首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Age-dependent changes in the expression of group I and II metabotropic glutamate (mGlu) receptors were studied by in situ hybridization, Western blot analysis and immunohistochemistry. Male Fisher 344 rats of three ages (3, 12 and 25 months) were tested. Age-related increases in mGlu1 receptor mRNA levels were found in several areas (thalamic nuclei, hippocampal CA3) with parallel increases in mGlu1a receptor protein expression. However, a slight decrease in mGlu1a receptor mRNA expression in individual Purkinje neurons and a decline in cerebellar mGlu1a receptor protein levels were detected in aged animals. In contrast, mGlu1b receptor mRNA levels increased in the cerebellar granule cell layer. Although mGlu5 receptor mRNA expression decreased in many regions, its protein expression remained unchanged during aging. Compared to the small changes in mGlu2 receptor mRNA levels, mGlu3 receptor mRNA levels showed substantial age differences. An increased mGlu2/3 receptor protein expression was found in the frontal cortex, thalamus, hippocampus and corpus callosum in aged animals. These results demonstrate region- and subtype-specific, including splice variant specific changes in the expression of mGlu receptors in the brain with increasing age.  相似文献   

2.
ErbB-4 is expressed by the periglomerular and the mitral/tufted cells of the adult mouse olfactory bulb (OB) and in the present work we tested whether this expression is regulated by the olfactory nerve input to the OB. Reversible zinc sulphate lesions of the olfactory mucosa were made in adult mice and the deafferented OB analysed by immunohistochemistry, Western blotting and semiquantitative RT-PCR. Following deafferentation, the expression of erbB-4, erbB-2 and neuregulin-1 (NRG-1) mRNAs in the OB was altered. At early stages (7-14 days) after lesion the levels of expression of olfactory marker protein (OMP), tyrosine hydroxylase (TH), erbB-4 and NRG-1 mRNAs were decreased, whilst expression of erbB-2 increased and that of NRG-2 was not significantly altered. We observed at least two distinct time courses for these expression changes. The lowest amounts of mRNA for erbB-4 and NRG-1 were observed at day 7 after lesion, whilst mRNAs for TH and OMP were lowest at day 14. At day 28 after the lesion, when olfactory receptor neuron axons had reinnervated the olfactory bulb, the expression levels of OMP, TH, erbB-2, erbB-4 and NRG-1 were identical to control values. These results indicate that the expression of erbB-4 mRNA and protein in periglomerular and mitral cells is controlled by peripheral olfactory innervation. The tight correlation in NRG-1 and erbB-4 expression levels also suggests a possible functional link that deserves further exploration.  相似文献   

3.
Glutamate is essential for learning and memory processes, and acute and chronic exposures to ethanol (or protracted abstinence) alter glutamatergic transmission. In the current study, we investigated the effects of VU-29, positive allosteric modulator of metabotropic glutamate 5 (mGlu5) receptor, on the acute ethanol- and ethanol withdrawal-induced impairment of novel object recognition (NOR) task in rats. The influence of VU-29 (30 mg/kg) on memory retrieval was measured (a) at 4-h delay after acute ethanol administration, as well as (b) after acute withdrawal (24 and 48 h) of repeated (2.0 g/kg, once daily for 7 days) ethanol administration. Additionally, the effects of VU-29 on expression of mGlu5 and mGlu2 receptor proteins in the hippocampus, prefrontal cortex, and striatum were determined 48 h after ethanol withdrawal. Our results indicated that VU-29, given before acute ethanol administration, prevented the ethanol-induced impairments in spatial memory retrieval. Furthermore, VU-29 given before the testing session on the first day of abstinence facilitated NOR performance in ethanol-withdrawn rats at 4- and 24-h delay after administration. Our ELISA results show that VU-29 normalized ethanol withdrawal induced increase in expression of mGlu5 receptor protein in the hippocampus, prefrontal cortex, and striatum, as well as expression of mGlu2 receptor protein in the hippocampus. Thus, results from our study indicate that positive modulation of mGlu5 receptor prevented and reversed ethanol-induced memory impairment. Moreover, mGlu5 (hippocampus, prefrontal cortex, and striatum) and mGlu2 (hippocampus) receptors play an important role in the ethanol-induced recognition memory impairment induced by ethanol withdrawal.  相似文献   

4.
The mechanisms by which dopaminergic and glutamatergic inputs interact to regulate striatal neuropeptide expression during physiological motor activity are poorly understood. In this work, striatal expression of preprotachykinin (PPT) and preproenkephalin (PPE) mRNA was studied by in situ hybridization in rats killed 2 h after treadmill running (36 m/min for 20 min). Treadmill running induced a significant increase in the levels of both PPT (60% increase) and PPE (90% increase) mRNA in the striatum of normal rats. The increase in the level of PPT mRNA was blocked in rats previously subjected to nigrostriatal deafferentation (i.e., 6-hydroxydopamine lesion) or pretreated with D1-receptor antagonist SCH-23390 (0.1 mg/kg), the D2-receptor antagonist eticlopride (0.5 mg/kg), or the N-methyl-D-aspartate (NMDA) glutamate receptor antagonist MK-801 (0.1 mg/kg). The running-induced increase in the level of PPE mRNA was blocked in rats pretreated with SCH-23390 or MK-801. Rats subjected to nigrostriatal deafferentation or pretreated with eticlopride showed an increase in PPE mRNA levels (around 150% and 40% increase, respectively), that was enhanced by running (around 230% and 160% increase, respectively). These results suggest that locomotor activity increases, in a NMDA receptor dependent fashion, the excitatory influence of the corticostriatal glutamatergic system on the two populations of striatal projection neurons, as reflected by increases in the levels of PPT and PPE mRNA. The results obtained after dopamine depletion or injection of dopamine receptor antagonists suggest that a concomitant increase in dopamine release may enhance PPT mRNA level in striatonigral neurons via D1 receptors, and reduce PPE mRNA level in striatopallidal neurons via D2 receptors. Additionally, levels of dopamine and glutamate may be regulated by other complex indirect mechanisms.  相似文献   

5.
The regulation of the striatal m1 and m4 muscarinic receptor mRNA as well as the choline acetyltransferase (ChAT) mRNA expression by nigral dopaminergic and cortical glutamatergic afferent fibres was investigated using quantitative in situ hybridization histochemistry. The effects induced by a unilateral lesion of the medial forebrain bundle and a bilateral lesion of the sensorimotor (SM) cortex were analysed in the dorsal striatum 3 weeks after the lesions. Dopaminergic denervation of the striatum resulted in a marked decrease in the levels of m4 mRNA throughout the striatum, while the levels of muscarinic m1 mRNA and ChAT mRNA in cholinergic neurons were unaffected by the lesion. In contrast, following bilateral cortical ablation, the levels of the muscarinic m1 mRNA were significantly increased in the striatal projection area of the SM cortex, whereas the expression of m4 mRNA remained unchanged. Single cholinergic cell analysis by computer-assisted grain counting revealed a decreased labelling for ChAT mRNA per neuron following cortical ablation. However, in contrast to the topographical m1 mRNA changes, the decreased ChAT mRNA expression was evenly distributed within the striatum, suggesting an indirect cortical control upon striatal cholinergic interneurons. Altogether, these data suggest that dopaminergic nigral and glutamatergic cortical afferents modulate differentially cholinergic markers, at the pre- and post-synaptic levels. Beside the fact that nigral and cortical inputs exert an opposite control on cholinergic neurotransmission, our study further shows that this control involved different muscarinic receptor subtypes: the m4 and m1 receptors, respectively.  相似文献   

6.
Cultured cerebellar granule cells grown in medium containing 10 mm K+ undergo apoptosis after 4–5 days in vitro (DIV), and, at that time, the activity of metabotropic glutamate (mGlu) receptors coupled to polyphosphoinositide (PI) hydrolysis begins to decline. In granule cells at 4 DIV, the mGlu receptor subtype mGlu5 was expressed at high levels. The expression of another PI-coupled mGlu receptor, the mGlu1a, was low at 4 DIV but increased during the following days. In cultures at 4–5 DIV, the few cells that already showed an apoptotic phenotype were devoid of mGlu5 receptors, but they all expressed mGlu1a receptors. The development of apoptosis was accelerated after treating the cultures with: (i) mGlu5 antisense oligonucleotides; (ii) the mixed mGlu receptor antagonist, (+)-α-methyl-4-carboxyphenylglycine; or (iii) the glutamate depleting enzyme, alanine aminotransferase. In contrast, an induced overexpression of mGlu5 receptors protected cultured granule cells against apoptotic death. We suggest that the activity of mGlu5 receptors supports cell survival, and a decline in the expression of mGlu5 receptors gives access to programmed cell death in cerebellar granule cells developing in primary cultures.  相似文献   

7.
Type 1 metabotropic glutamate (mGlu1) receptors play a pivotal role in different forms of synaptic plasticity in the cerebellar cortex, e.g. long‐term depression at glutamatergic synapses and rebound potentiation at GABAergic synapses. These various forms of plasticity might depend on the subsynaptic arrangement of the receptor in Purkinje cells that can be regulated by protein–protein interactions. This study investigated, by means of the freeze‐fracture replica immunogold labelling method, the subcellular localization of mGlu1 receptors in the rodent cerebellum and whether Homer proteins regulate their subsynaptic distribution. We observed a widespread extrasynaptic localization of mGlu1 receptors and confirmed their peri‐synaptic enrichment at glutamatergic synapses. Conversely, we detected mGlu1 receptors within the main body of GABAergic synapses onto Purkinje cell dendrites. Although Homer proteins are known to interact with the mGlu1 receptor C‐terminus, we could not detect Homer3, the most abundant Homer protein in the cerebellar cortex, at GABAergic synapses by pre‐embedding and post‐embedding immunoelectron microscopy. We then hypothesized a critical role for Homer proteins in the peri‐junctional localization of mGlu1 receptors at glutamatergic synapses. To disrupt Homer‐associated protein complexes, mice were tail‐vein injected with the membrane‐permeable dominant‐negative TAT‐Homer1a. Freeze‐fracture replica immunogold labelling analysis showed no significant alteration in the mGlu1 receptor distribution pattern at parallel fibre–Purkinje cell synapses, suggesting that other scaffolding proteins are involved in the peri‐synaptic confinement. The identification of interactors that regulate the subsynaptic localization of the mGlu1 receptor at neurochemically distinct synapses may offer new insight into its trafficking and intracellular signalling.  相似文献   

8.
Unilateral olfactory deprivation during postnatal development results in significant anatomical and neurochemical changes in the deprived olfactory bulb. Perhaps the most dramatic neurochemical change is the loss of dopaminergic expression by neurons of the glomerular region. We describe here the effects of early olfactory deprivation on other elements of the bulb dopaminergic system, namely the dopamine receptors of the olfactory bulb. Rat pups had a single naris occluded on postnatal day 2 (PN2). On PN20 or PN60, animals were sacrificed and the bulbs were examined for catecholamine levels or D2 and D1 dopamine receptor binding. Receptor densities were quantified by in vitro autoradiography using the tritiated antagonists spiperone (D2) and SCH23390 (D1). Dopamine uptake sites were similarly examined using tritiated mazindol. No significant specific labeling of D1 or mazindol sites was observed in the olfactory bulbs of control or experimental animals at either age. Normal animals displayed prominent labeling of D2 sites in the glomerular and nerve layers. After 60 days of deprivation, deprived bulbs exhibited an average increase in D2 receptor density of 32%. As determined by Scatchard analysis, the mean values for Kd and Bmax were 0.134 nM and 293 fmol/mg protein in normal bulbs, and 0.136 nM and 403 fmol/mg protein in deprived bulbs. The results suggest that, as in the neostriatum, dopamine depletion in the olfactory bulb leads to an upregulation of D2 receptor sites. This change may represent an attempt by the system to adapt neurochemically to reduced dopaminergic activity and thereby maintain bulb function.  相似文献   

9.
The regeneration of the olfactory neuroepithelium following olfactory bulbectomy or peripheral deafferentation was studied with mRNA probes and antibodies for B-50/GAP43 and for olfactory marker protein (OMP). Two stages in the regeneration of the olfactory epithelium could be discerned with these reagents. The first stage occurs following either peripheral deafferentation of the olfactory epithelium with Triton X-100 (TX-100) or after bulbectomy and is characterized by the formation of a large population of immature olfactory receptor neurons. These newly formed neurons express B-50/GAP43, a phosphoprotein related to neuronal growth and plasticity. During the second stage of the regeneration process the newly formed olfactory neurons mature, as evidenced by a decrease in their expression of B-50/GAP43 and an increase in the expression of OMP. This stage is only manifested if the developing neurons have access to the target olfactory bulb. Formation of a full complement of OMP-expressing neurons occurs only after peripheral lesion with TX-100. In contrast, following bulbectomy the reconstituted olfactory epithelium lacks its normal target and is compromised in its ability to recover from nerve damage, as evidenced by the presence of a large number of B-50/GAP43-expressing neurons up to 3 months after the lesion and its failure to establish a full complement of OMP-expressing neurons. These results demonstrate that the olfactory epithelium is capable of replacing its sensory neurons independently of the presence of its target, the olfactory bulb. However, the differential patterns of expression of B-50/GAP43 and OMP at long times after peripheral lesion with TX-100 or bulbectomy illustrate the profound effect the olfactory bulb has on neuronal maturation in reconstituted olfactory neuroepithelium.  相似文献   

10.
To explore the functional roles of Reelin in the adult olfactory system, we examined changes in the expression of reelin mRNA and Reelin protein in the olfactory bulb (OB) of adult mice after a chemical lesion to the olfactory epithelium. Following intranasal irrigation with 2% zinc sulphate solution, animals were perfused at various times between 5 and 40 days post-lesion. The expression of reelin mRNA in mitral cells in the OB was slightly reduced at 5 days post-lesion, completely abolished by 20 days, but restored almost to the normal level at 40 days post-lesion. Similarly, the expression of Reelin protein in mitral cells of the deafferented OB also recovered, although not to the normal level. No recovery of either reelin mRNA or Reelin immunoreactivity was seen in the periglomerular cells and external tufted cells. The expression profile of reelin mRNA and Reelin protein in the OB coincided with the time course of degeneration and regeneration of olfactory nerves, as indicated by anterograde labeling of olfactory nerves with WGA-HRP. These results suggest that expression of reelin mRNA in the adult OB is regulated by olfactory inputs.  相似文献   

11.
Prenatal exposure to restraint stress causes long-lasting changes in neuroplasticity that likely reflect pathological modifications triggered by early-life stress. We found that the offspring of dams exposed to repeated episodes of restraint stress during pregnancy (here named 'prenatal restraint stress mice' or 'PRS mice') developed a schizophrenia-like phenotype, characterized by a decreased expression of brain-derived neurotrophic factor and glutamic acid decarboxylase 67, an increased expression of type-1 DNA methyl transferase (DNMT1) in the frontal cortex, and a deficit in social interaction, locomotor activity, and prepulse inhibition. PRS mice also showed a marked decrease in metabotropic glutamate 2 (mGlu2) and mGlu3 receptor mRNA and protein levels in the frontal cortex, which was manifested at birth and persisted in adult life. This decrease was associated with an increased binding of DNMT1 to CpG-rich regions of mGlu2 and mGlu3 receptor promoters and an increased binding of MeCP2 to the mGlu2 receptor promoter. Systemic treatment with the selective mGlu2/3 receptor agonist LY379268 (0.5?mg/kg, i.p., twice daily for 5 days), corrected all the biochemical and behavioral abnormalities shown in PRS mice. Our data show for the first time that PRS induces a schizophrenia-like phenotype in mice, and suggest that epigenetic changes in mGlu2 and mGlu3 receptors lie at the core of the pathological programming induced by early-life stress.  相似文献   

12.
In this study we examined the proliferative response of olfactory ensheathing cells (OECs) to olfactory receptor neuron injury induced by zinc sulfate (ZnSO4) irrigation and related the response of OECs within the peripheral system to the inflammatory response induced by injury and the expression profile of neuregulins. After ZnSO4 treatment, degeneration in the epithelium is reproducible and rapid, with regeneration following after 4 days, and is morphologically complete by 5 weeks. Changes in the olfactory bulb are less dramatic, although degeneration of both the outer and the glomerular layers occurred. Treatment also induced a marked inflammatory response in both the epithelium and the bulb. Unlike Schwann cell changes associated with Wallerian degeneration, OECs did not proliferate or obviously migrate within the olfactory system in response to axonal loss, suggesting that the new nerves generated from the epithelium regrow back through conduits already formed by the glia. Expression of neuregulin 1alpha was maintained in the nerve by OECs, and changes in neuregulin 1 mRNA and erbB2 mRNA expression were detected, indicating that these growth factors may play a role in the regeneration of the peripheral olfactory system but not in OEC proliferation.  相似文献   

13.
Several lines of evidence implicate dysfunction of glutamatergic neurotransmission in opiate dependence and withdrawal. Functional antagonists of glutamatergic system, including compounds acting on both ionotropic and metabotropic glutamate receptors (group I mGlu receptor antagonists and group II mGlu receptor agonists), have been shown to decrease behavioural signs of opiate withdrawal in rodents. In the present study we analyzed an influence of group III mGlu receptor agonist, ACPT-I, on opioid withdrawal syndrom, induced by repeated morphine administration and final naloxone injection. We show, that ACPT-I significantly attenuated typical symptoms of naloxone-induced morphine withdrawal, after peripheral administration in C57BL/6J mice. These data indicate an important role of group III mGlu receptors in morphine withdrawal states and suggest that activation of group III mGlu receptors may reduce opiate withdrawal symptoms.  相似文献   

14.
The localization of neurons expressing mRNAs for the NRI and NR2A-D subunits of the glutamatergic NMDA receptor was examined by non-radioactive in situ hybridization throughout the guinea pig vestibular nuclei. After deafferentation of the vestibular nuclei by unilateral labyrinthectomy, modifications of the mRNA distributions were followed for 30 days. A quantitative analysis was performed in the medial vestibular nucleus by comparison of the labelled neurons in the ipsi- and contra-lateral nuclei. In vestibular nuclei, the NR1 subunit mRNA was found in various populations of neurons. The NR2A and NR2C subunit mRNAs were less widely distributed, whereas little NR2D mRNA was detected and only rare cells contained NR2B mRNA. NRI and NR2A-D mRNAs were colocalized in some but not other neuronal types. Twenty hours after the lesion, there was a transient ipsilateral increase of NR1 mRNA level in the medial vestibular nucleus, followed by a decrease 48 h after the lesion and, at 3 days, by recovery to the control level. An ipsilateral increase in the mRNA level of NR2C subunit was detected 20 h after lesion and maintained at 48 h. No significant changes were apparent in NR2A, NR2B and NR2D mRNA levels. The distributions and the differential signal intensities of NR2A-D mRNAs suggest various subunit organizations of the NMDA receptors in different neurons of the vestibular nuclei. Neuronal plasticity reorganizations in the vestibular nuclei following unilateral labyrinthectomy appear to include only changes in NR1 and NR2C mRNA levels modifying the functional diversity of the NMDA receptor in the ipsilateral medial vestibular nucleus neurons. The transient changes in NRI and the NR2C subunit mRNA expressions in response to sensory deprivation are consistent with an active role for NMDA receptors in the appearance and development of the vestibular compensatory process.  相似文献   

15.
Striatal neurons that contain GABA and enkephalin and project to the external segment of the pallidum are thought to be overactive in Parkinson's disease. Furthermore, it has been shown that the appearance of L-dopa-induced dyskinesias is correlated to an increase of preproenkephalin (PPE) mRNA expression and that some antagonists of glutamate receptors can prevent and reverse L-dopa-induced dyskinesias in parkinsonian rats. The aim of this study was therefore to analyse the effect of a systemic treatment with glutamate receptor antagonists, alone or in combination with L-dopa, on the PPE mRNA level in rats with a 6-hydroxydopamine-induced unilateral lesion of the nigrostriatal pathway. In vehicle-treated animals, PPE mRNA levels were markedly increased in the striatum on the lesioned side. Sub-chronic L-dopa treatment, with bi-daily injections for 22 days, induced a further increase in PPE mRNA expression in the denervated striatum. Administration of the AMPA receptor antagonist, LY293558, partially reversed the lesion-induced and L-dopa-induced increases in PPE mRNA expression. However, although the administration of the NMDA receptor antagonist MK801 showed a tendency to decrease this L-dopa induced overexpression, it did not reach significance. This study provides evidence that glutamatergic antagonists, and particularly AMPA antagonists, tend to reverse PPE neurochemical changes at the striatal level induced by L-dopa in hemiparkinsonian rats.  相似文献   

16.
Studies have suggested that 17beta estradiol (E2) can modify apolipoprotein E (apoE) expression. The current study determined if apoE protein varied in different regions of the mouse brain as a function of the estrous cycle and if E2 could increase apoE protein expression. In this study apoE concentration was lowest on estrus in the hippocampus, cingulate cortex and frontal cortex. In contrast, apoE concentration was highest on estrus in the olfactory bulb and cerebellum. There were no differences in the striatal apoE expression throughout the estrous cycle. Exogenous E2 significantly raised tissue levels of apoE in the olfactory bulb and cerebellum at 5 days after treatment. There was a slight, but nonsignificant increase in cortical expression of apoE and no change in striatum. Immunocytochemical localization studies found estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta) in cortical neurons and glia. In the cerebellum and olfactory bulb, ERbeta was seen primarily in glia. ERalpha was not observed in the cerebellum and was rare in the olfactory bulb. Neither ERalpha nor ERbeta was seen in the striatum. Our data show regional differences in the production of apoE throughout the estrous cycle. In addition, exogenous E2 has regionally specific effects on apoE expression. Regional variability in apoE production appears to vary as a function of the estrogen receptor subtype.  相似文献   

17.
The density of noradrenergic locus coeruleus projections and β-adrenergic receptors in the main olfactory bulb of the rat increases with age. Both β1 and β2 receptor subtypes exhibit laminar distributions, with focal regions of high receptor density present within the neuropil of individual glomeruli. Since the first synaptic contacts between olfactory receptor neurons and bulbar neurons occur within the glomeruli, early olfactory experiences possibly could influence the density or distribution of β-adrenergic receptors in the bulb. We therefore investigated the effects of olfactory deprivation and early olfactory enrichment on the density and distribution of β-adrenergic receptors in the main olfactory bulb. Animals were subjected to either unilateral naris closure on postnatal day 1 or odor training from postnatal days 1–18. Bulbs were removed on postnatal day 19 and subjected to quantitative autoradiography using the β-adrenergic receptor antagonist [125I]iodopindolol and specific receptor subtype antago nists ICI 118,551 (β2-antagonist) and ICI 89,406 (β1-antagonist). Unilateral naris occlusion decreased both the number of β2 glomerular foci and the density of β1 and β2 receptors in the deprived bulb compared to the nondeprived bulb. Early odor training resulted in a significant decrease in the number, area, and receptor density of 2 glomerular foci in the midlateral region of the bulb. The distribution of 2 glomerular foci also differs with these two sensory manipulations. Changes in β-adrenergic receptor density in response to both early learning and olfactory deprivation may be induced by a transient increase in olfactory bulb norepinephrine. © 1995 Wiley-Liss, Inc.  相似文献   

18.
Region- and peptide-specific regulation of the neurotrophins by estrogen   总被引:7,自引:0,他引:7  
We have previously shown that estrogen increases the expression of brain-derived neurotrophic factor (BDNF) mRNA in the olfactory bulb and cingulate cortex. Here we report that estrogen regulation of BDNF protein and the structurally related peptides nerve growth factor (NGF) and neurotrophin (NT)-4 is region- and peptide-specific. The olfactory bulb and cingulate cortex are both estrogen-sensitive targets and each receives a separate projection from neurons in the horizontal limb of the diagonal band of Broca (hlDBB). Furthermore, neurotrophins are retrogradely transported from the bulbar and cortical targets to the hlDBB. Four weeks of estrogen replacement to ovariectomized animals increased BDNF expression in the olfactory bulb, but decreased BDNF in the cingulate cortex. On the other hand, estrogen increased NT-4 expression in the cingulate cortex, but not in the olfactory bulb. NGF expression was not affected by estrogen in either region studied. In the hlDBB, estrogen increased BDNF but decreased NT-4, suggesting that estrogen differentially affects retrograde accumulation of these peptides. While both estrogen receptor alpha and beta have been identified in the olfactory bulb and cingulate cortex, our results indicate that estrogen receptor alpha expression is relatively higher in the olfactory bulb as compared to the cortex. Since the two estrogen receptors have been shown to stimulate different signaling pathways, we hypothesize that estrogen acting through specific receptors may differentially influence the extent and direction of neurotrophin expression.  相似文献   

19.
Peripheral afferent denervation (deafferentation) of the rodent main olfactory bulb produces a marked decrease in tyrosine hydroxylase (TH) activity and immunoreactivity in a population of juxtaglomerular dopaminergic neurons. Preservation of activity and immunostaining for aromatic L-amino acid decarboxylase implies that these cells do not die, but change phenotype. We now report that the steady-state level of TH mRNA markedly decreases in the adult mouse olfactory bulb in response to deafferentation. This reduction is permanent following intranasal irrigation with 0.17 M zinc sulphate (ZnSO4) but reversible following deafferentation produced by intranasal irrigation with 0.7% Triton X-100. The initial declines in TH activity, protein and mRNA of dopaminergic juxtaglomerular neurons observed after Triton X-100 treatment are all reversible as the steady-state level of TH mRNA gradually returns to control levels. Steady-state levels of mRNA for olfactory marker protein (OMP), a protein found in high concentrations in olfactory receptor neurons and their processes which innervate the olfactory bulb, were also monitored following deafferentation. Following treatment with either ZnSO4 or Triton X-100, the pattern of changes in steady-state levels of OMP mRNA was similar to that observed for TH. The steady-state level of PEP19 mRNA, a peptide previously localized to granule cells in the olfactory bulb, was not altered by deafferentation. These data indicate selective and parallel regulation of TH and OMP message and protein levels following deafferentation.  相似文献   

20.
The developmental and regional expression of choline acetyltransferase (ChAT) mRNA was examined in the rat brain and spinal cord by northern blot analysis and in situ hybridization. ChAT mRNA expression in the brain showed a biphasic increase during development, with a first peak at two weeks postnatally, a marked decrease by the third week, and a second increase between the third and fifth week after birth, indicating that emergence of the cholinergic phenotype occurs at different times in different brain regions. In the spinal cord, ChAT mRNA was detected at similar levels from embryonic stage 13 (E13) until birth, increasing thereafter until adulthood. In the adult rat central nervous system, high levels of ChAT mRNA were detected in the spinal cord and brain stem structures. Lower levels were seen in midbrain, septum, striatum, thalamus, and olfactory bulb. ChAT mRNA containing cells were identified by in situ hybridization in the olfactory tubercule, piriform cortex, striatum, several basal forebrain nuclei, and spinal cord. A nearly two-fold increase in adult spinal cord ChAT mRNA levels were seen one week after a bilateral crush lesion of the sciatic nerve, indicating that ChAT mRNA expression is regulated during motoneuron regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号