首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fat-supplemented dies enriched with linoleic acid by the addition of 12% w/w sunflower seed oil or proportionally reduced in linoleic acid by addition of 12% mutton fat were fed to rats for 18 months before the fatty acid composition of perirenal storage fat and myocardial membranes (phospholipids) was determined. Although the fatty acid composition of perirenal fat generally reflected that of the diet, there was an inverse relationship between the consumption of n-6 and the deposition of n-9 fatty acids. In addition, enhanced deposition of oleic acid (18:1, n-9) appears to be related to the dietary intake of stearic acid (18:0). In contrast, in myocardial membranes the n-3 polyunsaturated fatty acids are found to be increased when the intake of n-6 polyunsaturated fatty acids is reduced. This is particularly evident for docosahexaenoic acid (22:6, n-3) which is significantly increased in phosphatidylcholine, phosphatidylethanolamine, and diphosphatidylglycerol fractions of myocardial membranes, when the mutton fat diet was fed. After feeding the sunflower seed oil diet, the increased consumption of linoleic acid produced only small changes in the 18:2, n-6 content of cardiac phosphatidylcholine and phosphatidylethanolamine. These major classes of membrane phospholipids also showed only small increases in 20:4, n-6. In diphosphatidylglycerol, increased 18:2, n-6 also followed increased dietary intake, but this was not accompanied by increased 20:4, n-6. These changes in myocardial phospholipid fatty acid composition are similar to those observed after short-term feeding reported previously and confirm that changes in dietary n-6/n-3 fatty acid intake affect the fatty acid composition of both myocardial membranes and storage fat. These changes persist for the duration of the feeding period.  相似文献   

2.
The influence of membrane polyunsaturated fatty acid (PUFA) composition on lactate production, energy status, enzyme leakage and cell defences against oxygen free radical production was studied in cultured rat ventricular myocytes during hypoxia and reoxygenation. After 4 days in a conventional serum-supplemented medium, the cardiomyocytes were incubated for 24 h in synthetic media containing either linoleate and arachidonate (SM6 Medium) or linolenate and eicosapentaenoate (SM3 Medium) as unique source of PUFA. The fatty acid n-6/n-3 ratio of phospholipid was 13.1 in SM6 cells and 0.9 in SM3 cells. Hypoxia induced an increase in lactate production, severe decreases in ATP and ADP, leakage of cellular lactate dehydrogenase and reduction of superoxide dismutase and glutathione peroxidase activities. Reoxygenation of hypoxic cells reduced lactate production to normal aerobic values and allowed slight resynthesis of ATP from AMP. However, lactate dehydrogenase release was not stopped by reoxygenation, and decreases in superoxide dismutase and glutathione peroxidase activities were not avoided. The majority of the biochemical parameters measured during normoxia, hypoxia and reoxygenation were not significantly affected by changes in the fatty acid composition of membrane phospholipids, except for reduced superoxide dismutase activity which appeared earlier in SM3 cells during hypoxia. We conclude that the sarcolemmal PUFA composition of cultured rat ventricular myocytes does not significantly influence altered cell metabolism elicited by hypoxia and reoxygenation.  相似文献   

3.
STUDY OBJECTIVE - The aim of the study was to investigate the steps at which polyunsaturated fatty acids are involved in alpha 1 adrenoceptor mediated phosphatidylinositol turnover. DESIGN - Phosphatidylinositol turnover rates were investigated after preincubating neonatal rat ventricular myocytes with culture media enriched with linoleic acid (18:2n-6) or eicosapentaenoic acid (20:5n-3) to change the polyunsaturated fatty acid composition of their membrane phospholipids. EXPERIMENTAL MATERIAL - Cardiomyocytes were isolated from ventricles of 2-4 d old Wistar rats by trypsinization and were then cultured. Experiments were started 48 h after seeding, when there was a confluent monolayer of beating cardiomyocytes. MEASUREMENTS and RESULTS - In 18:2n-6 treated cells the 18:2n-6 content in the total phospholipid fraction rose from 45 to 68 nmol.mg-1 protein; in 20:5n-6 treated cells the 20:5n-3 content rose from 1.5 to 12.5 nmol.mg-1 protein, and the docosapentaenoic acid (22:5n-3) content rose from 5.1 to 14.7 nmol.mg-1 protein. The major n-3 fatty acid, 22:6n-3 (11.4 nmol.mg-1 protein), did not change after 20:5n-3 treatment. Although the phosphatidylinositol fraction showed changes paralleling those in the total phospholipids, none were significant. In this fraction the major n-3 fatty acid appeared to be 22:5n-3 (0.4 nmol.mg-1 protein). The fatty acid treated cells were prelabelled with [3H]-inositol to estimate the rate of phosphatidylinositol-4,5-bisphosphate turnover. There were no differences in the rate of [3H]-inositolphosphate formation between control, 18:2n-6 treated cells, and 20:5n-3 treated cells. Prolonged alpha 1 adrenergic stimulation of control and treated cells did not change the polyunsaturated fatty acid composition of the total phospholipid and phosphatidylinositol fractions. CONCLUSIONS - The alpha 1 adrenoceptor mediated phosphatidylinositol turnover rate is not affected by changes in polyunsaturated fatty acid composition of membrane phospholipids, neither does prolonged alpha 1 adrenergic stimulation lead to significant depletion of any specific or total polyunsaturated fatty acids in the phosphatidylinositol lipids.  相似文献   

4.
The aim of the present study was to determine whether dietary intake of monounsaturated or long chain n-3 fatty acids could be effective in lowering platelet responsiveness through modulation of platelet phospholipid composition. Rats were fed diets containing 20% fat with equal cholesterol and 13a-tocopherol contents. These diets were supplemented with saturated, oleic or n-3 fatty acids, n-3 polyunsaturated fatty acids being added either pure, as eicosapentaenoic and docosahexaenoic ethyl esters, or as MaxEPA oil. Dietary n-3 fatty acids did not affect the oxidation status of plasma lipids. Oleic acid- and saturated fatty acid-rich diets led to similar enrichment of platelet phospholipids in arachidonic acid and to comparable thromboxane A(2) generation on stimulation with collagen or thrombin. Platelets of n-3-fed groups were differently enriched in eicosapentaenoic and docosahexaenoic acids at the expense of arachidonic acid. These groups displayed similar thromboxane A(2) production, although levels were lower than those for groups fed with oleic- or saturated fatty acid-rich diets. Only the MaxEPA diet led to a reduction in platelet reactivity, measurable as a small decrease in the aggregation induced by collagen. This diet was also responsible for a high cholesteroUphospholipid ratio and low a-tocopherol content in platelets. Overall results indicated that (i) only MaxEPA reduced platelet reactivity and (ii) this effect was moderate and apparently unrelated to platelet arachidonic acid content, membrane cholesterol to phospholipid ratio or thromboxane A(2) production.  相似文献   

5.
The enzymes that are involved in the elongation of fatty acids differ in terms of the substrates on which they act. To date, the enzymes specifically involved in the biosynthesis of polyunsaturated fatty acids have not yet been identified. In an attempt to identify a gene(s) encoding an enzyme(s) specific for the elongation of gamma-linolenic acid (GLA) (18:3n-6), a cDNA expression library was made from the fungus Mortierella alpina. The cDNA library constructed in a yeast expression vector was screened by measuring the expressed elongase activity [conversion of GLA to dihomo-GLA (20:3n-6)] from an individual yeast clone. In this report, we demonstrate the isolation of a cDNA (GLELO) whose encoded protein (GLELOp) was involved in the conversion of GLA to dihomo-GLA in an efficient manner (60% conversion). This cDNA contains a 957-nucleotide ORF that encodes a protein of 318 amino acids. Substrate specificity analysis revealed that this fungal enzyme acted also on stearidonic acid (18:4n-3). This report identifies and characterizes an elongase subunit that acts specifically on the two Delta6-desaturation products, 18:3n-6 and 18:4n-3. When this GLELO cDNA was coexpressed with M. alpina Delta5-desaturase cDNA in yeast, it resulted in the conversion of GLA to arachidonic acid (20:4n-6) as well as the conversion of stearidonic acid to eicosopentaenoic acid (20:5n-3). Thus, this GLELO gene may play an critical role in the bio-production of both n-6 and n-3 polyunsaturated fatty acids.  相似文献   

6.
《Platelets》2013,24(5-6):269-276
The aim of the present study was to determine whether dietary intake of monounsaturated or long chain n-3 fatty acids could be effective in lowering platelet responsiveness through modulation of platelet phospholipid composition. Rats were fed diets containing 20% fat with equal cholesterol and 13a-tocopherol contents. These diets were supplemented with saturated, oleic or n-3 fatty acids, n-3 polyunsaturated fatty acids being added either pure, as eicosapentaenoic and docosahexaenoic ethyl esters, or as MaxEPA oil. Dietary n-3 fatty acids did not affect the oxidation status of plasma lipids. Oleic acid- and saturated fatty acid-rich diets led to similar enrichment of platelet phospholipids in arachidonic acid and to comparable thromboxane A2 generation on stimulation with collagen or thrombin. Platelets of n-3-fed groups were differently enriched in eicosapentaenoic and docosahexaenoic acids at the expense of arachidonic acid. These groups displayed similar thromboxane A2 production, although levels were lower than those for groups fed with oleic- or saturated fatty acid-rich diets. Only the MaxEPA diet led to a reduction in platelet reactivity, measurable as a small decrease in the aggregation induced by collagen. This diet was also responsible for a high cholesteroUphospholipid ratio and low a-tocopherol content in platelets. Overall results indicated that (i) only MaxEPA reduced platelet reactivity and (ii) this effect was moderate and apparently unrelated to platelet arachidonic acid content, membrane cholesterol to phospholipid ratio or thromboxane A2 production.  相似文献   

7.
Comparative effects of feeding dietary linoleic (corn oil), oleic (olive oil), alpha-linolenic (soybean oil) and polyunsaturated fatty acids (fish oil) on lipid content and fatty acid composition of major individual phospholipids of rat hearts were examined. Feeding different diets did not result in lipid accumulation in the heart. Total triglyceride, nonesterified fatty acid, cholesteryl ester and phospholipid levels of heart tissue were not affected by the type of dietary fatty acid. However, heart free cholesterol levels decreased in both animals fed the olive and the fish oil diets. The percentage of individual phospholipids, phosphatidylcholine (PC), phosphatidylethanolamine (PE) and cardiolipin (CL) did not modify by changes in the dietary fat composition. Heart tissue from animals fed on olive oil were enriched with 18:1 (n-9 + n-7) fatty acid in all phospholipid fractions. Animals fed corn oil contained higher proportions of 18:2 (n-6) for PC, PE and CL, and the ingestion of the soybean oil diet increased 18:2 (n-6) for PC and CL in the same proportion as the ingestion of the corn oil diet. The levels of 22:6 (n-3) were increased in the fish oil-fed group, accompanied by both a decrease in total (n-6) fatty acids and an increase in total (n-3) fatty acids in the three phospholipid fractions. The 20:5 (n-3) was only detected in these animals. These results show that olive oil is as effective as fish oil in reducing heart cholesterol content and support earlier works suggesting the role of fish oil in preventing cardiovascular disease.  相似文献   

8.
Rats were fed either a high linolenic acid (perilla oil) or high eicosapentaenoic + docosahexaenoic acid (fish oil) diet (8%), and the fatty acid and molecular species composition of ethanolamine phosphoglycerides was determined. Gene expression pattern resulting from the feeding of n-3 fatty acids also was studied. Perilla oil feeding, in contrast to fish oil feeding, was not reflected in total fatty acid composition of ethanolamine phosphoglycerides. Levels of the alkenylacyl subclass of ethanolamine phosphoglycerides increased in response to feeding. Similarly, levels of diacyl phosphatidylethanolamine molecular species containing docosahexaenoic acid (18:0/22:6) were higher in perilla-fed or fish oil-fed rat brains whereas those in ethanolamine plasmalogens remained unchanged. Because plasmalogen levels in the brains of rats fed a n-3 fatty acid-enriched diet increased, it is plausible, however, that docosahexaenoic acid taken up from the food or formed from linolenic acid was deposited in this phospholipid subclass. Using cDNA microarrays, 55 genes were found to be overexpressed and 47 were suppressed relative to controls by both dietary regimens. The altered genes included those controlling synaptic plasticity, cytosceleton and membrane association, signal transduction, ion channel formation, energy metabolism, and regulatory proteins. This effect seems to be independent of the chain length of fatty acids, but the n-3 structure appears to be important. Because n-3 polyunsaturated fatty acids have been shown to play an important role in maintaining normal mental functions and docosahexaenoic acid-containing ethanolamine phosphoglyceride (18:0/22:6) molecular species accumulated in response to n-3 fatty acid feeding, a casual relationship between the two events can be surmised.  相似文献   

9.
The influence of n-3 and n-6 PUFA on the fatty acid composition and the enzyme content of zymogen granules of the normal exocrine pancreas was tested on rats. The animals were fed on different diets comprising 5% fish oil (FO), safflower oil (SFO), and evening primrose oil (EPO) used singly or in combination as dietary fats. The results were compared with those from animals fed 5% hydrogenated beef tallow (HBT). The fatty acid composition and digestive enzyme content were analyzed after a 6-wk feeding period. Differences in the pancreatic fatty acid profiles were related to the fatty acid composition of the ingested fats. Equivalent levels of n-3 fatty acids and 20:3n-6 were obtained with either EPO or FO fed singly or in combination. Similar results were observed with SFO/FO. Higher C20:3n-6/C20:4n-6 ratios were obtained with the oil mixtures. An increase in amylase levels, but a decrease in serine protease (Band 21 kdalton) levels, was associated with EPO. An elevation in procarboxypeptidase levels paralleled an increase in 18:0 levels, whereas the proportion of lipase (Band 49 kdalton) varied inversely with the proportion of C20:3n-6. The SFO/FO mixture elevated the proportions of protease II and proelastase. These results suggest that specific fatty acids influence the proportion of specific digestive enzymes in the zymogen granules.  相似文献   

10.
Linoleic acid (18:2n-6) and alpha-linolenic acid (18:3n-3) are polyunsaturated fatty acids that are essential for mammalian nutrition, because mammals lack the desaturases required for synthesis of Delta12 (n-6) and n-3 fatty acids. Many plants can synthesize these fatty acids and, therefore, to examine the effects of a plant desaturase in mammals, we generated transgenic pigs that carried the fatty acid desaturation 2 gene for a Delta12 fatty acid desaturase from spinach. Levels of linoleic acid (18:2n-6) in adipocytes that had differentiated in vitro from cells derived from the transgenic pigs were approximately 10 times higher than those from wild-type pigs. In addition, the white adipose tissue of transgenic pigs contained approximately 20% more linoleic acid (18:2n-6) than that of wild-type pigs. These results demonstrate the functional expression of a plant gene for a fatty acid desaturase in mammals, opening up the possibility of modifying the fatty acid composition of products from domestic animals by transgenic technology, using plant genes for fatty acid desaturases.  相似文献   

11.
Cultured neonatal cardiac myocytes have been utilized as a model for the study of the role of fatty acids in the alpha 1-adrenoceptor mediated phosphatidylinositol turnover. Experiments were started 24 h after seeding, when there was a confluent monolayer of beating cardiomyocytes. The cells were incubated for 3-4 days in sera containing culture medium with (1) no additives or (2) a mixture of 107 microM 18:0 and 18:1n-9, or (3) only 214 microM 18:2n-6 or (4) 214 microM 20:5n-3. No differences in the cellular content of the various phospholipid classes among the different groups of fatty acid treated cells were found. The predicted elevations of 18:1n-9, 18:2n-6 and 20:5n-3 associated with a partial depletion of 20:4n-6 were confirmed in all phospholipid classes, except for sphingomyelin. The mol% of 18:0, 18:2n-6, 20:4n-6 and 20:5n-3 in the phosphatidylinositol fraction were respectively 39, 4, 30 and 0.6 for the control treated cells, 34, 3, 15 and 0 for 18:0/18:1n-9 treated cells, 40, 17, 24 and 0.2 for the 18:2n-6 treated cells and 41, 3, 13 and 21 for the 20:5n-3 treated cells. Apart from the observed reductions in the basal rates, the phenylephrine (30 microM) stimulated production of inositolphosphates was reduced by 51% and 71%, respectively in the 18:2n-6 and 20:5n-3 treated cardiomyocytes. The basal rate of inositolphosphate formation was 37% increased in the 18:0/18:1n-9 treated cells. The [3H]-inositol incorporation into phosphatidylinositol 4,5-bisphosphate was only slightly reduced by 18:2n-6 and 20:5n-3 treatments (respectively 12 and 28% compared to control treated cells). Prolonged (30 min) alpha 1-adrenergic stimulation did not affect the contents and fatty acid profiles of any class of phospholipid, not even phosphatidylinositol. In conclusion, variations in the polyunsaturated fatty acid composition of membrane phospholipids do affect the basal and the alpha 1-adrenoceptor stimulated rate of phosphatidylinositol-4,5-bisphosphate hydrolysis. The reducing effects of 18:2n-6 and 20:5n-3 treatment on the rate of inositolphosphate production may be partially ascribed to altered levels of phosphatidyl-inositol 4,5-bisphosphate.  相似文献   

12.
Long-chain n-3 fatty acids and fat fish are reported, among multiple physiological properties, to enhance peroxisomal beta-oxidation and effect triacylglycerol status. Long-chain n-3 and monounsaturated fatty acids are the main portion of fatty acids in fat fish. The individual effect of long-chain monounsaturated fatty acids on beta-oxidation and fatty acid composition was tested and compared to the effect of n-3 polyunsaturated and saturated fatty acids in a 3-week feeding experiment of rats. To explore the contribution from long-chain monounsaturated fatty acids in these aspects, the effect of long-chain n-3 and monounsaturated fatty acids on mitochondrial and peroxisomal beta-oxidation was compared, as well as fatty acid composition of adipose tissue, liver and serum. Fatty acid oxidase, palmitoyltransferase I and II activities, the amount of serum lipids, and the fatty acid composition of lipid fractions from the organs were analysed. The peroxisomal beta-oxidation was enhanced by the n-3 fatty acids, whereas a small, significant increase with the monounsaturated fatty acids was observed. There was a stimulation of the mitochondrial oxidation with the n-3 fatty acids, but monounsaturated fatty acids gave a small, nonsignificant decrease. With n-3 fatty acids there was a considerable decrease in the levels of serum triacylglycerol, phospholipids, free fatty acids and total cholesterol, while there were only minor effects of monounsaturated fatty acids. As judged from the fatty acid composition data, there was a mobilization on n-3 fatty acids from the adipose tissue to liver and plasma with the n-3 diet. This observation was also seen with the monounsaturated fatty acid-enriched diet. In conclusion, monounsaturated fatty acids seemed to stimulate peroxisomal beta-oxidation and to increase plasma triacylglycerol, whereas the mitochondrial oxidation was slightly decreased.  相似文献   

13.
The presence of large amounts of long chain-polyunsaturated fatty acids (PUFA) in the brain implies an exogenous intake of unsaturated fatty acids, either as essential fatty acids, or in the form of higher homologues resulting from hepatic metabolism. To determine the influence of the diet upon the potential availability of polyunsaturated fatty acids to the brain, four different diets were used with comparable amounts of 18:2 n-6, but variable amounts of 18:3 n-3 (0.2, 1, 2 and 9%). These diets were administered to female rats from the day of mating and during the periods of gestation and lactation. Fifteen days after birth suckling animals were killed and the fatty acid distribution was studied in the serum in two lipoprotein classes (VLDL-LDL and HDL). On the whole, an increase in dietary 18:3 n-3 resulted in an increase of polyunsaturated fatty acids of the n-3 series and a decrease in fatty acids of the n-6 series. The modification chiefly concerned the terminal fatty acids in each series (22:5 n-6 and 22:6 n-3). It is noteworthy that the influence of exogenous 18:3 n-3 upon the 20:4 n-6 content of lipoproteins was not significant below 2% of 18:3 n-3 intake, a level that we have previously shown to be both necessary and sufficient to satisfy the requirements of the brain for fatty acids of the n-3 series. In the liver, the intermediary metabolism ensures an important release of long-chain polyunsaturated fatty acids, which may help to satisfy the lipid requirements of the brain.  相似文献   

14.
When perfused with exogenous arachidonic acid (AA) or eicosapentaenoic acid (EPA), the rat heart incorporated these fatty acids into phospholipids, chiefly as phosphatidylcholine. The pattern of fatty acid incorporation at any given concentration of fatty acid in the perfusate was not different between n-3 and n-6 polyenoates. When rat hearts were perfused with the same amounts but different mixtures of EPA and AA, the incorporation of EPA showed a marked increase proportional to the EPA/AA ratio present in the perfusate. Results indicated that cardiac muscle phospholipids incorporate n-3 and n-6 polyenoates equally effectively and hence enrichment of n-3 polyenoate can displace AA in the cardiac phospholipid pool.  相似文献   

15.

Background and objectives

Several studies have reported beneficial cardiovascular effects of marine n-3 polyunsaturated fatty acids. To date, no large studies have investigated the potential benefits of marine n-3 polyunsaturated fatty acids in recipients of renal transplants.

Design, setting, participants, & measurements

In this observational cohort study of 1990 Norwegian recipients of renal transplants transplanted between 1999 and 2011, associations between marine n-3 polyunsaturated fatty acid levels and mortality were investigated by stratified analysis and multivariable Cox proportional hazard regression analysis adjusting for traditional and transplant-specific mortality risk factors. Marine n-3 polyunsaturated fatty acid levels in plasma phospholipids were measured by gas chromatography in a stable phase 10 weeks after transplantation.

Results

There were 406 deaths (20.4%) during a median follow-up period of 6.8 years. Mortality rates were lower in patients with high marine n-3 polyunsaturated fatty acid levels (≥7.95 weight percentage) compared with low levels (<7.95 weight percentage) for all age categories (pooled mortality rate ratio estimate, 0.69; 95% confidence interval, 0.57 to 0.85). When divided into quartiles according to marine n-3 polyunsaturated fatty acid levels, patients in the upper quartile compared with the lower quartile had a 56% lower risk of death (adjusted hazard ratio, 0.44; 95% confidence interval, 0.26 to 0.75) using multivariable Cox proportional hazard regression analysis. There was a lower hazard ratio for death from cardiovascular disease with high levels of marine n-3 polyunsaturated fatty acid and a lower hazard ratio for death from infectious disease with high levels of the marine n-3 polyunsaturated fatty acid eicosapentaenoic acid, whereas there was no association between total or individual marine n-3 polyunsaturated fatty acid levels and cancer mortality.

Conclusions

Higher plasma phospholipid marine n-3 polyunsaturated fatty acid levels were independently associated with better patient survival.  相似文献   

16.
Pregnant mice were fed equivalent daily amounts of a liquid diet containing 25% (kcal) ethanol, or with maltose dextrin substituted isocalorically for ethanol. The diet also contained 20% oil; this was either of two mixtures, one comprised of predominantly n-6 (18:2n-6) fatty acids, and the other containing an equivalent amount of n-6, but supplemented with a source of long chain n-3 (20:5n-3, 22:6n-3) fatty acids. An additional control group was fed lab chow ad libitum. The treatment was implemented from day 7 to 17 of gestation, whereafter all groups were fed lab chow. Birth occurred on day 19, and the fatty acid composition of the brain membrane phospholipids was determined in the pups 3 days after birth (day 22 postconception) and again, 10 days later (day 32 postconception). On day 22 the polyunsaturated fatty acid (PUFA) composition of the brain phospholipids reflected dietary availability, with the n-3/n-6 ratio higher in the n-3 groups; this was decreased by ethanol in the phosphatidylcholine (PC) fraction. The dietary effect was still apparent on day 32; again ethanol reduced this in both the PC and phosphatidylethanolamine (PE) fractions. The n-3 oil, but not ethanol, increased the 20:3n-6/20:4n-6 ratio, indicative of an inhibition of the activity of delta-5 desaturase. With respect to the 22:C compounds, the n-3 oil decreased the levels of 22:5n-6, while increasing those of 22:6n-3, but generally the sum of these two fatty acids remained unchanged. Ethanol decreased levels of 22:5n-6, and, on day 32, also decreased those of 22:6n-3, resulting in a decrease in the sum of these 22:C PUFA.  相似文献   

17.
为研究n-3多不饱和脂肪酸对内皮的保护功能,本文在血管环内皮依赖性舒张、内皮细胞一氧化氮合成酶和平滑肌细胞功能等三个方面进行了研究。  相似文献   

18.
The effect of dietary fish oil (rich in n-3 polyunsaturated fatty acids (PUFA], corn oil (rich in n-6 PUFA) and coconut oil (low in n-3 and n-6 PUFA) on the induction of atherosclerosis by serum sickness in rabbits was investigated over a 12-month period. Dietary fish oil led to a significant increase in the level of eicosapentaenoic acid (EPA) in all platelet phospholipid fractions and to a significant reduction in the level of platelet phosphatidylethanolamine arachidonic acid (AA). In aortic total phospholipids, rabbits given fish oil showed a significant reduction in AA and a significant increase in EPA. Rabbits given fish oil showed significantly lower collagen-induced platelet thromboxane A2 release and aortic production of 6-keto-PGF1 alpha. Serum total immune complex levels and anti-horse serum IgG levels were not influenced by diet. There was a significant reduction in total aortic atherosclerosis in fish oil-fed animals compared with coconut oil fed animals.  相似文献   

19.
为研究n-3多不饱和脂肪酸对内皮的保护功能,本文在血管环内皮依赖性舒张、内皮细胞一氧化氮合成酶和平滑肌细胞功能等三个方面进行了研究。结果表明高胆固醇血症下的内皮依赖性舒张明显减弱是由于一氧化氨合成酶受损,n-3多不饱和脂肪酸通过恢复一氧化氮合成酶功能,大幅度改善内皮依赖性舒张。说明n-3多不饱和脂肪酸对动脉粥样硬化的有益作用机制之一是保护内皮功能。  相似文献   

20.
Total lipids and fatty acid composition were determined in liver plasma and mitochondrial membranes from control and dietary obese rats after 4 weeks of the experimental period. The lipid composition of liver plasma and mitochondrial membranes showed an increase of triacylglycerols in obese rats. The liver plasma membranes showed a decrease of saturated/unsaturated fatty acid ratio and an increase of (n-6) polyunsaturated fatty acids, whereas the (n-3) polyunsaturated acids were decreased. Contrary to what occurs with plasma membranes, few modifications were observed in mitochondrial membranes. Changes of the fatty acid composition of the phospholipid bilayer are of potentially great importance in structural and functional parameters of membrane. Fluidity of liver plasma membranes of dietary obese rats was highly increased, while the mitochondrial ones remained unchanged. These results can be well explained by the decreased saturated/unsaturated fatty acid ratio. A significant decrease of (Na+-K+) ATPase activity (a membrane bound enzyme) was found in plasma membranes of dietary obese rats. Mitochondrial enzymatic activities and oxidative phosphorylation showed few changes except a small, but significant decrease of state 3 respiratory rate. In this study we also determined the fatty acid composition of all the foods offered to animals and their daily intakes in order to discuss their possible influence on changes in structural and functional membrane parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号