首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We used the combined technique of functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) to observe changes that occur in adult brains after the practice of stringed musical instruments. We carried out fMRI on eight volunteers (aged 20-22 years): five novices and three individuals who had discontinued practice for more than 5 years. The motor paradigm contained a repetitive lift-abduction/fall-adduction movement of the left/right little finger, carried out with maximum efforts without pacing. The sensory paradigm was to stimulate the same little finger using a string. In parallel to the fMRI acquisition, TMS motor maps for the little finger were obtained using a frameless stereotactic neuronavigation system. After the baseline study, each participant began to learn a stringed instrument. Newly developed fMRI activations for the left little finger were observed 6 months after practice at multiple brain regions including inferior parietal lobule, premotor area (PMA), left precuneus, right anterior superior temporal gyrus, and posterior middle temporal gyrus. In contrast, new activations were rarely observed for the right little finger. The TMS study revealed new motor representation sites for the left little finger in the PMA or supplementary motor area (SMA). Unexpectedly, TMS motor maps for the right little finger were reduced significantly. Among new fMRI activations for sensory stimuli of the left little finger, the cluster of highest activation was located in the SMA. Collectively, these data provide insight into orchestrated reorganization of the sensorimotor and temporal association cortices contributing to the skillful fingering and musical processing after the practice of playing stringed instruments.  相似文献   

2.
This study describes the clinical characteristics and long-term outcome in string instrumentalists with focal task-specific dystonia. We present the results of a follow-up telephone survey of 21 violin and viola players with focal dystonia. Eighteen musicians responded to the questionnaire. Information on long-term outcome was available on average 13.8 years after onset of symptoms. Main complaints were playing-related loss of control and involuntary movements affecting the fingering hand in 16 and the bow arm in 5 patients. In 18 patients (86%), signs of abnormal posture could be detected by watching them play their instrument. Treatment attempts included nerve decompression, physical therapy, retraining, and anticholinergic medication. In selected patients, botulinum toxin injections or splint devices were offered. Only 38% of the performing artists were able to maintain their professional careers, among them none with bow arm dystonia. Focal dystonia may affect the fingering hand or bow arm in violin and viola instrumentalists. Treatment benefit is limited and in more than half of the patients, dystonia leads to the end of their musical career.  相似文献   

3.
Temporal processing forms the basis of a vast number of human behaviours, from simple perception and action to tasks like locomotion, playing a musical instrument, and understanding language. Growing evidence suggests that these procedural skills are consolidated during sleep, however investigation of such learning has focused upon the order in which movements are made rather than their temporal dynamics. Here, we use psychophysics and neuroimaging to explore the possibility that temporal aspects of such skills are also enhanced over a period of sleep. Behaviourally, our examinations of motor (tapping a finger in time with a temporal rhythm) and perceptual (monitoring a temporal rhythm for deviants) tasks reveal post-sleep improvements in both domains. Functionally, we show that brain-state during retention (sleep or wake) modulates subsequent responses in the striatum, supplementary motor area, and lateral cerebellum during motor timing, and in the posterior hippocampus during perceptual timing. Our data support the proposal that these two forms of timing draw on different brain mechanisms, with motor timing using a more automatic system while perceptual timing of the same rhythm is more closely associated with cognitive processing.  相似文献   

4.
Recent studies in humans and nonhuman primates have shown that the functional organization of the human sensorimotor cortex changes following sensory stimulation or following the acquisition of motor skills. It is unknown whether functional plasticity in response to the acquisition of new motor skills and the continued performance of complicated bimanual movements for years is associated with structural changes in the organization of the motor cortex. Professional musicians, especially keyboard and string players, are a prototypical group for investigating these changes in the human brain. Using magnetic resonance images, we measured the length of the posterior wall of the precentral gyrus bordering the central sulcus (intrasulcal length of the precentral gyrus, ILPG) in horizontal sections through both hemispheres of right-handed keyboard players and of an age- and handedness-matched control group. Lacking a direct in vivo measurement of the primary motor cortex in humans, we assumed that the ILPG is a measure of the size of the primary motor cortex. Left-right asymmetry in the ILPG was analyzed and compared between both groups. Whereas controls exhibited a pronounced left-larger-than-right asymmetry, keyboard players had more symmetrical ILPG. The most pronounced differences in ILPG between keyboard players and controls were seen in the most dorsal part of the presumed cortical hand representation of both hemispheres. This was especially true in the nondominant right hemispheres. The size of the ILPG was negatively correlated with age of commencement of musical training in keyboard players, supporting our hypothesis that the human motor cortex can exhibit functionally induced and long-lasting structural adaptations. Hum. Brain Mapping 5:206–215, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
The present study investigated the neural correlates associated with the processing of music-syntactical irregularities as compared with regular syntactic structures in music. Previous studies reported an early ( approximately 200 ms) right anterior negative component (ERAN) by traditional event-related-potential analysis during music-syntactical irregularities, yet little is known about the underlying oscillatory and synchronization properties of brain responses which are supposed to play a crucial role in general cognition including music perception. First we showed that the ERAN was primarily represented by low frequency (<8 Hz) brain oscillations. Further, we found that music-syntactical irregularities as compared with music-syntactical regularities, were associated with (i) an early decrease in the alpha band (9-10 Hz) phase synchronization between right fronto-central and left temporal brain regions, and (ii) a late ( approximately 500 ms) decrease in gamma band (38-50 Hz) oscillations over fronto-central brain regions. These results indicate a weaker degree of long-range integration when the musical expectancy is violated. In summary, our results reveal neural mechanisms of music-syntactic processing that operate at different levels of cortical integration, ranging from early decrease in long-range alpha phase synchronization to late local gamma oscillations.  相似文献   

6.
The primary motor cortex hand area (M1HAND) and adjacent dorsal premotor cortex (PMd) form the so-called motor hand knob in the precentral gyrus. M1HAND and PMd are critical for dexterous hand use and are densely interconnected via corticocortical axons, lacking a sharp demarcating border. In 24 young right-handed volunteers, we performed multimodal mapping to delineate the relationship between structure and function in the right motor hand knob. Quantitative structural magnetic resonance imaging (MRI) at 3 tesla yielded regional R1 maps as a proxy of cortical myelin content. Participants also underwent functional MRI (fMRI). We mapped task-related activation and temporal precision, while they performed a visuomotor synchronization task requiring visually cued abduction movements with the left index or little finger. We also performed sulcus-aligned transcranial magnetic stimulation of the motor hand knob to localize the optimal site (hotspot) for evoking a motor evoked potential (MEP) in two intrinsic hand muscles. Individual motor hotspot locations varied along the rostrocaudal axis. The more rostral the motor hotspot location in the precentral crown, the longer were corticomotor MEP latencies. “Hotspot rostrality” was associated with the regional myelin content in the precentral hand knob. Cortical myelin content also correlated positively with task-related activation of the precentral crown and temporal precision during the visuomotor synchronization task. Together, our results suggest a link among cortical myelination, the spatial cortical representation, and temporal precision of finger movements. We hypothesize that the myelination of cortical axons facilitates neuronal integration in PMd and M1HAND and, hereby, promotes the precise timing of movements.SIGNIFICANCE STATEMENT Here we used magnetic resonance imaging and transcranial magnetic stimulation of the precentral motor hand knob to test for a link among cortical myelin content, functional corticomotor representations, and manual motor control. A higher myelin content of the precentral motor hand knob was associated with more rostral corticomotor presentations, with stronger task-related activation and a higher precision of movement timing during a visuomotor synchronization task. We propose that a high precentral myelin content enables fast and precise neuronal integration in M1 (primary motor cortex) and dorsal premotor cortex, resulting in higher temporal precision during dexterous hand use. Our results identify the degree of myelination as an important structural feature of the neocortex that is tightly linked to the function and behavior supported by the cortical area.  相似文献   

7.
The basal ganglia (BG) are part of extensive subcortico-cortical circuits that are involved in a variety of motor and non-motor cognitive functions. Accumulating evidence suggests that one specific function that engages the BG and associated cortico-striato-thalamo-cortical circuitry is temporal processing, i.e., the mechanisms that underlie the encoding, decoding and evaluation of temporal relations or temporal structure. In the current study we investigated the interplay of two processes that require precise representations of temporal structure, namely the perception of an auditory pacing signal and manual motor production by means of finger tapping in a sensorimotor synchronization task. Patients with focal lesions of the BG and healthy control participants were asked to align finger taps to tone sequences that either did or did not contain a tempo acceleration or tempo deceleration at a predefined position, and to continue tapping at the final tempo after the pacing sequence had ceased. Performance in this adaptive synchronization-continuation paradigm differed between the two groups. Selective damage to the BG affected the abilities to detect tempo changes and to perform attention-dependent error correction, particularly in response to tempo decelerations. An additional assessment of preferred spontaneous, i.e., unpaced but regular, production rates yielded more heterogeneous results in the patient group. Together these findings provide evidence for less efficient processing in the perception and the production of temporal structure in patients with focal BG lesions. The results also support the functional role of the BG system in attention-dependent temporal processing.  相似文献   

8.
Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic ‘real‐world’ music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non‐musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right‐lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo‐musical control conditions. Remarkably, inter‐subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro‐temporal features of the stimulus. Increased synchronization during music listening was also evident in a right‐hemisphere fronto‐parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences.  相似文献   

9.
Sub‐second time intervals in musical rhythms provide predictive cues about future events to performers and listeners through an internalized representation of timing. While the acuity of automatic, sub‐second timing as well as cognitively controlled, supra‐second timing declines with ageing, musical experts are less affected. This study investigated the influence of piano training on temporal processing abilities in older adults using behavioural and neuronal correlates. We hypothesized that neuroplastic changes in beta networks, caused by training in sensorimotor coordination with timing processing, can be assessed even in the absence of movement. Behavioural performance of internal timing stability was assessed with synchronization–continuation finger‐tapping paradigms. Magnetoencephalography (MEG) was recorded from older adults before and after one month of one‐on‐one training. For neural measures of automatic timing processing, we focused on beta oscillations (13–30 Hz) during passive listening to metronome beats. Periodic beta‐band modulations in older adults before training were similar to previous findings in young listeners at a beat interval of 800 ms. After training, behavioural performance for continuation tapping was improved and accompanied by an increased range of beat‐induced beta modulation, compared to participants who did not receive training. Beta changes were observed in the caudate, auditory, sensorimotor and premotor cortices, parietal lobe, cerebellum and medial prefrontal cortex, suggesting that increased resources are involved in timing processing and goal‐oriented monitoring as well as reward‐based sensorimotor learning.  相似文献   

10.
Bolbecker AR, Hong SL, Kent JS, Forsyth JK, Klaunig MJ, Lazar EK, O’Donnell BF, Hetrick WP. Paced finger‐tapping abnormalities in bipolar disorder indicate timing dysfunction.
Bipolar Disord 2011: 13: 99–110. © 2011 The Authors.
Journal compilation © 2011 John Wiley & Sons A/S. Objectives: Theoretical and empirical evidence suggests that impaired time perception and the neural circuitry contributing to internal timing mechanisms may contribute to severe psychiatric disorders, including mood disorders. The structures that are involved in subsecond timing, i.e., cerebellum and basal ganglia, have also been implicated in the pathophysiology of bipolar disorder. However, the timing of subsecond intervals has infrequently been studied in this population. Methods: Paced finger‐tapping tasks have been used to characterize internal timing processes in neuropsychiatric disorders. A total of 42 bipolar disorder patients (25 euthymic, 17 manic) and 42 age‐matched healthy controls completed a finger‐tapping task in which they tapped in time with a paced (500‐ms intertap interval) auditory stimulus (synchronization), then continued tapping without auditory input while attempting to maintain the same pace (continuation). This procedure was followed using the dominant index finger, then with alternating thumbs. Results: Bipolar disorder participants showed greater timing variability relative to controls regardless of pacing stimulus (synchronization versus continuation) or condition (dominant index finger versus alternating thumbs). Decomposition of timing variance into internal clock versus motor implementation components using the Wing–Kristofferson model showed higher clock variability in the bipolar disorder groups compared to controls, with no differences between groups on motor implementation variability. Conclusions: These findings suggest that internal timing mechanisms are disrupted in bipolar disorder patients, independent of symptom status. Increased clock variability in bipolar disorder may be related to abnormalities in cerebellar function.  相似文献   

11.
OBJECTIVE: The digit representations in area 3b were studied to examine whether there is training-dependent reorganization in string players. METHODS: Somatosensory evoked magnetic fields were recorded following electrical stimulation of digits 1 (D1), 2 (D2) and 5 (D5) of both hands in 8 string players and of the left hand in 12 control subjects. The N20m and P30m responses, and high-frequency oscillations (HFOs) were separated by 3-300 Hz and 300-900 Hz bandpass filtering. RESULTS: The dipole locations on the coronal plane and strengths of D1, D2 and D5, and D1-D5 cortical distance estimated at the peak of N20m or P30m did not differ between left and right hand in string players or between left hand in string players and controls. On the other hand, the dipole locations of D2 estimated from N20m and P30m and of D1 from N20m were significantly anterior, the D2-D5 distance from P30m longer, and the number of HFO peaks larger for D5 in string players than controls. CONCLUSIONS/SIGNIFICANCE: With strong mutual competition among the fingering digits, the scale of reorganization should be much smaller as compared with the competition-free denervation-induced reorganizations. Taken together, the training-dependent reorganization of somatosensory cortex in string players is manifest not only in the enlarged cortical representation but also in the enhanced HFOs presumably representing activity of the fast-spiking interneurons.  相似文献   

12.
Previous studies showed that transcranial magnetic stimulation (TMS) to the cerebellum evokes a long latency motor response in the soleus muscle during a postural task. The cerebellum is activated not only during postural tasks but also during motor tasks for which eye–hand coordination is required. The purpose of this study was to investigate whether TMS over the cerebellum evokes long latency motor responses in the hand during a visually guided manual tracking task. Eight healthy humans tracked an oscillatory moving target with the right index finger or pointed the finger at a stationary target, and TMS was delivered to the scalp over the cerebellum during the motor tasks. Trials with sham TMS were inserted between the trials with cerebellar TMS. The trajectory of finger movement fluctuated 92 ms after cerebellar TMS with a 24% probability during tracking of a moving target. The fluctuation was preceded by an electromyographic burst in the first dorsal interosseous muscle starting at 65 ms after TMS. The probability of fluctuation evoked by cerebellar TMS was significantly larger than that evoked by sham TMS during tracking of a moving target. This significant difference was absent in trials during which subjects pointed their index finger at a stationary target. These findings indicate that cerebellar TMS evokes a long latency motor response during a visually guided manual tracking task. The long latency motor response may be related to cerebellar activity associated with eye–hand coordination or to the detection of and correction for visuomotor errors.  相似文献   

13.
14.
To examine how musical expertise tunes the brain to subtle metric anomalies in an ecological musical context, we presented piano compositions ending on standard and deviant cadences (endings) to expert pianists and musical laymen, while high‐density EEG was recorded. Temporal expectancies were manipulated by substituting standard “masculine” cadences at metrically strong positions with deviant, metrically unaccented, “feminine” cadences. Experts detected metrically deviant cadences better than laymen. Analyses of event‐related potentials demonstrated that an early P3a‐like component (~ 150–300 ms), elicited by musical closure, was significantly enhanced at frontal and parietal electrodes in response to deviant endings in experts, whereas a reduced response to deviance occurred in laymen. Putative neuronal sources contributing to the modulation of this component were localized in a network of brain regions including bilateral supplementary motor areas, middle and posterior cingulate cortex, precuneus, associative visual areas, as well as in the right amygdala and insula. In all these regions, experts showed enhanced responses to metric deviance. Later effects demonstrated enhanced activations within the same brain network, as well as higher processing speed for experts. These results suggest that early brain responses to metric deviance in experts may rely on motor representations mediated by the supplementary motor area and motor cingulate regions, in addition to areas involved in self‐referential imagery and relevance detection. Such motor representations could play a role in temporal sensory prediction evolved from musical training and suggests that rhythm evokes action more strongly in highly trained instrumentalists. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

15.
Timing is crucial for proficient motor tasks; temporal impairments may lead to dysfunctional motor activities. Although much research has been dedicated to the study of movement timing, clinical examination often overlooks temporal impairment of motor activity. The authors hypothesize that some children have a global temporal impairment leading to dysfunctional motor skills. This article checks whether temporal abnormalities detected on a simple tapping task correlate with temporal dysfunction during complex motor skills such as handwriting. Twenty-three school-aged children, 8-14 years (11.1 +/- 1.3 years), underwent tests to assess finger tapping and cursive handwriting. Handwriting samples were rated by experienced teachers. Children with abnormal tapping had lower handwriting rating scores. Temporal features were similar in both tasks; variability on the tapping test correlated with handwriting variability. Temporal variability was not significantly higher for children with poor penmanship as a whole but rather specific to the subgroup of children with a tapping abnormality. Poor penmanship could be attributed in certain children to global temporal impairment reflected as variable finger tapping and handwriting. Evaluation of dysfunctional motor performance should include temporal aspects, and further studies are needed to better delineate and address treatment of "dysrhythmia."  相似文献   

16.
We investigated the role of the cerebellum in differential aspects of temporal control of rhythmic auditory motor synchronization using positron emission tomography (PET). Subjects tapped with their right index finger to metronome tones at a mean frequency of .8 Hz during 5 conditions: (1) an isochronous rhythm condition, (2) random changes in interval durations, and while the duration of rhythmic intervals was continuously time-modulated following a cosine-wave function at (3) 3%, (4) 7%, and (5) 20% of base interval. Anterior lobe cerebellar neuronal populations showed similar motor-associated activity across all conditions regardless of rhythmic time structure in vermal and hemispheric parts ipsilateral to the movements. Neuronal populations in bilateral anterior posterior lobe, especially in the simple lobule, increased their activity stepwise with each increase in tempo modulation from a steady beat. Neuronal populations in other parts of the posterior lobe showed an increase of activity only during the 20% condition, which involved conscious monitoring of rhythmic pattern synchronization, especially on the left side contralateral to the movements. Differential cerebellar activation patterns correspond to those in contralateral primary (primary sensorimotor), ipsilateral secondary (inferior parietal close to the intraparietal sulcus) and bilateral tertiary (dorsolateral prefrontal cortex) sensorimotor areas of the cerebral cortex, suggesting that distinct functional cortico-cerebellar circuits subserve differential aspects of rhythmic synchronization in regard to rhythmic motor control, conscious and subconscious response to temporal structure, and conscious monitoring of rhythmic pattern tracking.  相似文献   

17.
Perception of temporal patterns is fundamental to normal hearing, speech, motor control, and music. Certain types of pattern understanding are unique to humans, such as musical rhythm. Although human responses to musical rhythm are universal, there is much we do not understand about how rhythm is processed in the brain. Here, I consider findings from research into basic timing mechanisms and models through to the neuroscience of rhythm and meter. A network of neural areas, including motor regions, is regularly implicated in basic timing as well as processing of musical rhythm. However, fractionating the specific roles of individual areas in this network has remained a challenge. Distinctions in activity patterns appear between “automatic” and “cognitively controlled” timing processes, but the perception of musical rhythm requires features of both automatic and controlled processes. In addition, many experimental manipulations rely on participants directing their attention toward or away from certain stimulus features, and measuring corresponding differences in neural activity. Many temporal features, however, are implicitly processed whether attended to or not, making it difficult to create controlled baseline conditions for experimental comparisons. The variety of stimuli, paradigms, and definitions can further complicate comparisons across domains or methodologies. Despite these challenges, the high level of interest and multitude of methodological approaches from different cognitive domains (including music, language, and motor learning) have yielded new insights and hold promise for future progress.  相似文献   

18.
Bimanual motor coordination is essential for piano playing. The functional neuronal substrate for high‐level bimanual performance achieved by professional pianists is unclear. We compared professional pianists to musically naïve controls while carrying out in‐phase (mirror) and anti‐phase (parallel) bimanual sequential finger movements during functional magnetic resonance imaging (fMRI). This task corresponds to bimanually playing scales practiced daily by pianists from the beginning of piano playing. Musicians and controls showed significantly different functional activation patterns. When comparing performance of parallel movements to rest, musically naïve controls showed stronger activations than did pianists within a network including anterior cingulate cortex, right dorsal premotor cortex, both cerebellar hemispheres, and right basal ganglia. The direct comparison of bimanual parallel to mirror movements between both groups revealed stronger signal increases in controls within mesial premotor cortex (SMA), bilateral cerebellar hemispheres and vermis, bilateral prefrontal cortex, left ventral premotor cortex, right anterior insula, and right basal ganglia. These findings suggest increased efficiency of cortical and subcortical systems for bimanual movement control in musicians. This may be fundamental to achieve high‐level motor skills allowing the musician to focus on artistic aspects of musical performance. Hum. Brain Mapping 22:206–215, 2004. © 2004 Wiley‐Liss, Inc.  相似文献   

19.
Motor evoked potentials (MEPs) to transcranial magnetic stimulation (TMS) increase in amplitude when obtained immediately after a period of exercise of the target muscle (postexercise facilitation). We studied postexercise facilitation of MEPs to TMS after periods of voluntary activation of either the ipsilateral or contralateral primary motor cortex (simple finger movements) or supplementary motor area (complex finger movements). Postexercise facilitation of the first dorsal interosseous MEPs occurred ipsilaterally even after simple, unilateral finger movements of the dominant hand. The findings are taken to suggest transcallosal transfer of excitability from the dominant to nondominant cerebral hemisphere, perhaps related to mechanisms involved in bimanual motor coordination.  相似文献   

20.
OBJECTIVE: To study the time course of oscillatory EEG activity and corticospinal excitability of the ipsilateral primary motor cortex (iM1) during self-paced phasic extension movements of fingers II-V. METHODS: We designed an experiment in which cortical activation, measured by spectral-power analysis of 28-channel EEG, and cortical excitability, measured by transcranial magnetic stimulation (TMS), were assessed during phasic self-paced extensions of the right fingers II-V in 28 right-handed subjects. TMS was delivered to iM1 0-1500 ms after movement onset. RESULTS: Ipsilateral event-related desynchronization (ERD) during finger movement was paralleled by increased cortical excitability of iM1 from 0-200 ms after movement onset and by increased intracortical facilitation (ICF) without changes in intracortical inhibition (ICI) or peripheral measures (F waves). TMS during periods of post-movement event-related synchronization (ERS) revealed no significant changes in cortical excitability in iM1. CONCLUSIONS: Our findings indicate that motor cortical ERD ipsilateral to the movement is associated with increased corticospinal excitability, while ERS is coupled with its removal. These data are compatible with the concept that iM1 contributes actively to motor control. No evidence for inhibitory modulation of iM1 was detected in association with self-paced phasic finger movements. SIGNIFICANCE: Understanding the physiological role of iM1 in motor control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号