首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
One isoform of the vascular endothelial growth factor, VEGF165, has been reported to be a dominant mediator and regulator of angiogenic process, which plays an important role in treating cardiovascular diseases and chronically ischemic wounds. Branched polyethylenimine (bPEI) has been widely used as a non-viral delivery vector for gene therapy. Although bPEI-mediated DNA transfection efficiency can be raised by increasing the PEI nitrogen:DNA phosphate (N/P) ratio, cytotoxicity increases as well. In this study, the enhancement effect of microbubble inertial cavitation (IC) on bPEI-mediated VEGF165 transfection was investigated, in an effort to optimize transfection efficiency using low N/P ratios. HEK 293T cells, mixed with bPEI:VEGF165 complexes, were exposed to 1-MHz ultrasound pulses. The results show that: (1) IC activity induced by microbubble destruction can be quantified as an IC “dose” (ICD) and will increase with increasing acoustic driving pressure; (2) larger sonoporation pores can be generated by increasing ICD; (3) the transfection efficiency can be enhanced by increasing ICD until reaching a saturation level; and (4) microbubble IC activity has less cytotoxicity than bPEI, although a combinatorial effect of microbubble IC activity and bPEI could be observed on cell viability. The results suggest that, with appropriate ultrasound parameters, it is possible to optimize bPEI-mediated VEGF transfection efficiency using relatively low N/P ratios by employing ultrasound-induced microbubble inertial cavitation.  相似文献   

2.
Thrombotic arterial occlusion is the principal etiology for acute cardiovascular syndromes such as stroke, myocardial infarction and unstable angina. Exposing the thrombus to ultrasound and microbubbles facilitates thrombus disruption, making “sonothrombolysis” a potentially powerful therapeutic strategy for thromboembolic diseases. However, optimization of such a strategy, and hence clinical translation, is constrained by an incomplete understanding of mechanisms by which ultrasound-induced microbubble vibrations disrupt blood clots. We posit that previously reported sonothrombolytic efficacy using inertial cavitation regimes was due, at least in part, to mechanical clot disruption by oscillating microbubbles. To test this hypothesis, we optically characterized lipid microbubble interactions with thrombus in the presence of ultrasound using a recently developed ultra-high-speed microscopy imaging system to visualize microbubble acoustic behaviors at megahertz frame rates. A microscope/acoustic stage designed for the system allowed an experimentally created thrombus and microbubbles to be insonified at a co-localized acoustic and optical focus during synchronized high-speed imaging. Under inertial cavitation conditions, large-amplitude microbubble oscillations caused thrombus deformation and pitting. Acoustic radiation forces (Bjerknes forces) further augmented microbubble-thrombus interaction. These observations suggest that a direct mechanical effect of oscillating lipid microbubbles on an adjacent thrombus may play a role in mediating clot disruption in the presence of specific ultrasound conditions.  相似文献   

3.
Cavitation threshold of microbubbles in gel tunnels by focused ultrasound   总被引:1,自引:0,他引:1  
The investigation of inertial cavitation in micro-tunnels has significant implications for the development of therapeutic applications of ultrasound such as ultrasound-mediated drug and gene delivery. The threshold for inertial cavitation was investigated using a passive cavitation detector with a center frequency of 1 MHz. Micro-tunnels of various diameters (90 to 800 microm) embedded in gel were fabricated and injected with a solution of Optison(trade mark) contrast agent of concentrations 1.2% and 0.2% diluted in water. An ultrasound pulse of duration 500 ms and center frequency 1.736 MHz was used to insonate the microbubbles. The acoustic pressure was increased at 1-s intervals until broadband noise emission was detected. The pressure threshold at which broadband noise emission was observed was found to be dependent on the diameter of the micro-tunnels, with an average increase of 1.2 to 1.5 between the smallest and the largest tunnels, depending on the microbubble concentration. The evaluation of inertial cavitation in gel tunnels rather than tubes provides a novel opportunity to investigate microbubble collapse in a situation that simulates in vivo blood vessels better than tubes with solid walls do.  相似文献   

4.
Ultrasound-induced acoustic cavitation assists gene delivery, possibly by increasing the permeability of the cell membranes. How the cavitation dose is related to the sonoporation rate and the cell viability is still unknown and so this in vitro study quantitatively investigated the effects of cavitation induced by 1-MHz pulsed ultrasound waves and the contrast agent Levovist® (containing microbubbles when reconstituted by adding saline and shaken) on the delivery of short DNA-FITC molecules into HeLa cells. The concentrations of cells and DNA-FITC were 2 × 105 cells/mL and 40 μg/mL, respectively. The cavitation was quantified as the inertial cavitation dose (ICD), corresponding to the spectral broadband signal enhancement during microbubble destruction. The relations of ICD with sonoporation and cell viability were examined for various acoustic pressures (0.48–1.32 MPa), Levovist® concentrations (1.12 × 105−1.12 × 107 bubbles/mL) and pulse durations (1–10 cycles). The linear regressions of the sonoporation rate versus ICD and the cell viability versus ICD were y = 28.67x + 10.71 (R2 = 0.95) and z = −62.83x + 91.18 (R2 = 0.84), respectively, where x is ICD, y is the sonoporation rate and z is the cell viability. These results show that the sonoporation rate and the cell viability are highly correlated with the ICD, indicating that sonoporation results may be potentially predicted using ICD. (E-mail: paichi@cc.ee.ntu.edu.tw)  相似文献   

5.
Ultrasound-driven microbubble activities have been exploited to transiently disrupt the cell membrane (sonoporation) for non-viral intracellular drug delivery and gene transfection both in vivo and in vitro. In this study, we investigated the dynamic behaviors of a population of microbubbles exposed to pulsed ultrasound and their impact on adherent cells in terms of intracellular delivery and cell viability. By systematically analyzing the bubble activities at time scales relevant to pulsed ultrasound exposure, we identified two quantification parameters that categorize the diverse bubble activities subjected to various ultrasound conditions into three characteristic behaviors: stable cavitation/aggregation (type I), growth/coalescence and translation (type II) and localized inertial cavitation/collapse (type III). Correlation of the bubble activities with sonoporation outcome suggested that type III behavior resulted in intracellular delivery, whereas type II behavior caused the death of a large number of cells. These results provide useful insights for rational selection of ultrasound parameters to optimize outcomes of sonoporation and other applications that exploit the use of ultrasound-driven bubble activities.  相似文献   

6.
The exposure of the skin to low-frequency (20–100?kHz) ultrasound is a well-established method for increasing its permeability to drugs. The mechanism underlying this permeability increase has been found to be inertial cavitation within the coupling fluid. This study investigated the influence of acoustic reflections on the inertial cavitation dose during low-frequency (20?kHz) exposure in an in vitro skin sonoporation setup. This investigation was conducted using a passive cavitation detector that monitored the broadband noise emission within a modified Franz diffusion cell. Two versions of this diffusion cell were employed. One version had acoustic conditions that were similar to those of a standard Franz diffusion cell surrounded by air, whereas the second was designed to greatly reduce the acoustic reflection by submerging the diffusion cell in a water bath. The temperature of the coupling fluid in both setups was controlled using a novel thermoelectric cooling system. At an ultrasound intensity of 13.6 W/cm2, the median inertial cavitation dose when the acoustic reflections were suppressed, was found to be only about 15% lower than when reflections were not suppressed.  相似文献   

7.
Sonoporation is the membrane disruption generated by ultrasound and has been exploited as a non-viral strategy for drug and gene delivery. Acoustic cavitation of microbubbles has been recognized to play an important role in sonoporation. However, due to the lack of adequate techniques for precise control of cavitation activities and real-time assessment of the resulting sub-micron process of sonoporation, limited knowledge has been available regarding the detail processes and correlation of cavitation with membrane disruption at the single cell level. In the current study, we developed a combined approach including optical, acoustical, and electrophysiological techniques to enable synchronized manipulation, imaging, and measurement of cavitation of single bubbles and the resulting cell membrane disruption in real-time. Using a self-focused femtosecond laser and high frequency ultrasound (7.44 MHz) pulses, a single microbubble was generated and positioned at a desired distance from the membrane of a Xenopus oocyte. Cavitation of the bubble was achieved by applying a low frequency (1.5 MHz) ultrasound pulse (duration 13.3 or 40 μs) to induce bubble collapse. Disruption of the cell membrane was assessed by the increase in the transmembrane current (TMC) of the cell under voltage clamp. Simultaneous high-speed bright field imaging of cavitation and measurements of the TMC were obtained to correlate the ultrasound-generated bubble activities with the cell membrane poration. The change in membrane permeability was directly associated with the formation of a sub-micrometer pore from a local membrane rupture generated by bubble collapse or bubble compression depending on ultrasound amplitude and duration. The impact of the bubble collapse on membrane permeation decreased rapidly with increasing distance (D) between the bubble (diameter d) and the cell membrane. The effective range of cavitation impact on membrane poration was determined to be D/d = 0.75. The maximum mean radius of the pores was estimated from the measured TMC to be 0.106 ± 0.032 μm (n = 70) for acoustic pressure of 1.5 MPa (duration 13.3 μs), and increased to 0.171 ± 0.030 μm (n = 125) for acoustic pressure of 1.7 MPa and to 0.182 ± 0.052 μm (n = 112) for a pulse duration of 40 μs (1.5 MPa). These results from controlled cell membrane permeation by cavitation of single bubbles revealed insights and key factors affecting sonoporation at the single cell level.  相似文献   

8.
Acoustic cavitation of microbubbles has been described as inducing tumor cell apoptosis that is partly associated with mitochondrial dysfunction; however, the exact mechanisms have not been fully characterized. Here, low-intensity pulsed ultrasound (1 MHz, 0.3-MPa peak negative pressure, 10% duty cycle and 1-kHz pulse repetition frequency) was applied to K562 chronic myelogenous leukemia cells for 1 min with 10% (v/v) SonoVue microbubbles. After ultrasound exposure, the apoptotic index was determined by flow cytometry with annexin V–fluorescein isothiocyanate/propidium iodide. In addition, mitochondrial membrane potential (ΔΨm) was determined with the JC-1 assay. Translocation of apoptosis-associated protein cytochrome c was evaluated by Western blotting. We found that microbubble-assisted acoustic cavitation can increase the cellular apoptotic index, mitochondrial depolarization and cytochrome c release in K562 cells, compared with ultrasound treatment alone. Furthermore, mitochondrial dysfunction and apoptosis were significantly inhibited by cyclosporin A, a classic inhibitor of the mitochondrial permeability transition pore; however, the inhibitor of Bax protein, Bax-inhibiting peptide, could not suppress these effects. Our results suggest that mitochondrial permeability transition pore opening is involved in mitochondrial dysfunction after exposure to microbubble-assisted acoustic cavitation. Moreover, the release of cytochrome c from the mitochondria is dependent on cyclosporin A–sensitive mitochondrial permeability transition pore opening, but not formation of the Bax-voltage dependent anion channel complex or Bax oligomeric pores. These data provide more insight into the mechanisms underlying mitochondrial dysfunction induced by acoustic cavitation and can be used as a basis for therapy.  相似文献   

9.
Focused ultrasound, in the presence of microbubbles, has been used non-invasively to induce reversible blood–brain barrier (BBB) opening in both rodents and non-human primates. This study was aimed at identifying the dependence of BBB opening properties on polydisperse microbubble (all clinically approved microbubbles are polydisperse) type and distribution by using a clinically approved ultrasound contrast agent (Definity microbubbles) and in-house prepared polydisperse (IHP) microbubbles in mice. A total of 18 C57 BL/6 mice (n = 3) were used in this study, and each mouse was injected with either Definity or IHP microbubbles via the tail vein. The concentration and size distribution of activated Definity and IHP microbubbles were measured, and the microbubbles were diluted to 6 × 108/mL before injection. Immediately after microbubble administration, mice were subjected to focused ultrasound with the following parameters: frequency = 1.5 MHz, pulse repetition frequency = 10 Hz, 1000 cycles, in situ peak rarefactional acoustic pressures = 0.3, 0.45 and 0.6 MPa for a sonication duration of 60 s. Contrast-enhanced magnetic resonance imaging was used to confirm BBB opening and allowed for image-based analysis. Permeability of the treated region and volume of BBB opening did not significantly differ between the two types of microbubbles (p > 0.05) at peak rarefractional acoustic pressures of 0.45 and 0.6 MPa, whereas IHP microbubbles had significantly higher permeability and opening volume (p < 0.05) at the relatively lower pressure of 0.3 MPa. The results from this study indicate that microbubble type and distribution could have significant effects on focused ultrasound-induced BBB opening at lower pressures, but less important effects at higher pressures, possibly because of the stable cavitation that governs the former. This difference may have become less significant at higher pressures, where inertial cavitation typically occurs.  相似文献   

10.
Non-linear emissions from microbubbles introduced to the vasculature for exposure to focused ultrasound are routinely monitored for assessment of therapy and avoidance of irreversible tissue damage. Yet the bubble-based mechanistic source for these emissions, under subresonant driving at typical therapeutic pressure amplitudes, may not be well understood. In the study described here, dual-perspective high-speed imaging at 210,000 frames per second (fps), and shadowgraphically at 10 Mfps, was used to observe cavitation from microbubbles flowing through a 500-µm polycarbonate capillary exposed to focused ultrasound of 692 kHz at therapeutically relevant pressure amplitudes. The acoustic emissions were simultaneously collected via a broadband calibrated needle hydrophone system. The observations indicate that periodic bubble-collapse shock waves can dominate the non-linear acoustic emissions, including subharmonics at higher driving amplitudes. Contributions to broadband emissions through variance in shock wave amplitude and emission timings are also identified. Possible implications for in vivo microbubble cavitation detection, mechanisms of therapy and the conventional classification of cavitation activity as stable or inertial are discussed.  相似文献   

11.
The nonlinear properties of an encapsulated microbubble of a contrast agent were studied theoretically and experimentally. A modified nonlinear differential equation (Herring equation) was used to describe the radial oscillation of the microbubble and solved numerically. It was found that the nonlinear resonance frequency, at which the peak radial oscillation amplitude occurs, was a decreasing function of the acoustic amplitude of a driving ultrasonic pulse. Optical images of the contrast agent microbubbles under various ultrasonic exposure conditions: 1. sham exposure; 2. 2-MHz spatial peak acoustic pressure = 200 kPa, I(SATA) = 260 mW/cm(2), duty cycle = 7.5%, repetition period = 0.0266 ms; 3. 0.5-MHz spatial peak acoustic pressure = 200 kPa, I(SATA) = 130 mW/cm(2), duty cycle = 7.5%, repetition period = 0.1067 ms; have also shown that the lower-frequency ultrasound (US) excitation (0.5 MHz) is more effective in disruption of the microbubbles due to acoustic inertial cavitation than the higher frequency US (2 MHz).  相似文献   

12.
Acoustic radiation force has been proposed as a mechanism to enhance microbubble concentration for therapeutic and molecular imaging applications. It is hypothesized that once microbubbles are localized, bursting them with acoustic pressure could result in local drug delivery. It is known that low-frequency, high-amplitude acoustic energy combined with cavitation nuclei can result in bioeffects. However, little is known about the bioeffects potential of acoustic parameters involved in radiation force and microbubble destruction pulse sequences applied at higher frequencies. In this pilot study, rat kidneys are exposed to high-duty cycle, low-amplitude pulse sequences known to cause substantial bubble translation due to radiation force, as well as high-amplitude short pulse sequences known to cause microbubble destruction. Both studies are performed at 7 MHz on a clinical ultrasound system, and implemented in three-dimensions (3-D) for entire kidney exposure. Analysis of biomarkers of renal injury and renal histopathology indicate that there was no significant renal damage due to these ultrasound parameters in conjunction with microbubbles within the study group.  相似文献   

13.
Ultrasound-mediated drug delivery using the mechanical action of oscillating and/or collapsing microbubbles has been studied on many different experimental platforms, both in vitro and in vivo; however, the mechanisms remain to be elucidated. Many groups use sterile, enclosed chambers, such as Opticells and Clinicells, to optimize acoustic parameters in vitro needed for effective drug delivery in vivo, as well as for mechanistic investigation of sonoporation or the use of sound to permeate cell membranes. In these containers, cell monolayers are seeded on one side, and the remainder of the volume is filled with a solution containing microbubbles and a model drug. Ultrasound is then applied to study the effect of different parameters on model drug uptake in cell monolayers. Despite the simplicity of this system, the field has been unable to appropriately address what parameters and microbubble concentrations are most effective at enhancing drug uptake and minimizing cellular toxicity. In this work, a common in vitro sonoporation experimental setup was characterized through quantitative analysis of microbubble-dependent acoustic attenuation in combination with high-frame-rate and high-resolution imaging of bubble activity during sonoporation pulse sequences. The goal was to visualize the effect that ultrasound parameters have on microbubble activity. It was observed that under literature-derived sonoporation conditions (0.1–1 MPa, 20–1000 cycles and 10,000 to 10,000,000 microbubbles/mL), there is strong and non-linear acoustic attenuation, as well as bubble destruction, gas diffusion and bubble motion resulting in spatiotemporal pressure and concentration gradients. Ultimately, it was found that the acoustic conditions in common in vitro sonoporation setups are much more complex and confounding than often assumed.  相似文献   

14.
The objective of this project was to elucidate the relationship between ultrasound contrast agents (UCAs) and sonoporation. Sonoporation is an ultrasound-induced, transient cell membrane permeability change that allows for the uptake of normally impermeable macromolecules. Specifically, this study will determine the role that inertial cavitation plays in eliciting sonoporation. The inertial cavitation thresholds of the UCA, Optison, are compared directly with the results of sonoporation to determine the involvement of inertial cavitation in sonoporation. Chinese hamster ovary (CHO) cells were exposed as a monolayer in a solution of Optison, 500,000 Da fluorescein isothiocyanate-dextran (FITC-dextran), and phosphate-buffered saline (PBS) to 30 s of pulsed ultrasound at 3.15-MHz center frequency, 5-cycle pulse duration and 10-Hz pulse repetition frequency. The peak rarefactional pressure (P(r)) was varied over a range from 120 kPa-3.5 MPa, and five independent replicates were performed at each pressure. As the P(r) was increased, from 120 kPa-3.5 MPa, the fraction of sonoporated cells among the total viable population increased from 0.63-10.21%, with the maximum occurring at 2.4 MPa. The inertial cavitation threshold for Optison at these exposure conditions has previously been shown to be in the range 0.77-0.83 MPa, at which sonoporation activity was found to be 50% of its maximum level. Furthermore, significant sonoporation activity was observed at pressure levels below the threshold for inertial cavitation of Optison. Above 2.4 MPa, a significant drop in sonoporation activity occurred, corresponding to pressures where >95% of the Optison was collapsing. These results demonstrate that sonoporation is not directly a result of inertial cavitation of the UCA, rather that the effect is related to linear and/or nonlinear oscillation of the UCA occurring at pressure levels below the inertial cavitation threshold.  相似文献   

15.
Molecular imaging using ultrasound makes use of targeted microbubbles. In this study we investigated whether these microbubbles could also be used to induce sonoporation in endothelial cells. Lipid-coated microbubbles were targeted to CD31 and insonified at 1 MHz at low peak negative acoustic pressures at six sequences of 10 cycle sine-wave bursts. Vibration of the targeted microbubbles was recorded with the Brandaris-128 high-speed camera (~ 13 million frames per second). In total, 31 cells were studied that all had one microbubble (1.2-4.2 micron in diameter) attached per cell. After insonification at 80 kPa, 30% of the cells (n = 6) had taken up propidium iodide, while this was 20% (n = 1) at 120 kPa and 83% (n = 5) at 200 kPa. Irrespective of the peak negative acoustic pressure, uptake of propidium iodide was observed when the relative vibration amplitude of targeted microbubbles was greater than 0.5. No relationship was found between the position of the microbubble on the cell and induction of sonoporation. This study shows that targeted microbubbles can also be used to induce sonoporation, thus making it possible to combine molecular imaging and drug delivery.  相似文献   

16.
We investigated whether ultrasound-induced cavitation at 0.5 MHz could improve the extravasation and distribution of a potent breast cancer-selective oncolytic adenovirus, AdEHE2F-Luc, to tumour regions that are remote from blood vessels. We developed a novel tumour-mimicking model consisting of a gel matrix containing human breast cancer cells traversed by a fluid channel simulating a tumour blood vessel, through which the virus and microbubbles could be made to flow. Ultrasonic pressures were chosen to maximize either broadband emissions, associated with inertial cavitation, or ultraharmonic emissions, associated with stable cavitation, while varying duty cycle to keep the total acoustic energy delivered constant for comparison across exposures. None of the exposure conditions tested affected cell viability in the absence of the adenovirus. When AdEHE2F-Luc was delivered via the vessel, inertial cavitation increased transgene expression in tumour cells by up to 200 times. This increase was not observed in the absence of Coxsackie and Adenovirus Receptor cell expression, discounting sonoporation as the mechanism of action. In the presence of inertial cavitation, AdEHE2F-Luc distribution was greatly improved in the matrix surrounding the vessel, particularly in the direction of the ultrasound beam; this enabled AdEHE2F-Luc to kill up to 80% of cancer cells within the ultrasound focal volume in the gel 24 hours after delivery, compared to 0% in the absence of cavitation.  相似文献   

17.
Bioeffects considerations for diagnostic ultrasound contrast agents.   总被引:1,自引:0,他引:1  
Diagnostic ultrasound contrast agents have been developed for enhancing the echogenicity of blood and for delineating other structures of the body. Approved agents are suspensions of gas bodies (stabilized microbubbles), which have been designed for persistence in the circulation and strong echo return for imaging. The interaction of ultrasound pulses with these gas bodies is a form of acoustic cavitation, and they also may act as inertial cavitation nuclei. This interaction produces mechanical perturbation and a potential for bioeffects on nearby cells or tissues. In vitro, sonoporation and cell death occur at mechanical index (MI) values less than the inertial cavitation threshold. In vivo, bioeffects reported for MI values greater than 0.4 include microvascular leakage, petechiae, cardiomyocyte death, inflammatory cell infiltration, and premature ventricular contractions and are accompanied by gas body destruction within the capillary bed. Bioeffects for MIs of 1.9 or less have been reported in skeletal muscle, fat, myocardium, kidney, liver, and intestine. Therapeutic applications that rely on these bioeffects include targeted drug delivery to the interstitium and DNA transfer into cells for gene therapy. Bioeffects of contrast-aided diagnostic ultrasound happen on a microscopic scale, and their importance in the clinical setting remains uncertain.  相似文献   

18.
The effect of variations in microbubble shell composition on microbubble resonance frequency is revealed through experiment. These variations are achieved by altering the mole fraction and molecular weight of functionalized polyethylene glycol (PEG) in the microbubble phospholipid monolayer shell and measuring the microbubble resonance frequency. The resonance frequency is measured via a chirp pulse and identified as the frequency at which the pressure amplitude loss of the ultrasound wave is the greatest as a result of passing through a population of microbubbles. For the shell compositions used herein, we find that PEG molecular weight has little to no influence on resonance frequency at an overall PEG mole fraction (0.01) corresponding to a mushroom regime and influences the resonance frequency markedly at overall PEG mole fractions (0.050–0.100) corresponding to a brush regime. Specifically, the measured resonance frequency was found to be 8.4, 4.9, 3.3 and 1.4 MHz at PEG molecular weights of 1000, 2000, 3000 and 5000 g/mol, respectively, at an overall PEG mole fraction of 0.075. At an overall PEG mole fraction of just 0.01, on the other hand, resonance frequency exhibited no systematic variation, with values ranging from 5.7 to 4.9 MHz. Experimental results were analyzed using the Sarkar bubble dynamics model. With the dilatational viscosity held constant (10–8 N·s/m) and the elastic modulus used as a fitting parameter, model fits to the pressure amplitude loss data resulted in elastic modulus values of 2.2, 2.4, 1.6 and 1.8 N/m for PEG molecular weights of 1000, 2000, 3000 and 5000 g/mol, respectively, at an overall PEG mole fraction of 0.010 and 4.2, 1.4, 0.5 and 0.0 N/m, respectively, at an overall PEG mole fraction of 0.075. These results are consistent with theory, which predicts that the elastic modulus is constant in the mushroom regime and decreases with PEG molecular weight to the inverse 3/5 power in the brush regime. Additionally, these results are consistent with inertial cavitation studies, which revealed that increasing PEG molecular weight has little to no effect on inethe rtial cavitation threshold in the mushroom regime, but that increasing PEG molecular weight decreases inertial cavitation markedly in the brush regime. We conclude that the design and synthesis of microbubbles with a prescribed resonance frequency is attainable by tuning PEG composition and molecular weight.  相似文献   

19.
The present study is motivated by the fact that there are no published studies quantifying cavitation activity and heating induced by ultrasound in adipose tissue and that there are currently no reliable techniques for monitoring successful deposition of ultrasound energy in fat in real time. High-intensity focused ultrasound (HIFU) exposures were performed in excised porcine fat at four different frequencies (0.5, 1.1, 1.6 and 3.4 MHz) over a range of pressure amplitudes and exposure durations. The transmission losses arising from reflection at the skin interface and attenuation through skin and fat were quantified at all frequencies using an embedded needle hydrophone. A 15 MHz passive cavitation detector (PCD) coaxial to the HIFU transducer was used to capture acoustic emissions emanating from the focus during HIFU exposures, while the focal temperature rise was measured using minimally invasive needle thermocouples. Repeatable temperature rises in excess of 10°C could be readily instigated across all four frequencies for acoustic intensities (Ispta) in excess of 50 W/cm2 within the first 2 s of exposure. Even though cavitation could not be initiated at 1.1, 1.6 and 3.4 MHz over the in situ peak rarefactional (p-) pressure range 0-3 MPa explored in the present study, inertial cavitation activity was always initiated at 0.5 MHz for pressures greater than 1.6 MPa (p-) and was found to enhance focal heat deposition. A good correlation was identified between the energy of broadband emissions detected by the PCD and the focal temperature rise at 0.5 MHz, particularly for short 2 s exposures, which could be exploited as a tool for noninvasive monitoring of successful treatment delivery. (E-mail: zoe.kyriakou@eng.ox.ac.uk)  相似文献   

20.
We present enhanced cavitation erosion of blood clots exposed to low-boiling-point (−2°C) perfluorocarbon phase-change nanodroplets and pulsed ultrasound, as well as microbubbles with the same formulation under the same conditions. Given prior success with microbubbles as a sonothrombolysis agent, we considered that perfluorocarbon phase-change nanodroplets could enhance clot disruption further beyond that achieved with microbubbles. It has been hypothesized that owing to their small size and ability to penetrate into a clot, nanodroplets could enhance cavitation inside a blood clot and increase sonothrombolysis efficacy. The thrombolytic effects of lipid-shell-decafluorobutane nanodroplets were evaluated and compared with those of microbubbles with the same formulation, in an aged bovine blood clot flow model. Seven different pulsing schemes, with an acoustic intensity (ISPTA) range of 0.021–34.8 W/cm2 were applied in three different therapy scenarios: ultrasound only, ultrasound with microbubbles and ultrasound with nanodroplets (n = 5). Data indicated that pulsing schemes with 0.35 W/cm2 and 5.22 W/cm2 produced a significant difference (p < 0.05) in nanodroplet sonothrombolysis performance compared with compositionally identical microbubbles. With these excitation conditions, nanodroplet-mediated treatment achieved a 140% average thrombolysis rate over the microbubble-mediated case. We observed distinctive internal erosion in the middle of bovine clot samples from nanodroplet-mediated ultrasound, whereas the microbubble-mediated case generated surface erosion. This erosion pattern was supported by ultrasound imaging during sonothrombolysis, which revealed that nanodroplets generated cavitation clouds throughout a clot, whereas microbubble cavitation formed larger cavitation clouds only outside a clot sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号