首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tottering, rolling Nagoya, and leaner mutant mice all exhibit cerebellar ataxia to varying degrees, from mild (tottering mice) to severe (leaner mice). Collectively, these mice are regarded as tottering locus mutants because each of these mutant mice expresses a different autosomal recessive mutation in the gene coding for the alpha(1A) calcium ion channel protein, which is the pore forming subunit for P/Q-type high voltage activated calcium ion channels. These mutant mice all exhibit varying degrees of cerebellar dysfunction and neuronal cell death. Nitric oxide (NO) is an important messenger molecule in the central nervous system, especially in the cerebellum, and it is produced via the enzyme, nitric oxide synthase (NOS). We investigated expression of neuronal-NOS (n-NOS) in the cerebella of all three mutant mice, as revealed by NADPH-diaphorase (NADPH-d) histochemical staining, quantitation of n-NOS protein using Western blotting and quantitation of n-NOS mRNA using in situ hybridization. The expression of n-NOS mRNA and protein as well as the NADPH-d histochemical reaction were elevated in tottering and rolling Nagoya cerebella. n-NOS mRNA and the NADPH-d histochemical reaction were decreased in the leaner cerebellum, but the leaner mouse n-NOS protein concentration was not significantly different compared to age- and gender-matched controls. These findings suggest that NO may act as an important mediator in the production of the neuropathology observed in these mutant mice.  相似文献   

2.
To study the effects of chemical injury on the cerebella nitric oxide synthase (NOS), we administered methylmercury chloride subcutaneously to mice, 10 mg/kg/day for 9 days. In the methylmercury-treated cerebellum, Purkinje cells were positive both for NADPH-diaphorase and for neuronal NOS. Calcium-dependent NOS activity was increased to 160% of the controls. The present study suggests the ability of Purkinje cells to produce NO through the expression of neuronal NOS.  相似文献   

3.
脑缺血后脑组织NO含量和NOS活性变化及三七总皂甙的影响   总被引:14,自引:0,他引:14  
为了探讨一氧化氮 (NO)在缺血神经元坏死中的作用机制及三七总皂甙 (PNS)是否通过影响NO的变化而起脑保护作用。  方法 用栓线法建立大鼠局灶性脑缺血模型 ,测定脑缺血后不同时间脑组织NO含量和一氧化氮合成酶 (NOS)活性变化及PNS对其的影响。  结果 缺血后 3 0分钟脑组织NO含量和NOS活性均显著升高 (P <0 0 1 ) ,而PNS能防止脑缺血后两者的升高。NO含量与NOS活性呈显著正相关。  结论 NO在缺血神经元损伤中起重要作用 ,PNS是通过降低NO的含量而起保护脑组织作用  相似文献   

4.
Nitric oxide (NO) exerts important physiological and pathological roles in humans. The study of NO requires the immunolocalization of its synthesizing enzymes, neuronal, endothelial and inducible NO synthases (NOS). NOS are labile to formalin-fixation and paraffin-embedding, which are used to prepare human archival tissues. This lability has made NOS immunohistochemical studies difficult, and a detailed protocol is not yet available. We describe here a protocol for the immunolocalization of NOS isoforms in human archival cerebellum and non-nervous tissues, and in rat tissues and cultured cells. Neuronal NOS antigenicity in human archival and rat nervous tissue sections was microwave-retrieved in 50 mM Tris-HCl buffer, pH 9.5, for 20 min at 900 W. Neuronal NOS was expressed in stellate, basket, Purkinje and granule cells in human and rat cerebellum. Archival and frozen human cerebellar sections showed the same neuronal NOS staining pattern. Archival cerebellar sections not subjected to antigen retrieval stained weakly. Antigenicity of inducible NOS in human lung was best retrieved in 10 mM sodium citrate buffer, pH 6.0, for 15 min at 900 W. Inflammatory cells in a human lung tuberculoma were strongly stained by anti-inducible NOS antibody. Anti-endothelial NOS strongly stained kidney glomeruli. Cultured PC12 cells were strongly stained by anti-neuronal NOS without antigen retrieving. The present immunohistochemistry protocol is easy to perform, timeless, and suitable for the localization of NOS isoforms in nervous and non-nervous tissues, in human archival and rat tissues. It has been extensively used in our laboratory, and is also appropriate for other antigens.  相似文献   

5.
Li S  Dai Y  Quock RM 《Brain research》2003,968(1):167-170
The behavioral effects of nitrous oxide (N(2)O) were antagonized by non-specific inhibitors of nitric oxide synthase (NOS). To identify the isoform of NOS involved in this response, mice were pretreated with an antisense oligodeoxynucleotide (AS-ODN) against neuronal NOS, and then tested in a light/dark exploration paradigm. The AS-ODN but not the mismatch ODN significantly antagonized N(2)O induced behavior and also reduced NOS activity in the cerebellum and hippocampus. These results implicate neuronal NOS in the N(2)O response.  相似文献   

6.
Chung YH  Shin CM  Joo KM  Kim MJ  Cha CI 《Brain research》2002,951(2):1496-321
In the present study, we examined age-related changes in 3-nitrotyrosine (NT) and neuronal nitric oxide synthase (nNOS) in rat cerebellum using immunohistochemistry. No immunoreactivity for NT was found in any layers of adult cerebellar cortex. In aged cerebellar cortex, the most prominent labeling of NT was found in the Purkinje cell layers and molecular layers. In aged cerebellar nuclei, NT immunoreactivity was observed in the surrounding neuropil. In aged rat cerebellum, nNOS immunoreactivity was significantly decreased in the molecular layer, while it was slightly increased in the granular layer. Image analysis showed no significant age-related changes in nNOS immunoreactivity in the cerebellar nuclei. In summary, this report has demonstrated that NT increases with age in the cerebellum, and suggests that NO production by the neuronal form of NOS may not be the rate limiting step in NT formation in the aged brain. Further work is needed to examine the mechanisms underlying the increased immunoreactivity for NT, and the functional implications of this increase.  相似文献   

7.
More than 20 years of research have firmly established important roles of the diffusible messenger molecule, nitric oxide (NO), in cerebellar development and function. Granule neurons are main players in every NO-related mechanism involving cerebellar function and dysfunction. Granule neurons are endowed with remarkable amounts of the Ca2+-dependent neuronal isoform of nitric oxide synthase and can directly respond to endogenously produced NO or induce responses in neighboring cells taking advantage of the high diffusibility of the molecule. Nitric oxide acts as a negative regulator of granule cell precursor proliferation and promotes survival and differentiation of these neurons. Nitric oxide is neuroprotective towards granule neurons challenged with toxic insults. Nitric oxide is a main regulator of bidirectional plasticity at parallel fiber-Purkinje neuron synapses, inducing long-term depression (LTD) or long-term potentiation (LTP) depending on postsynaptic Ca2+ levels, thus playing a central role in cerebellar learning related to motor control. Granule neurons cooperate with glial cells, in particular with microglia, in the regulation of NO production through the respective forms of NOS present in the two cellular types. Aim of the present paper is to review the state of the art and the improvement of our understanding of NO functions in cerebellar granule neurons obtained during the last two decades and to outline possible future development of the research.  相似文献   

8.
Nitric oxide (NO) is a gaseous neurotransmitter which plays an important role in neuronal signalling and plasticity throughout the brain. In the cerebellum, NO synthase (NOS) is expressed in parallel fibres and within the internal granule cell layer (IGL). During development there are changes in NOS concentration, distribution and activity within the IGL, suggesting NO may play a role in IGL function. Therefore, the actions of NO in the IGL were investigated. The similar actions of a range of NOS inhibitors and NO scavengers strongly suggested the presence of a tonic level of endogenous NO in the IGL. Both the neuronal and inducible forms of NOS appeared to be sources of this endogenous NO. The effects observed following a reduction in the concentration of endogenous NO were consistent with enhanced granule cell GABAA receptor activation. For example, a reduction in NO concentration led to an increase in the frequency of action potential-dependent phasic GABAergic inhibitory postsynaptic currents (IPSCs) and produced a TTX-insensitive GABAA receptor-mediated current. A direct action of NO on Golgi cell membrane potential and input resistance accounted for the increase in the frequency of phasic GABA release. The mechanism underlying the tonic GABA current is unclear but does not appear to be via the modulation of GABA uptake or the activation of nicotinic acetylcholine receptors. NO is a potentially novel mechanism for tuning GABAergic signalling to granule cells and therefore modulating the throughput of an important cerebellar circuit.  相似文献   

9.
Park C  Kang M  Kim-Kwon Y  Kim J  Ahn H  Huh Y 《Brain research》2002,933(1):290-84
Recent studies have shown that the expression of neuronal nitric oxide synthase (NOS) mRNA is increased after adrenalectomy (ADX). However, the role of increased NO production after ADX in the dentate gyrus is unknown. In this study, the relationship between NO inhibition and apoptosis in the dentate gyrus after ADX was examined. 7-Nitroindazole (7-NI; 30 mg/kg, i.p.), a selective inhibitor of neuronal NOS, was injected 1 day before ADX and subsequently once every 24 h. Then 4 days after ADX, dentate granule cell death was evaluated using silver impregnation and Nissl staining methods. Inhibition of neuronal NOS by 7-NI increased the number of dying granule cells approximately 4-fold in the dentate gyrus of the ADX rats, compared to vehicle-injected ADX controls. These results suggest that increased NO production after ADX may play an endogenous neuroprotective role in the dentate gyrus.  相似文献   

10.
The diffusible factors, nitric oxide (NO) and brain-derived neurotrophic factor (BDNF) are both suggested to be intercellular messengers that have similar synaptic activities and developmental influences in the brain. In the present study, we have analysed their mutual regulation with respect to their production in rodent neocortical neurons. Some of the cultured rat neocortical neurons exhibited immunoreactivity for both neuronal NO synthase (NOS) and the BDNF receptor trkB. Neuronal NOS appeared to be activated autonomously and produced NO in culture as monitored by nitrite accumulation. Inhibition of the endogenous NO production in culture by a NOS inhibitor, NG-monomethyl-L-arginine (NMMA), enhanced basal expression of BDNF mRNA and protein. Similarly, cerebroventricular administration of another NOS inhibitor, N-omega-nitro-L-arginine methylester (L-NAME), but not D-NAME or saline, increased BDNF content in the neocortex. In the opposite direction, however, BDNF appeared to function as a positive regulator for NO synthesis. Addition of BDNF upregulated the neuronal NOS expression as well as NO production in neocortical culture. In agreement, BDNF knock-out mice exhibited significant impairment of neuronal NOS expression in the neocortex. Taken together, these observations suggest that the trans-synaptic signalling molecules, NO and BDNF, influence the production of each other and mutually regulate the strength of their intercellular communications.  相似文献   

11.
Nitric oxide (NO) derived from the endothelial NO synthase (eNOS) contributes to regulation of cerebral circulation, whereas that produced by neuronal NOS (nNOS) participates in the regulation of brain function. In particular, NO plays an important role in modulation of sympathetic activity and hence central regulation of arterial pressure. Superoxide derived from NAD(P)H oxidase avidly reacts with and inactivates NO and, thereby, modulates its bioavailability. Calmodulin (CM) is required for activation of NOS and soluble guanylate cyclase (sGC) serves as a NO receptor. Superoxide is dismutated to H2O2 by superoxide dismutase (SOD) and H2O2 is converted to H2O by catalase or glutathione peroxidase (GPX). Given the importance of NO in the regulation of brain perfusion and function, we undertook the present study to determine the relative expressions of immunodetectable nNOS, eNOS, CM, sGC, NAD(P)H oxidase and SOD by Western analysis in different regions of the normal rat brain. nNOS was abundantly expressed in the pons cerebellum and hypothalamus and less so in the cortex and medulla. sGC abundance was highest in the hypothalamus and pons, and lowest in the cerebellum and medulla. eNOS and calmodulin were equally abundant in all regions. NAD(P)H oxide was most abundant in the pons compared to other regions. Cytoplasmic SOD was equally distributed among different regions but catalase and GPX were more abundant in pons, hypothalamus and medulla and less so in the cortex and cerebellum. Thus, the study documented regional distributions of NOS, NAD(P)H oxidase, antioxidant enzymes, sGC and calmodulin which collectively regulate production and biological activities of NO and superoxide, the two important small molecular size signaling molecules.  相似文献   

12.
Buskila Y  Farkash S  Hershfinkel M  Amitai Y 《Glia》2005,52(3):169-176
Nitric oxide (NO), a cellular signaling molecule, is produced in the brain by both neurons and astrocytes. While neurons are capable of rapid release of small amounts of NO serving as neurotransmitter, astrocytic NO production has been demonstrated mainly as a slow reaction to various stress stimuli. Little is known about the role of astrocyte-produced NO. Using the NO indicator 4,5-diaminofluorescein-2 diacetate (DAF-2DA) and acute slices from mouse brain, we distinguished neurons from astrocytes based on their different fluorescence kinetics and pattern, cellular morphology, electrophysiology, and responses to selective nitric oxide synthase (NOS) inhibitors. Typically, astrocytic fluorescence followed neuronal fluorescence with a delay of 1-2 min and was dependent on the inducible NOS isoform (iNOS) activity. Western blot analysis established the presence of functional iNOS in the neocortex. An assay for cell death revealed that most DAF-2DA-positive neurons, but not astrocytes, were damaged. Whole cell recordings from astrocytes confirmed that these cells maintained their membrane potential and passive properties during illumination and afterward. Induction of excitotoxicity by brief application of glutamate triggered an immediate and intense astrocytic response, while high-frequency electrical stimulation failed to do so. The present study demonstrates, for the first time, rapid and massive iNOS-dependent NO production by astrocytes in situ, which appears to be triggered by acute neuronal death. These data may bear important implications for our theoretical understanding and practical management of acute brain insults.  相似文献   

13.
Glutamate is the main excitatory neurotransmitter in mammals. However, excessive activation of glutamate receptors is neurotoxic, leading to neuronal degeneration and death. In many systems, including primary cultures of cerebellar neurons, glutamate neurotoxicity is mainly mediated by excessive activation of NMDA receptors, leading to increased intracellular calcium which binds to calmodulin and activates neuronal nitric oxide synthase (NOS), increasing nitric oxide (NO) which in turn activates guanylate cyclase and increases cGMP. Inhibition of NOS prevents glutamate neurotoxicity, indicating that NO mediates glutamate-induced neuronal death in this system. NO generating agents such as SNAP also induce neuronal death. Compounds that can act as “scavengers” of NO such as Croman 6 (CR-6) prevent glutamate neurotoxicity. The role of cGMP in the mediation of glutamate neurotoxicity remain controversial. Some reports indicate that cGMP mediates glutamate neurotoxicity while others indicate that cGMP is neuroprotective. We have studied the role of cGMP in the mediation of glutamate and NO neurotoxicity in cerebellar neurons. Inhibition of soluble guanylate cyclase prevents glutamate and NO neurotoxicity. There is a good correlation between inhibition of cGMP formation and neuroprotection. Moreover 8-Br-cGMP, a cell permeable analog of cGMP, induced neuronal death. These results indicate that increased intracellular cGMP is involved in the mechanism of neurotoxicity. Inhibitors of phosphodiesterase increased extracellular but not intracellular cGMP and prevented glutamate neurotoxicity. Addition of cGMP to the medium also prevented glutamate neurotoxicity. These results are compatible with a neurotoxic effect of increased intracellular cGMP and a neuroprotective effect of increased extracellular cGMP.  相似文献   

14.
Nitric oxide (NO) is a highly diffusible cellular mediator generated from L-arginine by the enzyme nitric oxide synthase (NOS). As little is known about the regional distribution of NOS in the human brain, we examined the distribution pattern of nitric oxide synthase activity in 28 regions of the human brain using the [(3)H]L-citrulline formation assay. To elucidate which isoforms contribute to the total NOS activity we performed Western blot analysis of neuronal, inducible and endothelial NOS. We further determined brain levels of arginine and citrulline as a potential index of NOS activity pre mortem. NOS activity appears to remain unaltered during ageing and is independent of post mortem delay, gender or sample storage time. We identified a regional pattern of NOS distribution with highest levels of NOS activity in the substantia innominata, cerebellar cortex, nucleus accumbens and subthalamicus, whereas lowest levels were measured in the corpus callosum, thalamus, occipital cortex, and dentate nucleus. nNOS was measured throughout the brain, in contrast iNOS and eNOS were not detectable. We therefore conclude that primarily nNOS is responsible for NOS activity in the human brain. Levels of citrulline were higher than those of arginine, but did not correlate with the enzyme activity, suggesting that these parameters are unsuitable for testing NOS activity premortem. The characterization and topographical pattern of NOS in the human brain during normal ageing may assist our understanding of the physiological role of NO and its relevance in Parkinson's and Alzheimer's disease, alcoholism, schizophrenia and AIDS.  相似文献   

15.
We have previously reported progressive reactive astrocytes in the cerebellum of taiep rats, one of the most regions affected by demyelination, and activation of cerebellar glial cells in vitro. Based on the hypothesis that activated glial cells produce high levels of reactive nitrogen intermediates, we assessed the production of nitric oxide (NO) and the expression of the three NO synthases (NOS) in the cerebellum of 6-month-old taiep rats. A significant 40% increase of NO levels was measured in taiep rats when compared with controls. The protein and mRNA levels of the three NOS isoforms were also significantly increased. In contrast to controls, immunostaining assays against nNOS or iNOS showed an increased number of immunoreactive glial cells in the granular layer (nNOS) and Purkinje layer (iNOS) of cerebellum of taiep rats. Microglia-macrophages and both CD4- and CD8-immunoreactive cells were observed in cerebellar white matter of taiep rats only, thus suggesting other possible cell sources of those NOSs. Differences in the cellular location for eNOS immunoreactivity were not observed. The enhanced levels of NO, NOS proteins, mRNAs, and NOS immunoreactivities in glial cells and microglia strongly suggest glial activation together with the professional immune cells can aggravate the demyelination of aged taiep rats.  相似文献   

16.
Xu Y  Tao YX 《Neuroreport》2004,15(2):263-266
Platelet-activating factor (PAF), a bioactive phospholipid implicated in neuronal excitotoxic death, augments the presynaptic release of glutamate. Excessive activation of postsynaptic glutamate receptors and subsequent downstream signals leads to excitotoxicity. The present study proposed that the NMDA receptor/nitric oxide (NO) signal pathway might be involved in PAF-induced neurotoxicity. After the cultured neurons were exposed to PAF for 24 h the percentage of neuronal death increased in a dose-dependent manner. The PAF effects were significantly prevented not only by BN52021, a PAF antagonist, but also by MK-801, an NMDA antagonist, and L-NAME, an NO synthase (NOS) inhibitor. Moreover, the increases in NOS activity and neuronal NOS expression induced by chronic exposure of the cultured neurons to PAF were dramatically blocked by BN52021 and MK-801, respectively. Our findings suggest that the NMDA receptor/NO signaling pathway might contribute to the pathological mechanism of cell death triggered via PAF receptor activation.  相似文献   

17.
Chen L  Majde JA  Krueger JM 《Brain research》2003,987(2):214-222
Nitric oxide (NO) affects almost every physiological process, including the regulation of sleep. There is strong evidence that NO plays an important role in rapid eye movement sleep (REMS) regulation. To further investigate the role of NO in sleep, we characterized spontaneous sleep in mice with targeted disruptions (knockout; KO) in the neuronal nitric oxide synthase (nNOS) or inducible (i)NOS genes. REMS in nNOS KO mice was substantially lower than that of their control mice. In contrast, the iNOS KO mice had significantly more REMS than their controls. Inducible NOS KO mice also had less non-REMS (NREMS) during the dark period. Results suggest that nNOS and iNOS play opposite roles in REMS regulation.  相似文献   

18.
The diffusible chemical messenger nitric oxide (NO) is involved in neuronal plasticity and it is, therefore, supposed to play a role in brain development. A shortage of NO during the critical period of brain maturation may theoretically have long-lasting consequences on the organization of the adult brain. We have performed in neonatal rats a chronic inhibition of the enzyme responsible for NO production, nitric oxide synthase (NOS), from postnatal day 3 to postnatal day 23, through administration of the competitive antagonist N-nitro-L-arginine methylester (L-NAME). The calcium-dependent catalytic activity resulted almost completely inhibited throughout the period of treatment and it took more than 4 days after its suspension to get a full recovery. The expression of the neuronal isoform of the enzyme (nNOS), revealed by immunoblotting, was unchanged during the treatment and after it. The histochemical reaction for NADPH diaphorase was reduced at the end of the treatment and recovered in concomitance with the recovery of the catalytic NOS activity. No gross structural alterations were detected in brain morphology. The levels of three neurotransmitter-related and one astrocytic marker were unchanged in the cerebellum, hippocampus and cortex of 60-day-old rats which had been neonatally treated. A similar lack of significant effects on neurochemical brain maturation was also noticed in a parallel series of experiments, in which a short pulse of NOS inhibition was performed at a critical prenatal time of brain development, from gestational day 14 to gestational day 19. In vitro, chronic exposure of cerebellar granule cells to L-NAME (500 microM) resulted in slight decrease of surviving neurons after 8 days in culture and in better resistance to the challenge of stressful culture conditions. The present results suggest that the basic plan of brain organization can be achieved despite an almost complete NOS inhibition during the maturation period. In vitro, NOS inhibition may bring to more pronounced consequences on neuronal viability and function.  相似文献   

19.
OBJECTIVES: One of the fundamental aspects of nitric oxide (NO) is the regulation of the inflammatory processes involved in neuronal apoptosis. Expressions of NO and NO synthase (NOS) are considered to be involved in brain tissue injuries and brain tumors. The purpose of our study was to investigate the roles of NO and inducible-form NOS (iNOS) in the pathogenesis of brain tumors. METHODS: NO levels in the cerebrospinal fluid (CSF) of 36 brain tumor patients were detected utilizing the NO-chemiluminescence method. Deparaffinized tissue sections were immunostained for the presence of antibodies against iNOS and for apoptosis using the TUNEL stain. The results were compared with 10 control patients (with epilepsy and hydrocephalus). CONCLUSIONS: Higher levels of NO and iNOS activities may induce immune responses and neurotoxicities. This preliminary study revealed elevated NO and NOS activities with an increased amount of apoptotic processes in brain tumor tissues, which may indicate the possible roles of NO in the formation of brain tumors.  相似文献   

20.
Neuronal injury in manganism is accompanied by activation of astroglia within the basal ganglia that is thought to increase production of inflammatory mediators such as nitric oxide (NO). The present studies postulated that astroglial-derived NO mediates neuronal apoptosis induced by manganese (Mn) and pro-inflammatory cytokines. Pheochromocytoma (PC12) cells differentiated with nerve growth factor (NGF) were co-cultured with primary astrocytes and exposed to Mn and tumor necrosis factor-alpha (TNF-alpha) plus interferon-gamma (IFN-gamma). Mn enhanced cytokine-induced expression of inducible nitric oxide synthase (NOS2, EC 1.14.13.39) and production of NO in astrocytes that correlated with apoptosis in co-cultured neurons, as determined by caspase activity, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL), and nuclear morphology. Apoptosis in PC12 neurons required the presence of astrocytes and was blocked by overexpression of a phosphorylation-deficient mutant of IkappaBalpha (S32/36A) in astrocytes that prevented induction of NOS2. Pharmacologic inhibition of NOS2 with (+/-)-2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine (AMT) significantly reduced neuronal apoptosis, and the addition of low concentrations of the NO donor, S-nitroso-N-acetylpenicillamine (SNAP), to neurons cultured without astrocytes was sufficient to recover the apoptotic phenotype following exposure to Mn and TNF-alpha/IFN-gamma. It is concluded that Mn- and cytokine-dependent apoptosis in PC12 neurons requires astroglial-derived NO and NF-kappaB-dependent expression of NOS2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号