par(-) phenotype. Filamentation in the recB mutant decreased to 3%, but increased to 28% in the recA mutant. The ability to resolve and/or branch migrate Holliday junctions also appeared crucial in the priA mutant because removing either recG or ruvC was lethal. Lastly, it was tested whether the ability to resolve chromosome dimers caused by XOs was important in a priA mutant by mutating dif and the C-terminal portion of ftsK. Mutation of dif showed no change in phenotype whereas ftsK1cat was lethal with priA2kan. A model is proposed where the PriA-independent pathway of replication restart functions at forks that have been repaired to non-XOs.  相似文献   

11.
A Holliday recombination intermediate is twofold symmetric.   总被引:19,自引:4,他引:19       下载免费PDF全文
Four-arm Holliday structures are ephemeral intermediates in genetic recombination. We have used an oligodeoxynucleotide system to form immobile DNA junctions, which are stable analogs of Holliday structures. We have probed the equilibrium structure of a junction by means of hydroxyl radicals generated by the reaction of iron(II)EDTA with hydrogen peroxide. The hydroxyl radical cleavage pattern shows twofold symmetry throughout the molecule. Strong protection from hydroxyl radical attack is evident on two strands near the branch site, and weaker protection may be seen four or five residues 3' to the branch site on the other two strands. No other position appears significantly distinct from double-helical DNA controls. From these data, we conclude that the Holliday junction is a twofold symmetric complex whose four arms form two stacking domains.  相似文献   

12.
Resolution of Holliday junctions by eukaryotic DNA topoisomerase I.   总被引:6,自引:0,他引:6       下载免费PDF全文
The Holliday junction, a key intermediate in both homologous and site-specific recombination, is generated by the reciprocal exchange of single strands between two DNA duplexes. Resolution of the junctions can occur in two directions with respect to flanking markers, either restoring the parental DNA configuration or generating a genetic crossover. Recombination can be regulated, in principle, by factors that influence the directionality of the resolution step. We demonstrate that the vaccinia virus DNA topoisomerase, a eukaryotic type I enzyme, catalyzes resolution of synthetic Holliday junctions in vitro. The mechanism entails concerted transesterifications at two recognition sites, 5'-CCCTT decreases, that are opposed within a partially mobile four-way junction. Cruciforms are resolved unidirectionally and with high efficiency into two linear duplexes. These findings suggest a model whereby type I topoisomerases may either promote or suppress genetic recombination in vivo.  相似文献   

13.
BLM encodes a member of the highly conserved RecQ DNA helicase family, which is essential for the maintenance of genome stability. Homozygous inactivation of BLM gives rise to the cancer predisposition disorder Bloom's syndrome. A common feature of many RecQ helicase mutants is a hyperrecombination phenotype. In Bloom's syndrome, this phenotype manifests as an elevated frequency of sister chromatid exchanges and interhomologue recombination. We have shown previously that BLM, together with its evolutionarily conserved binding partner topoisomerase IIIalpha (hTOPO IIIalpha), can process recombination intermediates that contain double Holliday junctions into noncrossover products by a mechanism termed dissolution. Here we show that a recently identified third component of the human BLM/hTOPO IIIalpha complex, BLAP75/RMI1, promotes dissolution catalyzed by hTOPO IIIalpha. This activity of BLAP75/RMI1 is specific for dissolution catalyzed by hTOPO IIIalpha because it has no effect in reactions containing either Escherichia coli Top1 or Top3, both of which can also catalyze dissolution in a BLM-dependent manner. We present evidence that BLAP75/RMI1 acts by recruiting hTOPO IIIalpha to double Holliday junctions. Implications of the conserved ability of type IA topoisomerases to catalyze dissolution and how the evolution of factors such as BLAP75/RMI1 might confer specificity on the execution of this process are discussed.  相似文献   

14.
We have formed four-arm branched DNA junctions that contain no more than a single base pair of branch migratory freedom. Recently, we have shown that these Holliday junction analogs have twofold symmetric protection patterns in solution when probed with hydroxyl radicals: two opposite strands of one junction show extensive protection near the branch point, while the other pair of opposite strands is virtually as susceptible as a double helix. In a different junction, the hydroxyl radical protection pattern is reversed. These patterns suggest that a crossover-isomer bias exists in these molecules and that the protected strands form the crossover between helices. Here, we examine the cleavage pattern of these structures when they are resolved by T4 endonuclease VII. Junctions are formed from a single shamrock-shaped molecule, which contains 5', 3', or internal labels. The enzyme shows a preference for resolving these modified junctions at sites near those protected from hydroxyl radicals. This result suggests that only crossover strands in a Holliday junction are cleaved, and thus an odd number of crossover isomerizations must occur when flanking markers are exchanged.  相似文献   

15.
Previous biochemical studies of the BLM gene product have shown its ability in conjunction with topoisomerase IIIalpha to resolve double Holliday structures through a process called "dissolution." This process could prevent crossing over during repair of double-strand breaks. We report an analysis of the Drosophila BLM gene, DmBlm, in the repair of double-strand breaks in the premeiotic germ line of Drosophila males. With a repair reporter construct, Rr3, and other genetic tools, we show that DmBlm mutants are defective for homologous repair but show a compensating increase in single-strand annealing. Increases of 40- to 50-fold in crossing over and flanking deletions also were seen. Perhaps most significantly, the template used for homologous repair in DmBlm mutants is itself subject to deletions and complex rearrangements. These template disruptions are indicative of failure to resolve double Holliday junctions. These findings, along with the demonstration that a weak allele of topoisomerase IIIalpha has some of the same defects as DmBlm, support the dissolution model. Finally, an analysis of DmBlm mutants in conjunction with mus81 or spnA (Rad51) reveals a second function of BLM distinct from the repair of induced double-strand breaks and possibly related to maintenance of replication forks.  相似文献   

16.
We used a functional genomics approach to identify a gene required for meiotic recombination, YGL183c or MND1. MND1 was spliced in meiotic cells, extending the annotated YGL183c ORF N terminus by 45 aa. Saccharomyces cerevisiae mnd1-1 mutants, in which the majority of the MND1 coding sequence was removed, arrested before the first meiotic division with a phenotype reminiscent of dmc1 mutants. Physical and genetic analysis showed that these cells initiated recombination, but did not form heteroduplex DNA or double Holliday junctions, suggesting that Mnd1p is involved in strand invasion. Orthologs of MND1 were identified in protists, several yeasts, plants, and mammals, suggesting that its function has been conserved throughout evolution.  相似文献   

17.
Acid acetone extracts of caudate nucleus from bovine brain were found to contain an amidated opioid octapeptide with the following structure: Tyr-Gly-Gly-Phe-Met-Arg-Arg-Val-NH2. The peptide has been named metorphamide. Bovine metorphamide appears to be derived by proteolytic cleavage from proenkephalin, the common precursor to [Met5]enkephalin and [Leu5]enkephalin. The cleavage within the precursor giving rise to the carboxyl terminus of metorphamide occurs at a single arginine residue and is followed by transformation of a carboxyl-terminal glycine into an amide group. Metorphamide was detected in bovine caudate nucleus extracts by radioimmunoassay, and it was purified to homogeneity by gel filtration and reversed-phase high performance liquid chromatography. Amino acid composition analysis and automated Edman degradation in the gas-phase sequencer confirmed the postulated amino acid sequence. Carboxyl-terminal amidation of bovine metorphamide was shown by stability to carboxypeptidase A digestion and full crossreactivity in a radioimmunoassay that required the carboxyl-terminal amide as part of the recognition site. A synthetic replicate of metorphamide as well as several synthetic analogs were tested for opioid activity in several bioassays and binding assays, and metorphamide was found to have a high mu-binding activity. Metorphamide is the only known naturally occurring opioid peptide that has a high mu-binding activity. The kappa-binding activity is approximately equal to 50% that of the mu-binding activity, but delta-binding activity is negligible.  相似文献   

18.
Recombination of genes is essential to the evolution of genetic diversity, the segregation of chromosomes during cell division, and certain DNA repair processes. The Holliday junction, a four-arm, four-strand branched DNA crossover structure, is formed as a transient intermediate during genetic recombination and repair processes in the cell. The recognition and subsequent resolution of Holliday junctions into parental or recombined products appear to be critically dependent on their three-dimensional structure. Complementary NMR and time-resolved fluorescence resonance energy transfer experiments on immobilized four-arm DNA junctions reported here indicate that the Holliday junction cannot be viewed as a static structure but rather as an equilibrium mixture of two conformational isomers. Furthermore, the distribution between the two possible crossover isomers was found to depend on the sequence in a manner that was not anticipated on the basis of previous low-resolution experiments.  相似文献   

19.
Branch migration of Holliday junctions is an important step of genetic recombination and DNA repair. In Escherichia coli, this process is driven by the RuvAB complex acting as a molecular motor. Using magnetic tweezers, we studied the RuvAB-directed migration of individual Holliday junctions formed between two approximately 6-kb DNA molecules of identical sequence, and we measured the migration rate at 37 degrees C and 1 mM ATP. We directly demonstrate that RuvAB is a highly processive DNA motor protein that is able to drive continuous and unidirectional branch migration of Holliday junctions at a well defined average speed over several kilobases through homologous sequences. We observed directional inversions of the migration at the DNA molecule boundaries leading to forth-and-back migration of the branch point and allowing us to measure the migration rate in the presence of negative or positive loads. The average migration rate at zero load was found to be approximately 43 bp/sec. Furthermore, the load dependence of the migration rate is small, within the force range of -3.4 pN (hindering force) to +3.4 pN (assisting force).  相似文献   

20.
The Escherichia coli RuvA and RuvB protein complex promotes branch migration of Holliday junctions during recombinational repair and homologous recombination and at stalled replication forks. The RuvB protein belongs to the AAA(+) (ATPase associated with various cellular activities) ATPase family and forms a hexameric ring in an ATP-dependent manner. Studies on the oligomeric AAA(+) class ATPases suggest that a conserved arginine residue is located in close proximity to the ATPase site of the adjacent subunit and plays an essential role during ATP hydrolysis. This study presents direct evidence that Arg-174 of RuvB allosterically stimulates the ATPase of the adjacent subunit in a RuvB hexamer. RuvBR174A shows a dominant negative phenotype for DNA repair in vivo and inhibits the branch migration catalyzed by wild-type RuvB. A dominant negative phenotype was also observed with RuvBK68A (Walker A mutation). RuvB K68A-R174A double mutant demonstrates a more severe dominant negative effect than the single mutants RuvB K68A or R174A. Moreover, although RuvB K68A and R174A are totally defective in ATPase activity, ATPase activity is restored when these two mutant proteins are mixed at a 1:1 ratio. These results suggest that each of the two mutants has distinct functional defects and that restoration of the ATPase activity is brought by complementary interaction between the mutant subunits in the heterohexamers. This study demonstrates that R174 plays an intermolecular catalytic role during ATP hydrolysis by RuvB. This role may be a general feature of the oligomeric AAA/AAA(+) ATPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号