首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Familial pericentric inversion of chromosome 8   总被引:2,自引:0,他引:2  
Eight children from seven presumably unrelated families were identified independently as having an unbalanced recombinant chromosome resulting in the presence of extra material on the short arm of a chromosome 8. Parental chromosomes were analyzed, and one member of each couple (four fathers and three mothers) was found to carry a pericentric inversion of a chromosome 8 [inv(8)(p23q22)]. The propositi had an unbalanced recombinant chromosome [rec(8),dup q,inv(8)(p23q22)]. The affected infants all had developmental delay, congenital heart disease, and unusual appearance. A common origin of the pericentric inversion was suggested because of geographic location and Mexican--American ancestry of the seven families.  相似文献   

2.
A female child with mental retardation and dysmorphic features was found to have a duplication deficiency of chromosome 8: rec(8)dup q,inv(8)(p23q24), a recombinant product derived from a familial pericentric inversion, inv(8)(p23q24)mat. Clinical features of this previously undescribed inversion product are compared with other reported cases of partial trisomy for the distal long arm of chromosome 8, since this segment is thought to be primarily responsible for the phenotypic features of the trisomy 8 syndrome.  相似文献   

3.
We described a new second case of fetoplacental discrepancy involving first trimester prenatal detection of mosaic isochromosome i (8) (q10). A 32-year-old woman underwent chorionic villous sampling because of increased fetal nuchal translucency. Analysis of direct chromosome preparations was performed by R-banding and FISH using subtelomeric, centromeric and whole chromosome painting probes for chromosome 8 showing the presence of an isochromosome 8q with a complex, female mosaic karyotype: mos 46,XX,i (8) (q10)[13]/46,XX,del (8) (p23)[10]. Cytogenetic analysis of cultured CVS showed an interstitial duplication with concomitant terminal deletion of the short arm of chromosome 8: 46,XX,der (8)del (8) (p23)dup (8) (p?)[18]. Array-CGH analysis from cultured trophoblasts and fetal tissues revealed a 6.69 Mb terminal deletion in 8p23.3p23.1 associated with a 31.49 Mb duplication in 8p23.1p11.1. FISH analysis confirmed the 8p inverted duplication deletion syndrome. Moreover, polymorphic DNA marker analysis demonstrated that the derivative chromosome 8 was of maternal origin. FISH analysis of cultured peripheral blood lymphocytes showed that the mother also carried a cryptic paracentric inversion inv (8) (p23). Our report contributes to expand the fetal phenotype of 8p inverted duplication deletion syndrome and also provides further insight into the underlying mechanism of this rare genomic disorder.  相似文献   

4.
We report on a patient with severe intellectual disability, microcephaly, short stature, and dysmorphic features who, based on standard karyotyping, has two cytogenetic abnormalities: an apparently balanced paracentric inversion of chromosome 7, inv(7)(q31.2q36), and a small supernumerary ring chromosome derived entirely of material from chromosome 19. While the inversion was detected in all cells, mosaicism was observed for the ring chromosome. Interestingly, apparently identical cytogenetic abnormalities were detected in the patient's mother, who presented with normal stature, few dysmorphic features, and normal cognition without microcephaly. While the level of mosaicism could not adequately explain the phenotypic discordance, comparative genome hybridization revealed a de novo terminal deletion of chromosome 7, del(7)(q36.2), and a terminal duplication of chromosome 7, dup(7)(p22.1) in the patient. Additional cytogenetic investigation revealed that the patient inherited a recombinant chromosome derived from a cryptic maternal pericentric inversion: inv(7)(p22q36). The patient's distinctive features are consistent with the wide phenotypic spectrum reported in 7p duplication and 7q terminal deletion syndromes. These chromosomal regions contain several candidate genes of clinical significance, including SHH, EN2, and FAM20C. Our findings strongly suggest that our patient's phenotype is largely attributable to partial 7pter trisomy and partial 7qter monosomy rather than mosaic supernumerary ring chromosome 19.  相似文献   

5.
We report the case of a female patient exhibiting multiple congenital malformations including diaphragmatic hernia and heart defect. Cytogenetic studies (including karyotype, FISH and array-CGH) showed a de novo terminal deletion (6.9 Mb) on chromosome 15 in association with a recombinant X chromosome bearing a 9-Mb Xp duplication and a 46-Mb Xq deletion distal to XIST. The recombinant X chromosome was caused by a maternal inv(X)(p22.31q22.3). The X chromosome inactivation pattern was skewed in the patient suggesting a possible inactivation of the recombinant X chromosome. Considering these results, the phenotype was linked to the de novo terminal 15q deletion. These results strengthen the assumption that array-CGH should be applied to each fetus/newborn with multiple congenital malformations.  相似文献   

6.
Inverted 8p duplication deletions are recurrent chromosomal rearrangements that are mediated through non-allelic homologous recombination (NAHR) between olfactory receptor (OR) gene clusters at 8p23.1. These rearrangements result in a proximal inverted duplication of various extent, a single copy region between the OR gene clusters and a terminal 8p deletion. The terminal deletions are stabilized by direct addition of telomeric repeats, so called telomere healing. Here, we report a patient with an unusual inverted duplication deletion of 8p. Stabilization of the broken chromosome end was achieved by telomere capture instead of telomere healing, resulting in an additional duplication of 8q24.13→qter on the short arm of chromosome 8. Moreover, the inverted duplication was only 3.4 Mb in size (restricted to band 8p22) and thus cytogenetically undetectable. To the best of our knowledge this is the smallest inverted duplication reported hitherto. We describe the molecular characterization by FISH and array CGH of this unusual inv dup del (8p) and a previously reported patient with a similar 8q duplication and review the literature on cases associated with telomere capture.  相似文献   

7.
8.
A recombinant chromosome with Xp duplication and Xq deletion was found in two sisters with normal height and gonadal dysgenesis. Their mother and other four relatives, including a fertile male, carried an inv(X)(p22q22); the inverted X was randomly inactivated in one female carrier. The abnormal X chromosome showed inactivation in all the examined cells. This is the tenth report of a recombinant X chromosome. A review of the literature shows that: i) most female carriers of inv(X) are phenotypically normal and fertile; ii) recombinants having short-arm duplication and long-arm deletion are associated with ovarian failure and normal or tall stature, whereas the reciprocal recombinants are compatible with fertility but cause short stature; and (ü) except for one index case, all male carriers have a normal phenotype and 11 of them (from eight families) are of proven fertility. Moreover, no instance of male infertility has been documented.  相似文献   

9.
目的对1例临床表征为身材矮小、鼻根部内陷、双侧隐睾、智力低下患儿进行遗传学分析,探讨该染色体结构异常与临床表征之间的关系。方法应用G显带染色体核型分析及染色体微阵列分析(chromosomal microarray analysis,CMA)技术对患儿进行遗传学检测,并对其父母进行外周血染色体核型分析。结果G显带分析结果显示患儿染色体核型为46,Y,der(X)t(X;Y)(p22;q11),mat。CMA检测结果提示患儿X染色体短臂Xp22.33p22.31存在约8.3 Mb片段缺失,Y染色体长臂Yq11.221qter存在约43.3 Mb片段重复。其父亲染色体核型正常,母亲染色体核型结果为46,X,der(X)t(X;Y)(p22;q11)。结论患儿携带母源性der(X)t(X;Y)(p22;q11)染色体非平衡易位,携带者的表型与其性别以及X染色体缺失片段的大小和位置密切相关。男性携带者智力障碍、生长发育落后等异常表型较女性更为严重。  相似文献   

10.
An unbalanced 46,XY,der(2)del(2)(p11.2p13) inv(2)(p11.2q13) karyotype was found in a phenotypically abnormal child with a de novo interstitial deletion of band 2p12 associated with an inv(2)(p11.2q13) inherited from the father. The inv(2) is generally considered a benign familial variant without significant reproductive consequences. However, our findings led us to consider a previously proposed mechanism of unequal meiotic crossing over at the base of a parental inversion loop, which could lead to either a deletion or duplication of a segment adjacent to the inverted region in the offspring. This phenomenon has been reported in other inversions of chromosomes 1, 7, 13, 15, and 17 and may explain the origin of the deletion in our patient. Although repetitive sequences might be present around such inversions, which could predispose to de novo deletions independently of the inversion, current evidence including this case favors a proposed causal relationship between the parental inversion and the deletion in the child. Our review and results suggest there could be a small risk for a related imbalance to couples with an inv(2)(p11.2q13). For del(2)(p11.2p13), which is rare, a more distinct phenotype has been proposed herein. Our patient shared several findings with the three previously published cases, namely the broad nasal bridge, abnormal ears, high-arched palate, psychomotor retardation, and micrognathia. However, our patient also had sensorineural hearing loss and significant hypotonia, which have not been previously reported, thereby expanding our understanding of this rare deletion. Am. J. Med. Genet. 87:139-142, 1999. Published 1999 Wiley-Liss, Inc.  相似文献   

11.
An unbalanced 46,XY,der(2)del(2)(p11.2p13) inv(2)(p11.2q13) karyotype was found in a phenotypically abnormal child with a de novo interstitial deletion of band 2p12 associated with an inv(2)(p11.2q13) inherited from the father. The inv(2) is generally considered a benign familial variant without significant reproductive consequences. However, our findings led us to consider a previously proposed mechanism of unequal meiotic crossing over at the base of a parental inversion loop, which could lead to either a deletion or duplication of a segment adjacent to the inverted region in the offspring. This phenomenon has been reported in other inversions of chromosomes 1, 7, 13, 15, and 17 and may explain the origin of the deletion in our patient. Although repetitive sequences might be present around such inversions, which could predispose to de novo deletions independently of the inversion, current evidence including this case favors a proposed causal relationship between the parental inversion and the deletion in the child. Our review and results suggest there could be a small risk for a related imbalance to couples with an inv(2)(p11.2q13). For del(2)(p11.2p13), which is rare, a more distinct phenotype has been proposed herein. Our patient shared several findings with the three previously published cases, namely the broad nasal bridge, abnormal ears, high-arched palate, psychomotor retardation, and micrognathia. However, our patient also had sensorineural hearing loss and significant hypotonia, which have not been previously reported, thereby expanding our understanding of this rare deletion. Am. J. Med. Genet. 87:139–142, 1999. Published 1999 Wiley-Liss, Inc.  相似文献   

12.
A 13 year old girl was referred with congenital microcephaly, developmental delay, a prominent nose, highly arched palate, and an apparently low set left ear. She was found to have a pericentric inversion of one chromosome 7 and a ring chromosome 8, 46,XX,inv(7) (pter----p22::q11.23----p22::q11.23----qter), r(8) (p23q24.3). The concurrence of these two abnormalities is a rare event and has not been reported previously.  相似文献   

13.
目的 明确两例智力低下患儿8号染色体短臂异常性质和来源,分析其染色体改变与表型的相关性.方法 首先应用常规G显带分析2例患儿及父母外周血染色体改变,然后应用比较基因组杂交芯片(array comparative genomic hybridization,array CGH)对其中1例常规核型分析的结果进行精确定位.结果 例1母亲的染色体改变为8p和3q的平衡插入易位,该患儿继承了母亲的1条衍生3号染色体,核型为46,XX,der(3) inv ins (3;8)(q25.3;p23.1p11.2)mat,导致8p部分三体.Array CGH分析显示重复区域为8p11.21-8p22,片段大小为26.9 Mb,该患儿主要表现为智力低下,未见其他8p三体的典型临床特征.例2父亲的核型为8p和11q的平衡易位,该患儿继承了父亲的1条衍生11号染色体,核型为46,XX,der(11)t(8;11)(p11.2;q25)pat,临床表现为智力低下,特殊面容,同时伴有先天性心脏病和骨骼异常,与典型8p三体表型相似,但面容特征不典型.结论 8p部分三体是2例患儿异常表型的主要原因,但与典型的8p三体相比,表型存在异质性;父母染色体分析可以帮助明确易位的性质从而有利于再发风险评估;与传统的细胞遗传学分析方法相比,arrayCGH在染色体异常分析中具有更高的分辨率和准确性.
Abstract:
Objective To determine the origin of aberrant chromosomes involving the short arm of chromosome 8 in two mentally retarded children, and to correlate the karyotype with abnormal phenotype. Methods Routine G-banding was performed to analyze the karyotypes of the two patients and their parents, and array comparative genomic hybridization (array CGH) was used for the first patient for fine mapping of the aberrant region. Results The first patient presented with only mental retardation. The father had normal karyotype. The mother had an apparent insertion translocation involving chromosomes 8 and 3 [46,XX, inv ins (3;8) (q25.3;p23.1p11.2)], the karyotype of the child was ascertained as 46,XX,der(3) inv ins (3;8)(q25.3;p23.1p11.2). Array CGH finely mapped the duplication to 8p11.21-8p22, a 26.9Mb region. The other patient presented with mental retardation, craniofacial defects, congenital heart disease and minor skeletal abnormality. The mother had normal karyotype. The father had an apparently balanced translocation involving chromosome 8p and 11q, the karyotype was 46,XY, t(8;11)(p11.2;q25). The karyotype of the child was then ascertained as 46,XX,der(11)t(8;11)(p11.2;q25). Conclusion These results suggested that partial trisomy 8p was primary cause for the phenotypic abnormalities of the two patients, whereas a mild phenotypic effect was observed in patient 1. Parental karyotype analysis could help define the aberrant type and recurrent risk evaluation. In contract to routine karyotype analysis, aberrant regions could be mapped by array CGH with higher resolution and accuracy.  相似文献   

14.
No phenotypic effect is observed in most inversion heterozygotes. However, reproductive risks may occur in the form of infertility, spontaneous abortions or chromosomally unbalanced children as a consequence of meiotic recombination between inverted and non-inverted chromosomes. An odd number of crossovers within the inverted segment results in gametes bearing recombinant chromosomes with a duplication of the region outside of the inversion segment of one arm and a deletion of the terminal segment of the other arm [dup(p)/del(q) and del(p)/dup(q)]. Using fluorescence in-situ hybridization (FISH), the chromosome segregation of a pericentric inversion of chromosome 1 was studied in spermatozoa of a inv(1)(p22q42) heterozygous carrier. Three-colour FISH was performed on sperm samples using a probe mixture consisting of chromosome 1p telomere-specific probe, chromosome 1q telomere-specific probe and chromosome 18 centromere-specific alpha satellite DNA probe. The frequency of the non-recombinant product was 80.1%. The frequencies of the two types of recombinants carrying a duplication of the short arm and a deletion of the long arm, and vice versa, were respectively 7.6 and 7.2%, and these frequencies were not statistically significant from the expected ratio of 1:1. Sperm-FISH allows the further understanding of segregation patterns and their effect on reproductive failure and allows an accurate genetic counselling.  相似文献   

15.
A 37-year-old Japanese male patient with acute myelomonocytic leukemia subtype M4 (according to FAB classification) associated with bone marrow eosinophilia and specific chromosome abnormalities: a pericentric inversion of chromosome 16, inv(16)(p13q22); a long arm deletion of chromosome #7, del(7)(q22q34); and a gain of chromosomes #8 and #22 is reported. In addition to the modal karyotype, 47,XY,7q-,inv(16),+22, there were three other clones whose karyotypes were 46,XY,inv(16); 47,XY,inv(16),+22; and 48,XY,+8,inv(16),+22. As these karyotypes were related to each other, the presence of multiple clones indicated that karyotypic evolution had occurred. The karyotypic evolution associated with 7q- has not been reported previously in patients with M4Eo with inv(16).  相似文献   

16.
We present unique chromosomal abnormalities found in a patient with acute myeloblastic leukemia (AML) of French-American-British subtype M2. The patient was referred for an evaluation of chromosomal anomaly associated with AML. She was found to have an abnormal karyotype 46,XX,t(8;21)(q22;q22), and a questionable dup(15)(q15q22) in the majority of cells analyzed. Two cells had the same chromosomal anomalies plus a duplicated derivative chromosome 21 [der(21)t(8;21)(q22;q22)]. These cytogenetic findings were confirmed by fluorescence in situ hybridization utilizing the appropriate DNA probes. To our knowledge, this is the first case report of a combination of the translocation between chromosomes 8 and 21, a duplication of chromosome 15 [dup(15)(q15q22), and a duplicated derivative chromosome 21 [der(21)t(8;21)(q22;q22)].  相似文献   

17.
Five patients with acute nonlymphocytic leukemia and inv(16)(p13q22), all with additional chromosome changes, are reported. Three were diagnosed as having acute myelomonocytic leukemia (FAB-M4), and the other two as having acute monocytic leukemia (FAB-M5b). All five patients had abnormal eosinophils in the bone marrow at diagnosis. Two had a deletion of the long arm of chromosome #7, del(7)(q31), and a trisomy of chromosome #22. These changes have been reported frequently in acute nonlymphocytic leukemia with inv(16), but are extremely rare in leukemias with other specific rearrangements including t(9;22), t(8;21), and t(15;17). Our findings and review of the literature indicate that inv(16) is observed not only in acute myelomonocytic leukemia but also in acute monocytic leukemia, and that del(7q) and +22 are nonrandomly associated with inv(16) as additional abnormalities. No significant differences in the clinical features seem to exist between the patients with only inv(16) and those with inv(16) and additional chromosome changes, except for the lower white blood cell count in the latter group.  相似文献   

18.
A family is described in which a pericentric inversion (13) was discovered in the father after the birth of an abnormal baby. In a further pregnancy amniocentesis was carried out. The fetal karyotype showed a rec(13)dup p,inv(13)(p11q22). The fetus's abnormalities were similar to those observed in the first child. Family studies showed that a first cousin, mentally retarded, had a rec(13)dup q,inv(13)(p11q22) karyotype. In this family, the risk of occurrence of a recombinant in offspring of an inversion carrier could be as high as 40%.  相似文献   

19.
We describe 2 children with dysmorphic features, and severe developmental delay presenting with overlapping unbalanced translocations of 9q34.3 and 16p13. Patient #1: A 4 year old African-American female with normal karyotype with a pericentric inversion on one chromosome 9 known to be a benign variant. Low resolution array CGH revealed a single BAC clone loss at 9q34.3 and a single BAC clone gain at 16p13.3, confirmed by FISH. Whole genome SNP array analysis refined these findings, identifying a terminal 1.28 Mb deletion (138,879,862-140,164,310) of 9q34.3 and a terminal 1.62 Mb duplication (45,320-1,621,753) of 16p13.3. Sub-telomeric FISH showed an unbalanced cryptic translocation involving the inverted chromosome 9 and chromosome 16. FISH of the father showed a balanced t(9;16)(q34.3;p13.3) involving the non-inverted chromosome 9, and a pericentric inversion on the normal 9 homologous chromosome. The presence of two rearrangements on chromosome 9, both an unbalanced translocation and a pericentric inversion, indicates recombination between the inverted and derivative 9 homologues from her father. Patient #2: A 1 year old Iraqi-Moroccan female with normal karyotype. Array-CGH identified a 0.56 Mb deletion of 9q34.3 (139,586,637-140,147,760) and an 11.31 Mb duplication of 16p13.3p13.13 (31,010-11,313,519). Maternal FISH showed a balanced t(9;16)(q34.3;p13.13). Both patients present with similar clinical phenotype.  相似文献   

20.
The chromosome 22q11 region is prone to rearrangements, including deletions and duplications, due to the presence of multiple low copy repeats (LCRs). DiGeorge/velo-cardio-facial syndrome is the most common microdeletion syndrome with more than 90% of patients having a common 3-Mb deletion of 22q11.2 secondary to non-homologous recombination of flanking LCRs. Meiotic reciprocal events caused by LCR-mediated rearrangement should theoretically lead to an equal number of deletions and duplications. Duplications of this region, however, have been infrequently reported and vary in size from 3 to 6 Mb. This discrepancy may be explained by the difficulty in detecting the duplication and the variable, sometimes quite mild phenotype. This newly described 22q duplication syndrome is characterized by palatal defects, cognitive deficits, minor ear anomalies, and characteristic facial features. We report on a male with truncus arteriosus and an interrupted aortic arch, immunodeficiency, and hypocalcemia. The patient is mosaic for two abnormal cell lines: a deletion [del(22)(q11.2q11.2)] found in 11 cells and a duplication [dup(22)(q11.2q11.2)] found in 9 cells. Molecular cytogenetic analysis in our patient revealed a 1.5 Mb deletion/duplication, the first duplication reported of this size. Deletion/duplication mosaicism, which is rare, has been reported in a number of cases involving many different chromosome segments. We present the clinical phenotype of our patient in comparison to the phenotypes seen in patients with the 22q11.2 deletion or duplication alone. We propose that this rearrangement arose by a mitotic event involving unequal crossover in an early mitotic division facilitated by LCRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号