首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Elevating target-derived levels of nerve growth factor (NGF) in peripheral organs of postnatal mammals is known to enhance the survival of postganglionic sympathetic neurons and to promote the terminal arborization of sympathetic axons within such NGF-rich target tissues. Although increasing levels of NGF in the central nervous system can ameliorate cholinergic function of damaged and aged neurons of the medial septum, it remains undetermined whether the postnatal development of this neuronal population and their projections that innervate the hippocampus are likewise affected by elevated levels of target-derived NGF. To address this question, the cholinergic septohippocampal pathway was examined in adult transgenic mice which display elevated levels of NGF protein production in the dorsal hippocampus during postnatal development. Adult transgenic mice possessed a cholinergic population of septal neurons ≈ 15% larger than that seen in age-matched control animals. Despite increased numbers of cholinergic septal neurons, as well as elevated levels of hippocampal NGF, the density of cholinergic septal axons in the outer molecular layer of the hippocampal dentate gyrus of adult transgenic animals was comparable with that found in wild-type controls. These results reveal that elevating levels of target-derived NGF during postnatal development can increase the population size of the cholinergic septal neurons but does not alter their pattern of afferent innervation in the hippocampus of adult mice.  相似文献   

2.
Cholinergic axons originating from the septum form a characteristic layer of preterminal axons and apparent termination in the molecular layer of the hippocampal dentate gyrus. The present study explored the specificity of this characteristic axonal pattern, through the use of organotypic slice co-cultures. Slices of hippocampus were co-cultured with a slice from one of a variety of other potential sources of afferents, and the afferent axons were labeled histochemically or immunocytochemically to determine which afferents distribute within the dentate molecular layer in a pattern similar to that formed by septal cholinergic projections. Acetylcholinesterase (AChE) histochemistry demonstrated that cholinergic axons from septum, substantia innominata, and striatum all consistently targeted the inner molecular layer of the dentate gyrus. AChE-labeled cholinergic axons from dorsal lateral pontine tegmentum and from spinal cord sometimes formed this pattern, while axons from the habenula failed to extend into the dentate gyrus. Immunocytochemically identified monoaminergic axons from the substantia nigra, locus coeruleus, and raphe extended into co-cultured hippocampus; each of these afferent systems displayed a prominent axonal plexus within the hilus of the dentate, but only the raphe axons projected prominently to the molecular layer. These data demonstrate that the molecular layer of the dentate gyrus provides an attractive target zone for some cholinergic and monoaminergic afferents, but not all. Commonalities between neuronal populations that preferentially project to the molecular layer in vitro may offer clues regarding the axon guidance mechanisms that normally direct cholinergic axons to target sites in the dentate gyrus molecular layer.  相似文献   

3.
Choline acetyltransferase (ChAT) activity and acetylcholinesterase (AChE) staining were examined in different cortical regions, hippocampal formation and basal forebrain of non-neurological controls and of patients afflicted with senile dementia of Alzheimer type (SDAT). Both enzymes showed a clear topographical distribution in the various regions studied. In SDAT cases, ChAT activity was reduced by 0–60% in the neocortex and by up to 97% in the hippocampus depending on the area and layer examined. In the nucleus of the diagonal band of Broca (NDB) and the medial septal nucleus (MSN), the activity was decreased by 65% and 55%, respectively; no significant change was found in the lateral septal nucleus (LSN), nucleus basalis of Meynert (NBM), substantia innominata (SI) and globus pallidus (GP). Comparable changes were seen in AChE staining. The results indicate that degeneration or dysfunction of cholinergic neurons in the medial septal area and possibly neocortex is an important characteristic of SDAT.  相似文献   

4.
The failure of cut axons to grow along fibre tracts in the adult CNS contrasts with their ability to do so in development. Organotypic slices culture of a number of areas enables the time of failure to be pinpointed to around the second week of postnatal life in the rat. ‘Heterochronic’ co‐culture of slices above and below this age shows that the failure is due to the inability of the older axons to grow into either the same age or younger targets. Using hippocampo‐septal slices the present experiments show that this failure is due to an inability to recognise the glial pathway of the fimbria, even when this is of a younger age. However, the older hippocampal neurons retain the ability to grow axons into septal target tissue when they are placed in direct contact with it. This exactly mirrors the inability of cut central axons to regenerate along their previous fibre pathways while they retain their ability to reinnervate neuropil.  相似文献   

5.
Reconstruction of the septohippocampal pathways by axons extending from embryonic cholinergic neuroblasts grafted into the neuron-depleted septum has been explored in the neonatal rat by using a novel lesioning and grafting protocol. Neonatal ablation of the basal forebrain cholinergic projection neurons, accompanied by extensive bilateral cholinergic denervation of the hippocampus and neocortex, was produced at postnatal day (PD) 4 by 192 immunoglobulin (IgG)-saporin intraventricularly. Four days later, cholinergic neuroblasts (from embryonic day 14 rats) were implanted bilaterally into the neuron-depleted septum by using a microtransplantation approach. The results show that homotopically implanted septal neurons survive and integrate well into the developing septal area, extending axons caudally along the myelinated fimbria-fornix and supracallosal pathways that are able to reach the appropriate targets in the denervated hippocampus and cingulate cortex as early as 4 weeks postgrafting. Moreover, the laminar innervation patterns established by the graft-derived axons closely resembled the normal ones and remained essentially unchanged up to at least 6 months, which was the longest postoperative time studied. The reinnervating fibers restored tissue choline acetyltransferase activity (up to 50% of normal) in the dorsal hippocampus and the parietooccipital cortex. Retrograde labeling with Fluoro-Gold from the host hippocampus combined with immunocytochemistry confirmed that most of the projecting neurons, indeed, were cholinergic. The results suggest that the graft-host interactions that are necessary for target-directed axon growth are present in the septohippocampal system during early postnatal maturation. Thus, the present approach may contribute to overcome the functional limitations inherent in the use of ectopically placed intrahippocampal transplants. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Intracerebral grafts consisting of primary fibroblasts genetically engineered to express NGF were used to assess the regenerative capacity of cholinergic neurons of the adult rat septum. Our data reveal that NGF-producing grafts sustain a significantly higher proportion of NGF receptor-immunoreactive septal neurons following axotomy (approximately 65-75%) than do grafts of noninfected fibroblasts. In addition, NGF promotes the regeneration of septal axons. Following the ablation of cholinergic septal projections to the hippocampus, NGF-producing grafts placed within the lesion cavity contain large numbers of AChE-positive axons; control grafts, on the other hand, lack such cholinergic axons. Ultrastructural examination reveals that unmyelinated axons within NGF-producing grafts use many different substrates for growth, including astrocytes and components of the extracellular matrix. Grafts of control fibroblasts possess the same cellular and matrix substrates but contain only a small population of axons, probably of peripheral origin. AChE-positive axons growing through NGF-producing grafts provide a new topographically organized input to the deafferented hippocampal dentate gyrus. Furthermore, regenerating septal axons terminate predominantly on the dendritic processes of granular neurons. The dentate gyrus ipsilateral to grafts of noninfected fibroblasts, on the other hand, remains devoid of AChE-positive fibers. From these results, we conclude that the availability of NGF is a necessary requirement to sustain axotomized cholinergic septal neurons and to promote axon regeneration and cholinergic reinnervation of dentate granular neurons by these lesioned neurons. The presence of many permissive substrates (e.g., astrocytes, basal lamina, and collagen) alone, however, is not sufficient to induce axon regrowth from adult septal neurons.  相似文献   

7.
The organization of the magnocellular basal nucleus (MBN) projection to cerebral cortex in the rat has been studied by using cytoarchitectonic, immunohistochemical, and retrograde and anterograde transport methods. The distribution of retrogradely labeled basal forebrain neurons after cortical injections of wheat germ agglutinin-horseradish peroxidase conjugate was essentially identical to that of neurons staining immunohistochemically for choline acetyltransferase. These large (20-30 micrometers perikaryon diameter) multipolar neurons were found scattered through a number of basal forebrain cell groups: medial septal nucleus, nucleus of the diagonal band of Broca, magnocellular preoptic nucleus, substantia innominata, and globus pallidus. This peculiar distribution mimics the locations of pathways by which descending cortical fibers enter the diencephalon. Each cortical area was innervated by a characteristic subset of MBN neurons, always located in close association with descending cortical fibers. In many instances anterogradely labeled descending cortical fibers appeared to ramify into diffuse terminal fields among MBN neurons which were retrogradely labeled by the same cortical injection. Double label experiments using retrograde transport of fluorescent dyes confirmed that MBN neurons innervate restricted cortical fields. Anterograde autoradiographic transport studies after injections of 3H-amino acids into MBN revealed that MBN axons reach cerebral cortex primarily via two pathways: (1) The medial pathway, arising from the medial septal nucleus, nucleus of the diagonal band, and medial substantia innominata and globus pallidus MBN neurons, curves dorsally rostral to the diagonal band nucleus, up to the genu of the corpus callosum. Most of the fibers either directly enter medial frontal cortex or turn back over the genu of the corpus callosum into the superficial medial cingulate bundle. Many of these fibers enter anterior cigulate or retrosplenial cortex, but some can be traced back to the splenium of the corpus callosum, where a few enter visual cortex but most turn ventrally and sweep into the hippocampal formation. Here they are joined by other fibers which, at the genu of the corpus callosum, remain ventrally located and run caudally through the dorsal fornix into the hippocampus. (2) The lateral pathway arises in part from medial septal, diagonal band, and magnocellular preoptic neurons whose axons sweep laterally through the substantia innominata to innervate primarily piriform, perirhinal, and endorhinal cortex. Some of these fibers may also enter the hippocampal formation from the entorhinal cortex via the ventral subiculum.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Transplants taken from the septal-diagonal band area of rat embryos have previously been shown to innervate the cholinergically denervated hippocampus when implanted into a cavity made through the hippocampal fimbria in adult recipient rats. In animals where the perforant path afferents to the hippocampus are left intact, the growth of cholinergic axons from the implant into the hippocampus levels off after one month and the axons stop growing before the entire denervated target has been reinnervated. In the present study we report that an additional lesion of the perforant path stimulates the ingrowth of cholinergic axons into the cholinergically denervated hippocampus, causing the axons of the cholinergic neurons in the implant to grow both at a faster rate and for a prolonged period of time. The marked increase in the recovery of the acetylcholine synthesizing enzyme, choline acetyltransferase, and in acetylcholine esterase staining, as observed 2 and 4 months after transplantation, indicates that the end result in an increase in the total number of cholinergic fibres formed in the hippocampus of the perforant path lesioned rats. The histochemistry, moreover, reveals that the stimulated axon ingrowth is mainly confined to the part of the dentate gyrus denervated of its perforant path input, i.e. the outer 60% of the dentate molecular layer. These observations point to basic similarities between the factors triggering collateral or paraterminal sprouting from intact nature axons and the mechanisms governing the formation of terminals patterns by ingrowing embryonic axons in the adult mammalian CNS.  相似文献   

9.
Nerve growth factor (NGF) is a neuronotrophic protein. Its effects on developing peripheral sensory and sympathetic neurons have been extensively characterized, but it is not clear whether NGF plays a role during the development of central nervous system neurons. To address this point, we examined the effect of NGF on the activity of neurotransmitter enzymes in several brain regions. Intracerebroventricular injections of highly purified mouse NGF had a marked effect on the activity of choline acetyltransferase (ChAT), a selective marker of cholinergic neurons. NGF elicited prominent increases in ChAT activity in the basal forebrain of neonatal rats, including the septum and a region which contains neurons of the nucleus basalis and substantia innominata. NGF also increased ChAT activity in the hippocampus and neocortex, terminal regions for the fibers of basal forebrain cholinergic neurons. In analogy with the response of developing peripheral neurons, the NGF effect was shown to be selective for basal forebrain cholinergic cells and to be dose-dependent. Furthermore, septal neurons closely resembled sympathetic neurons in the time course of their response to NGF. These observations suggest that endogenous NGF does play a role in the development of basal forebrain cholinergic neurons.  相似文献   

10.
The present study examined the effects of removing hippocampal nerve growth factor (NGF)-producing neurons upon cholinergic and noncholinergic septohippocampal projecting neurons. To deplete septal/diagonal band neurons of their intrinsic source of NGF, rats received unilateral intrahippocampal injections of ibotenic acid and were sacrificed 2-24 weeks later. Choline acetyltransferase and parvalbumin immunohistochemistry failed to reveal changes in the number of cholinergic or gamma-aminobutyric acid-containing neurons, respectively, within the septal/diagonal band region ipsilateral to the hippocampal lesion at any time point examined. Additionally, immunocytochemical localization of nonphosphorylated and phosphorylated neurofilament proteins did not reveal abnormal staining characteristics within the septal/diagonal band complex, suggesting that this lesion does not alter cytoskeletal features of neurons which project to the hippocampus. Selected rats received unilateral hippocampal lesions and 3 months later were injected with fluorogold into the remaining hippocampal remnant and with wheat germ agglutinin conjugated to horse radish peroxidase into the intact contralateral hippocampus. Both retrograde tracers were predominantly transported to their respective ipsilateral septum and vertical limb of the diagonal band. This indicates that following the lesion, septal/diagonal band neurons still project ipsilaterally and sprouting to the NGF-rich contralateral side does not occur. RNA blot analysis revealed a decrease in NGF mRNA expression within the lesioned hippocampus with a maximum reduction of approximately 70%. In contrast, no change in NGF mRNA expression was observed within the ipsilateral septum relative to the contralateral side. The present study demonstrates that removal of hippocampal target neurons does not alter the number, morphology, or projections of both cholinergic and noncholinergic septal/diagonal band neurons.  相似文献   

11.
The ability of embryonic hippocampal tissue to promote regeneration of cholinergic axons in the septohippocampal system has been studied in adult rats. Strips of embryonic hippocampus, taken from 7–40 mm rat fetuses, were implanted into a 2–3 mm wide cavity which completely transected the septal cholinergic axons innervating the intrinsic hippocampus. The ingrowth of cholinergic fibres into the denervated host hippocampal formation was monitored by measuring the activity of the enzyme, choline acetyltransferase (ChAT), and by acetylcholine esterase (AChE) histochemistry. The results demonstrated a gradual, partial return of both ChAT enzyme activity and AChE-positive fibres in the initially denervated hippocampal formation of the adult recipient. Time-course studies indicated that this ingrowth progressed from the implant into the rostral tip of the host hippocampus, and continued caudally to cover the entire dorsal hippocampus by 3–6 months post-operative Although the regenerating AChE-positive fibres reached the hippocampal target in the recipient along abnormal routes, they reinnervated selectively the appropriate terminal areas within the host hippocampus and dentate gyrus, suggesting the presence of quite specific mechanisms to guide the regenerating axons back to their original targets. Lesions of the medial septum-diagonal band area of the host and horseradish peroxidase (HRP) injections into the host hippocampus, caudal to the implant, indicated that the origin of the regenerating axons was predominately from the ipsilateral ventral medial septum and diagonal band area of the host. The results provide evidence that axonal regeneration and reinnervation of a denervated target zone can be promoted by utilizing implants of embryonic CNS tissue to bridge a tissue defect between the target and the lesioned axonal stumps.  相似文献   

12.
Cajal-Retzius (CR) cells are characteristic horizontally orientated, early-generated transient neurons in the marginal zones of the neocortex and hippocampus that synthesize the extracellular matrix protein reelin. They have been implicated in the pathfinding of entorhino-hippocampal axons, but their role in this process remained unclear. Here we have studied the axonal projection of hippocampal CR cells. Following injection of the carbocyanine dye DiI into the entorhinal cortex of aldehyde-fixed rat embryos and young postnatal rats, neurons in the outer molecular layer of the dentate gyrus and stratum lacunosum-moleculare of the hippocampus proper with morphological characteristics of CR cells were retrogradely labelled. In a time course analysis, the first retrogradely labelled CR cells were observed on embryonic day 17. This projection of hippocampal CR cells to the entorhinal cortex was confirmed by retrograde tracing with Fast Blue in new-born rats and by intracellular biocytin filling of CR cells in acute slices from young postnatal rat hippocampus/entorhinal cortex and in entorhino-hippocampal slice cocultures using infrared videomicroscopy in combination with the patch-clamp technique. In double-labelling experiments CR cells were identified by their immunocytochemical staining for reelin or calretinin, and their interaction with entorhino-hippocampal axons labelled by anterograde tracers was analysed. Future studies need to investigate whether this early transient projection of hippocampal CR cells to the entorhinal cortex is used as a template by the entorhinal axons growing to their target layers in the hippocampus.  相似文献   

13.
The septohippocampal pathway contains two separate components: the cholinergic and the GABAergic. Whereas cholinergic fibers terminate on many hippocampal cell types, GABAergic septohippocampal fibers selectively contact the cell bodies of hippocampal interneurons. We examined whether the GABAergic septohippocampal system was altered in reeler mice. First, we found that both components of the septohippocampal pathway in mice present a distribution and target-cell specificity similar to that described in rats. We also show that GABAergic septohippocampal axons terminate on subpopulations of interneurons expressing reelin, which may implicate this extracellular matrix protein in the targeting of septohippocampal axons. We thus examined the septohippocampal pathway in reeler mice defective in Reelin. In contrast to wild-type animals, reeler mice displayed an ectopic location of both cholinergic and GABAergic fibers, which accumulate close to the hippocampal fissure. Despite their altered distribution, GABAergic septal axons maintain their target-cell selectivity innervating exclusively the perisomatic region of hippocampal interneurons. Thus, as in wild type, GABAergic septal fibers formed complex baskets around the cell body of GAD-positive hippocampal neurons in reeler mice. In addition, we found that reeler hippocampi have an altered distribution of hippocampal interneurons expressing PARV or CALB, many of which are located close to the hippocampal fissure. We thus conclude that although reeler mice have an altered distribution of hippocampal interneurons, GABAergic septohippocampal axons nevertheless terminate on their specific target interneurons. Thus, whereas target layer termination of septal fibers is severely impaired in reeler mice, our data indicate that the cell-specific targeting of GABAergic septohippocampal axons is governed by Reelin-independent signals.  相似文献   

14.
Studies using selective lesions of basal forebrain cholinergic neurons suggest that these neurons play a role in attentional processing, but not learning and memory. However, the tests of learning and memory used thus far have been restricted largely to spatial tasks. In the present study, we examined whether the cholinergic basal forebrain plays a role in a form of nonspatial associative memory, the social transmission of food preferences. Sham-operated control rats were compared to rats with 192 IgG-saporin lesions of the medial septum/diagonal band cholinergic projections to hippocampus or nucleus basalis magnocellularis/substantia innominata cholinergic projections to neocortex. Both lesions impaired 24-h retention of a learned social food preference relative to controls, despite performance on an immediate retention trial that was indistinguishable from controls. Moreover, 24-h retention of the socially learned food preference correlated strongly with cholinergic enzymatic activity in the neocortex, but not in the hippocampus. Immunohistochemical data confirmed significant and selective lesion-induced cholinergic depletions in the intended brain regions. These data provide evidence that the cholinergic basal forebrain, particularly the cholinergic projection to neocortex, is involved in the formation and/or retrieval of social memories related to food preference, and suggest a role for cortical acetylcholine in consolidation of associative memory processes.  相似文献   

15.
B H G?hwiler  F Hefti 《Brain research》1985,350(1-2):311-314
Co-cultures of hippocampal and striatal slices were prepared from 7-day-old rats. After a month in vitro they were examined by histochemical and electrophysiological techniques. Acetylcholinesterase-positive fibers, originating in presumed cholinergic local circuit neurons of the striatum, invaded the adjacent hippocampus, resulting in a functional innervation displaying the characteristics of muscarinic inputs. These observations demonstrate that interneurons, when offered an appropriate target, are capable of mimicking projection neurons. Such a target-induced change in growth characteristics can take place even during relatively advanced phases of their development.  相似文献   

16.
The basal forebrain-cortex connections of the rat were topographically mapped by retrograde tracer methods; and their contribution to the cholinergic innervation of the cortex was assessed by excitotoxin lesions placed in the rostral and caudal aspects of the complex. Discrete injections of tracer into frontal cortex labeled the prominent multipolar acetylcholinesterase (AchE)-positive cells of the ventromedial globus pallidus. Injections of tracer into the parietal cortex labelled cells in the ventral globus pallidus, the underlying substantia innominata, and the lateral hypothalamus. Separate injections of Fast Blue and Nuclear Yellow in the frontal and in the parietal cortex resulted in double-labeled cells in the ventral globus pallidus, which indicates that at least some of these cells may possess collateralizing axons. The cingulate cortex is innervated predominantly by neurons in the nucleus of the horizontal limb of the diagonal band. The occipital cortex was also shown to receive a projection primarily from the nucleus of the horizontal limb of the diagonal band. The hippocampal formation is innervated primarily by cells located in the vertical limb of the diagonal band and in the medial septum. Consistent with the results of the retrograde tracing studies, excitotoxin lesions affecting the diagonal band and medial septum decreased choline acetyltransferase (CAT) activity up to 40% on the occipital cortex and by 64% in the hippocampus, but did not affect CAT activity in the rostral neocortex. In contrast, ibotenate lesions of the caudal ventral globus pallidus and substantia innominata caused decreases in CAT activity in the frontal cortex of up to 65% without affecting enzyme activity in the hippocampal formation. The results of the present study provide details on the topographic organization of the cortical projections originating in the basal forebrain complex and indicate that these neurons are the predominant source of cortical cholinergic innervation.  相似文献   

17.
The regeneration of the septal cholinergic system in adult rats has been studied in animals bearing transplants of hippocampus taken from 20–40 mm rat fetuses (approximately 17–21 days of gestation). The septal axons located within the fimbria and the dorsal fornix were lesioned and a cavity was prepared at the rostral end of the hippocampus. The embryonic tissue was placed adjacent to the severed end of the fornix-fimbria. The time-course of ingrowth of cholinergic fibers into the transplant was monitored by acetylcholine esterase (AChE) histochemistry and the determination of the levels of choline acetyltransferase (ChAT). Both methods indicate that there is a progressive ingrowth into the transplant of cholinergic fibers up to 3 months after transplantation. The newly-formed AChE-positive fibers in the transplant remain beyond one year after transplantation and are thus presumably permanent. Both horseradish peroxidase (HRP) injections into the implant and radiofrequency lesions of the septal-diagonal band area indicate that the principal source of these fibers is the AChE-positive neurons of the medial septum and the nucleus of the diagonal band which normally form the septohippocampal cholinergic projection. The results suggest: (1) that implants of a normal embryonic target tissue can promote axonal regeneration in mature neurons of the mammalian central nervous system; (2) that some neurons in the adult mammalian CNS retain at least part of their embryonic capacity to generate axons and recognize specific postsynaptic targets in developing CNS tissue; and (3) that this host-implant interaction can result in the formation of quite specific innervation patterns in the implanted target tissue.  相似文献   

18.
Previous studies have demonstrated that depleting the hippocampus of endogenous neurotrophins via excitotoxic lesions fails to alter the viability of adult cholinergic septal/diagonal band neurons. Since cholinergic basal forebrain neurons may be more vulnerable during development, we investigated whether excitotoxic lesions produced in neonatal animals alter the viability of these cells. Postnatal Day 7, 10, 14, and 28 rats pups received unilateral intrahippocampal injections of ibotenic acid and were sacrificed 4 weeks later. At 7, 10, and 14 days of age, significant reductions in the number of choline acetyltransferase (ChAT)- and p75 nerve growth factor receptor (NGFr)-immunoreactive neurons were observed within the medial septum ipsilateral to the hippocampal lesion. In contrast, rats receiving similar lesions on Day 28 failed to display a significant reduction in ChAT-immunoreactive medial septal neurons. The magnitude of ChAT-immunoreactive neuronal loss within the medial septum and the age at which the lesion was made were inversely correlated (r2 = 0.887), indicating that cholinergic septal neurons become less vulnerable to target removal as the cells develop. Similar results were observed in the vertical limb of the diagonal band although a small but significant loss of ChAT-immunoreactive neurons was seen in this structure ipsilateral to the hippocampal lesion when lesions were performed on Postnatal Day 28. At all age groups, many remaining cholinergic septal/diagonal band neurons appeared dystrophic with stunted fiber outgrowth. The present study demonstrates that unlike adult rats, removal of hippocampal target neurons during development alters the viability and morphology of cholinergic neurons of the medial septum and diagonal band. This suggests that target neurons which synthesize endogenous neurotrophins are needed for normal development of cholinergic basal forebrain neurons, but may not be required for the normal maintenance of the adult cell.  相似文献   

19.
Pascual M  Pozas E  Soriano E 《Hippocampus》2005,15(2):184-202
In examining the role of Class 3 secreted semaphorins in the prenatal and postnatal development of the septohippocampal pathway, we found that embryonic (E14-E16) septal axons were repelled by the cingulate cortex and the striatum. We also found that the hippocampus exerts chemorepulsion on dorsolateral septal fibers, but not on fibers arising in the medial septum/diagonal band complex, which is the source of septohippocampal axons. These data indicate that endogenous chemorepellents prevent the growth of septal axons in nonappropriate brain areas and direct septohippocampal fibers to the target hippocampus. The embryonic septum expressed np-1 and np-2 mRNAs, and the striatum and cerebral cortex expressed sema 3A and sema 3F. Experiments with recombinant semaphorins showed that Sema 3A and 3F, but not Sema 3C or 3E, induce chemorepulsion of septal axons. Sema 3A and 3F also induce growth cone collapse of septal axons. This indicates that these factors are endogenous cues for the early guidance of septohippocampal fibers, including cholinergic and gamma-aminobutyric acid (GABA)ergic axons, during the embryonic stages. During postnatal stages, when target cell selection and synaptogenesis take place, np-1 and np-2 were expressed by septohippocampal neurons at all ages tested. In the target hippocampus, pyramidal and granule cells expressed sema 3E and sema 3A, whereas most interneurons expressed sema 3C, but few expressed sema 3E or 3A. Combined tracing and expression studies showed that GABAergic septohippocampal fibers terminated preferentially onto sema 3C-positive interneurons. In contrast, cholinergic septohippocampal fibers terminated onto sema 3E and sema 3A-expressing pyramidal and granule cells. The data suggest that Class 3 secreted semaphorins are involved in postnatal development. Moreover, because GABAergic and cholinergic axons terminate onto neurons expressing distinct, but overlapping, patterns of semaphorin expression, semaphorin functions may be regulated by different signaling mechanisms at postnatal stages.  相似文献   

20.
Although it is well known that magnocellular cholinergic basal forebrain neurons are trophically responsive to nerve growth factor (NGF) and contain NGF receptors (NGFr), the exact distribution of forebrain NGFr-immunoreactive neurons and the degree to which cholinergic neurons are colocalized with them have remained in question. In this study we employed a very sensitive double-labelling method and examined in the same tissue section the distribution and cellular features of NGFr-positive and choline acetyltransferase (ChAT)-immunolabelled neurons within the rat basal forebrain. Throughout this region the majority of magnocellular basal forebrain neurons were immunoreactive for both NGFr and ChAT. However, a small percentage of neurons in the ventral portion of the vertical limb of the diagonal band of Broca were immunoreactive only for NGFr, whereas a larger population of magnocellular neurons in the substantia innominata exhibited only ChAT immunoreactivity. No NGFr-immunoreactive cells were found associated with ChAT-positive neurons in the striatum, neocortex, or hippocampus, and no single-labelled NGFr-immunoreactive neurons were found outside the basal forebrain area, except for a large number of positive-labelled cells along the ventricular walls of the third ventricle. In addition to its function in maintaining the normal integrity of the basal forebrain and cholinergic, peripheral sympathetic, and neural-crest-derived sensory neurons, NGF may also have a role in the growth of these neurons after damage to the nervous system. To examine this postulate the hippocampus was denervated of its septal input and examined 8 weeks later. Two populations of neurons were found to have undergone collateral sprouting--namely, the midline magnocellular cholinergic neurons of the dorsal hippocampus and the sympathetic noradrenergic neurons of the superior cervical ganglion. Both of these neuronal populations also stained strongly for NGFr. In contrast, the small intrinsic cholinergic neurons of the hippocampus exhibited neither sprouting response nor staining for NGFr. In view of these results, we suggest that the differing sprouting responses demonstrated by these three neuronal populations may be due to their responsiveness to NGF, as indicated by the presence or absence of NGF receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号