首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of the sphingosine 1-phosphate receptor 1 (S1P(1)R) protects against renal ischemia-reperfusion (IR) injury and inflammation, but the role of other members of this receptor family in modulating renal IR injury is unknown. We found that a selective S1P(2)R antagonist protected against renal IR injury in a dose-dependent manner. Consistent with this observation, both S1P(2)R-deficient mice and wild-type mice treated with S1P(2)R small interfering RNA had reduced renal injury after IR. In contrast, a selective S1P(2)R agonist exacerbated renal IR injury. The S1P(2)R antagonist increased sphingosine kinase-1 (SK1) expression via Rho kinase signaling in renal proximal tubules; the S1P(2)R agonist decreased SK1. S1P(2)R antagonism failed to protect the kidneys of SK1-deficient mice or wild-type mice pretreated with an SK1 inhibitor or an S1P(1)R antagonist, suggesting that the renoprotection conferred by S1P(2)R antagonism results from pathways involving activation of S1P(1)R by SK1. In cultured human proximal tubule (HK-2) cells, the S1P(2)R antagonist selectively upregulated SK1 and attenuated both H(2)O(2)-induced necrosis and TNF-α/cycloheximide-induced apoptosis; the S1P(2)R agonist had the opposite effects. In addition, increased nuclear hypoxia inducible factor-1α was critical in mediating the renoprotective effects of S1P(2)R inhibition. Finally, induction of SK1 and S1P(2)R in response to renal IR and S1P(2)R antagonism occurred selectively in renal proximal tubule cells but not in renal endothelial cells. Taken together, these data suggest that S1P(2)R may be a therapeutic target to attenuate the effects of renal IR injury.  相似文献   

2.
Renal ischemia-reperfusion injury is a major cause of acute kidney injury. We previously found that renal A(1) adenosine receptor (A(1)AR) activation attenuated multiple cell death pathways including necrosis, apoptosis, and inflammation. Here, we tested whether induction of cytoprotective sphingosine kinase (SK)-1 and sphingosine-1-phosphate (S1P) synthesis might be the mechanism of protection. A selective A(1)AR agonist (CCPA) increased the synthesis of S1P and selectively induced SK1 in mouse kidney and HK-2 cells. This agonist failed to protect SK1-knockout but protected SK2-knockout mice against renal ischemia-reperfusion injury indicating a critical role of SK1 in A(1)AR-mediated renal protection. Inhibition of SK prevented A(1)AR-mediated defense against necrosis and apoptosis in HK-2 cells. A selective S1P(1)R antagonist (W146) and global in vivo gene knockdown of S1P(1)Rs with small interfering RNA completely abolished the renal protection provided by CCPA. Mice selectively deficient in renal proximal tubule S1P(1)Rs (S1P(1)R(f)(/)(f) PEPCK(Cre/-)) were not protected against renal ischemia-reperfusion injury by CCPA. Mechanistically, CCPA increased nuclear translocation of hypoxia-inducible factor-1α in HK-2 cells and selective hypoxia-inducible factor-1α inhibition blocked A(1)AR-mediated induction of SK1. Thus, proximal tubule SK1 has a critical role in A(1)AR-mediated protection against renal ischemia-reperfusion injury.  相似文献   

3.
BACKGROUND: Lung injury occurs frequently after allogeneic bone marrow transplantation in association with graft-versus-host disease, an immune response that involves both cellular and cytokine components. In a murine model, we recently showed that cloned alloreactive T helper (Th)1 cells can cause lung injury associated with increased production of tumor necrosis factor (TNF)-alpha by alveolar macrophages (J Immunol 1998; 161: 1913). METHODS: To evaluate the role of TNF-alpha in this model, we injected in vitro-activated Th1 cells into the following: (1) recipients deficient in receptors for TNF; (2) C57BL/6 control mice; (3) C57BL/6 mice, pretreated with soluble TNFRIIFc (a dimorphic high-affinity TNF antagonist); (4) mice expressing TNFRIIFc transgene under control of the surfactant apoprotein C promoter (SPCTNFRIIFc); and (5) wild-type littermate controls (C57BL/6) (n=3-6 mice/group). RESULTS: At 1 and 3 days after i.v. Th1 cell transfer, recipients were killed for analysis of lung histology, bronchoalveolar lavage (BAL) protein, and BAL cell counts. Control mice (wild type) at day 1 after injection had a mild to moderate mononuclear perivasculitis and increased interstitial cellularity. At day 3, lesions were more severe and perivasculitis also involved larger veins. TNFR-deficient mice had normal lung or minimal lung inflammation at day 1. At day 3, perivasculitis of medium-sized vessels was present, but there was no apparent involvement of larger veins. Results in mice treated with soluble TNFRIIFc and transgenic mice (SPCsTNFRIIFc) were similar to controls. BAL protein and BAL cell counts did not differ between any of the experimental groups. CONCLUSIONS: We conclude that lung inflammation induced by Th1 cells may be only delayed when TNF-alpha action is blocked. The persistence of abnormalities indicates that other proinflammatory pathways are involved in injury caused by these cells.  相似文献   

4.
Backgroundα1-Antitrypsin (AAT) is an important protein in the anti-inflammatory response that functions to regulate the activity of serine proteinases. We aimed to evaluate the protective effect of AAT on ischemia-reperfusion injury (IRI) in a mouse model.MethodsWe investigated the effects of AAT in a C57BL/6 mouse model of IRI by dividing them into 4 groups: normal control, sham operated, ischemia-reperfusion (IR), and IR after AAT pretreatment (IR-AAT). In the IR-AAT group, mice were pretreated with AAT (80 mg/kg/d) for 3 days before renal ischemia was induced by clamping the bilateral renal vascular pedicles for 30 minutes. At 24 hours after IRI, biochemistry, histology, inflammatory cytokines, and apoptosis were assayed.ResultsBlood urea nitrogen and serum creatinine levels were significantly lower in the IR-AAT group than in the IR group. Neutrophil gelatinase-associated lipocalin and kidney injury molecule 1 protein levels were significantly lower in the IR-AAT group than in the IR group. In addition, there were fewer tubular injuries and less interstitial fibrosis in the IR-AAT group than in the IR group, and the expression levels of transforming growth factor β, interleukin 1β, and interleukin 6 were significantly lower in the IR-AAT group than in the IR group. When compared with the IR group, there were fewer terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay–positive cells, lower caspase 3 activity and B-cell lymphoma 2-associated X protein (Bax), and higher B-cell lymphoma 2 (Bcl–2) in the IR-AAT group.Conclusionsα1-Antitrypsin preserved renal function, attenuated tubular injuries and interstitial fibrosis, and inhibited inflammation and apoptosis after renal IRI. Our results suggest that AAT has protective effects against renal IRI by inhibiting inflammatory and apoptosis pathways.  相似文献   

5.
Background: C57BL/6 and 129/Sv are the 2 most commonly used strains of mice in renal ischemia-reperfusion injury (IRI) studies, yet there are currently no studies that contrast differences in the degree of renal injury after ischemia-reperfusion. Methods: To evaluate renal IRI in male C57BL/6 and 129/Sv mice, we performed unilateral clamping of the left renal pedicle for 45 minutes and compared the degree of renal tissue damage and function. To measure function and tissue damage we examined: glomerular filtration rate (GFR; by inulin clearance), renal blood flow (RBF; by p-aminohippurate [PAH] clearance), renal morphology, immunohistochemistry for infiltrating leukocytes, and fibrogenic markers by Sirius red staining. Results: After unilateral IRI, 129/sv mice had significantly less GFR and RBF disfunction at both day 14 (d14) and d28. 129/sv mice also had significantly less acute tubular necrosis on d1 and fewer infiltrating leukocytes on d28, as well as less collagen deposition on d28 than C57BL/6 mice. Conclusions: C57BL/6 mice were much more sensitive to damage caused by renal IRI than are 129/Sv mice.  相似文献   

6.
BACKGROUND: Upon transplantation, donor organs subjected to prolonged ischemia suffer from reperfusion injury. Recent observations suggest that caspase activation is involved in inducing the deleterious inflammatory reaction that mediates reperfusion injury. Release of cytokines like interleukin (IL)-1 and IL-18 may occur during apoptosis through activation of caspase-1/IL-1beta-converting enzyme. We hypothesized that caspase-1 activation is a key event in apoptosis/ caspase-dependent inflammation during the development of renal reperfusion injury. METHODS: Caspase-1-/-, caspase-1+/+ as well as Swiss mice were subjected to 45 min of renal ischemia and 24 hr of reperfusion. Animals were administered agents capable of neutralizing the pro-inflammatory activation products of caspase-1 (IL-1 receptor antagonist, anti-IL-1 receptor antibody, and anti-IL-18 antibody). The extent of renal functional deterioration, inflammation, and apoptosis were compared. RESULTS: No improvement in renal function as reflected by serum ureum and creatinine were found in caspase-1-/- mice as compared to wild type controls. Caspase-1-/- mice showed slightly attenuated renal inflammation as indicated by decreased renal neutrophil influx, but failed to show changes in intrarenal tumor necrosis factor-alpha production. Moreover, caspase-1-/- mice clearly exhibited reperfusion-induced apoptosis as reflected by renal terminal deoxynucleotidyltransferase histology and internucleosomal DNA cleavage. Treatment with IL-1 receptor antagonist, anti-IL-1 receptor antibody, or anti-IL-18 antibody minimally reduced renal functional deterioration, inflammation, and apoptosis. CONCLUSIONS: These findings suggest that activated caspase-1 and its inflammatory products are involved in, but not crucial to, the induction of inflammation after renal ischemia-reperfusion. Hence, apart from caspase-1, other (combinations of) activated caspases are likely to be more prominently involved in renal reperfusion injury.  相似文献   

7.
Apoptosis has been described in various models of ischemia-reperfusion (IR) injury, including lung transplantation. A3 adenosine receptor (AR) has been linked to a variety of apoptotic processes. The effect of A3AR activation on lung injury and apoptosis, following IR, has not been reported to date. In a spontaneously breathing cat model, in which the left lower lobe of the lung was isolated and subjected to 2 h of ischemia and 3 h of reperfusion, we tested the effect of IB-MECA, a selective A3AR agonist, on lung apoptosis and injury. Significant increase in the extent of apoptosis was observed following lung reperfusion. IB-MECA, administered before IR, and before or with reperfusion, markedly (p < 0.01) attenuated indices of injury and apoptosis including the percentage of injured alveoli, wet/dry weight ratio, myeloperoxidase activity, in situ terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL) positive cells, and caspase 3 activity and expression. The protective effects of IB-MECA were completely blocked by pretreatment with the selective A3AR antagonist MRS-1191. In summary, even when given after the onset of ischemia, the A3AR agonist IB-MECA conferred a powerful protection against reperfusion lung injury, which was associated with decreased apoptosis. This suggests a potentially important role for A3AR in lung IR injury.  相似文献   

8.
Rivo J  Zeira E  Galun E  Matot I 《Anesthesiology》2004,101(5):1153-1159
BACKGROUND: A3 adenosine receptor (AR) activation worsens or protects against renal and cardiac ischemia-reperfusion (IR) injury, respectively. The aims of the current study were to examine in an in vivo model the effect of A3AR activation on IR lung injury and investigate the mechanism by which it exerts its effect. METHODS: The arterial branch of the left lower lung lobe in intact-chest, spontaneously breathing cats was occluded for 2 h and reperfused for 3 h (IR group). Animals were treated with the selective A3 receptor agonist IB-MECA (300 microg/kg intravenously) given 15 min before ischemia or with IB-MECA as described, with pretreatment 15 min earlier with the selective A3AR antagonist MRS-1191, the nonsulfonylurea adenosine triphosphate-sensitive potassium channel-blocking agent U-37883A, or the nitric oxide synthase inhibitor N-nitro-l-arginine benzyl ester. RESULTS: IB-MECA markedly (P < 0.01) reduced the percentage of injured alveoli (IR, 48 +/- 4%; IB-MECA, 18 +/- 2%), wet:dry weight ratio (IR, 8.2 +/- 0.4; IB-MECA, 4 +/- 2), and myeloperoxidase activity (IR, 0.52 +/- 0.06 U/g; IB-MECA, 0.17 +/- 0.04 U/g). This protective effect was completely blocked by pretreatment with the selective A3AR antagonist MRS-1191 and the adenosine triphosphate-sensitive potassium channel blocking agent U-37883A but not the nitric oxide synthase inhibitor N-nitro-l-arginine benzyl ester. CONCLUSIONS: In the feline lung, the A3AR agonist IB-MECA confers a powerful protection against IR lung injury. This effect is mediated by a nitric oxide synthase-independent pathway and involves opening of adenosine triphosphate-sensitive potassium channels. Therefore, selective activation of A3AR may be an effective means of protecting the reperfused lung.  相似文献   

9.
Acute as well as delayed ischemic preconditioning (IPC) provides protection against cardiac and neuronal ischemia reperfusion (IR) injury. This study determined whether delayed preconditioning occurs in the kidney and further elucidated the mechanisms of renal IPC in mice. Mice were subjected to IPC (four cycles of 5 min of ischemia and reperfusion) and then to 30 min of renal ischemia either 15 min (acute IPC) or 24 h (delayed IPC) later. Both acute and delayed renal IPC provided powerful protection against renal IR injury. Inhibition of Akt but not extracellular signal-regulated kinase phosphorylation prevented the protection that was afforded by acute IPC. Neither extracellular signal-regulated kinase nor Akt inhibition prevented protection that was afforded by delayed renal IPC. Pretreatment with an antioxidant, N-(2-mercaptopropionyl)-glycine, to scavenge free radicals prevented the protection that was provided by acute but not delayed renal IPC. Inhibition of protein kinase C or pertussis toxin-sensitive G-proteins attenuated protection from both acute and delayed renal IPC. Delayed renal IPC increased inducible nitric oxide synthase (iNOS) as well as heat-shock protein 27 synthesis, and the renal protective effects of delayed preconditioning were attenuated by a selective inhibitor of iNOS (l-N(6)[1-iminoethyl]lysine). Moreover, delayed IPC was not observed in iNOS knockout mice. Both acute and delayed IPC were independent of A(1) adenosine receptors (AR) as a selective A(1)AR antagonist failed to block preconditioning and acute and delayed preconditioning occurred in mice that lacked A(1)AR. Therefore, this study demonstrated that acute or delayed IPC provides renal protection against IR injury in mice but involves distinct signaling pathways.  相似文献   

10.
【摘要】 目的 观察在生理和病理情况下,骨髓来源的干细胞(BMSC)能否分化成肾小管上皮细胞 方法 绿色荧光蛋白(GFP)标记的C57BL/6转基因小鼠提供骨髓细胞同种无荧光标记的C57BL/6小鼠100只分为正常对照组全身照射组缺血再灌注组骨髓移植组骨髓移植+缺血再灌注组受体鼠的骨髓重建经血液常规检查和流式细胞仪检测确认,并采用荧光组织化学免疫组织化学等方法观察绿色荧光标记的BMSC在受体鼠肾脏的分布及数量 结果 全身致死剂量γ射线照射未造成小鼠肾脏组织结构和生理功能的明显改变骨髓移植后第56、84天的受体鼠肾小管中有少量GFP阳性细胞的存在[(78.75±5.99)%、(79.58±4.60)%],激光共聚焦显微镜进一步证实这些细胞位于肾小管,并表达肾小管上皮细胞特异性的功能蛋白megalin 结论 在生理和病理情况下,骨髓干细胞均可以向肾小管上皮细胞转分化,参与肾小管上皮细胞的更新,并且在急性肾小管坏死的病理条件下,骨髓干细胞的肾向转化率与肾脏受损程度有关  相似文献   

11.
《Transplantation proceedings》2021,53(7):2133-2139
BackgroundDimethyl fumarate (DMF) is a novel antioxidant that selectively reduces hydroxyl radicals. This study aimed to investigate the potential role of DMF in the pathogenesis of renal ischemia-reperfusion injury (IRI) and the mechanisms involved.MethodsC57BL/6 wild-type mice were treated with DMF or a vehicle. Subsequently, renal IRI was induced in mice by a model of right kidney nephrectomy and left renal ischemia for 30 minutes followed by reperfusion for 24 hours. Sham operation and phosphate-buffered saline were used as controls. Serum and renal tissues were collected at 24 hours after IRI to evaluate the influence of DMF on the recovery of renal function after IRI. Blood urea nitrogen and serum creatinine levels were measured. Kidney cell apoptosis was evaluated using terminal deoxynucleotidyl transferase dUTP nick end labeling-positive staining. Interleukin 6 and tumor necrosis factor α cytokines in the kidney tissues were measured. Indicators of oxidative stress in the kidneys were detected. Finally, Nrf2-deficient mice were used to determine the protective role of the nuclear factor erythroid 2-related factor 2 (Nrf2)/hemeoxygenase-1 (HO-1) and NAD(P)H dehydrogenase quinone 1 (NQO1) signaling pathways induced by DMF using western blot assay.ResultsDMF significantly attenuated renal dysfunction in mice and showed reductions in the severity of renal tubular injury, cell necrosis, and apoptosis. Moreover, DMF significantly reduced the amount of key inflammatory mediators. Additionally, DMF attenuated the malondialdehyde levels 24 hours after IRI but upregulated the superoxide dismutase activities. Western blot assay showed that DMF significantly increased the protein levels of Nrf2, HO-1, and NQO-1. Importantly, these DMF-mediated beneficial effects were not observed in Nrf2-deficient mice.ConclusionsDMF attenuates renal IRI by reducing inflammation and upregulating the antioxidant capacity, which may be through Nrf2/HO-1and NQO1 signaling pathway.  相似文献   

12.
Acute renal failure in endotoxemia is dependent on caspase activation   总被引:5,自引:0,他引:5  
In previous work, it was demonstrated that apoptosis occurs in the kidney during LPS-induced acute renal failure (ARF). However, the relative importance of apoptosis in LPS-induced ARF remained unproven. Because the caspase enzyme cascade is responsible for carrying out apoptosis, it was hypothesized that treatment with a caspase inhibitor would protect mice from LPS-induced ARF. C57BL/6 mice received an injection of LPS and were treated with either the broad-spectrum caspase inhibitor z-VAD-fmk or vehicle and compared with unmanipulated mice. LPS induced a significant increase in caspase-3 activity in vehicle-treated mice, which was significantly inhibited by z-VAD. Mice that were treated with z-VAD were protected from ARF and demonstrated significantly less apoptosis as measured by both terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining and DNA laddering. Although apoptosis is classically described as a noninflammatory process, z-VAD treatment significantly attenuated multiple markers of inflammation, such as renal neutrophil infiltration and renal expression of the neutrophil chemotactic factor macrophage inflammatory protein-2. Thus, caspase inhibition may protect against LPS-induced ARF not only by preventing apoptotic cell death but also by inhibiting inflammation. These data raise the possibility that apoptotic kidney cells may actually be a source of this local inflammation, contributing to subsequent nonapoptotic renal injury.  相似文献   

13.
Background: A3 adenosine receptor (AR) activation worsens or protects against renal and cardiac ischemia-reperfusion (IR) injury, respectively. The aims of the current study were to examine in an in vivo model the effect of A3AR activation on IR lung injury and investigate the mechanism by which it exerts its effect.

Methods: The arterial branch of the left lower lung lobe in intact-chest, spontaneously breathing cats was occluded for 2 h and reperfused for 3 h (IR group). Animals were treated with the selective A3 receptor agonist IB-MECA (300 [mu]g/kg intravenously) given 15 min before ischemia or with IB-MECA as described, with pretreatment 15 min earlier with the selective A3AR antagonist MRS-1191, the nonsulfonylurea adenosine triphosphate-sensitive potassium channel-blocking agent U-37883A, or the nitric oxide synthase inhibitor Nw-nitro-l-arginine benzyl ester.

Results: IB-MECA markedly (P < 0.01) reduced the percentage of injured alveoli (IR, 48 +/- 4%; IB-MECA, 18 +/- 2%), wet:dry weight ratio (IR, 8.2 +/- 0.4; IB-MECA, 4 +/- 2), and myeloperoxidase activity (IR, 0.52 +/- 0.06 U/g; IB-MECA, 0.17 +/- 0.04 U/g). This protective effect was completely blocked by pretreatment with the selective A3AR antagonist MRS-1191 and the adenosine triphosphate-sensitive potassium channel blocking agent U-37883A but not the nitric oxide synthase inhibitor Nw-nitro-l-arginine benzyl ester.  相似文献   


14.
15.
Oxidative stress, calcium overload, inflammation, cellular necrosis, and apoptosis are implicated in renal ischemic/reperfusion injury (RIRI). Because octreotide (OCT) is protective in retinal IRI, the effect of OCT on mouse RIRI and the mechanisms involved were investigated. The RIRI model was induced in male C57BL/6 mice, and the mice were then treated with saline or OCT. Serum and kidneys were subjected to periodic acid–Schiff staining, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, enzyme-linked immunosorbent assay, western blotting, and immunohistochemistry. Treatment with OCT restored the renal functions and histologic changes induced by RIRI. The administration of OCT reduced tumor necrosis factor–α and interleukin-6 levels in kidney tissues, protected the kidney from apoptosis, and significantly downregulated the expression of nuclear factor–κB p65. In addition, OCT treatment upregulated the expression of nuclear factor erythroid 2–related factor 2, heme oxygenase–1, and NAD(P)H quinone oxidoreductase 1 and enhanced the renal antioxidant capacity. These results cumulatively indicate that OCT may protect the kidneys against IRI in a mouse model through the regulation of antioxidation and anti-inflammation.  相似文献   

16.
BACKGROUND: Cisplatin is a commonly used chemotherapeutic agent which causes apoptosis or necrosis of renal tubular epithelial cells in vitro. Caspases are a family of cysteine proteases that mediate apoptosis (caspase-3) and inflammation (caspase-1). Although well studied in vitro, caspases have not been previously studied in cisplatin-induced acute renal failure (ARF) in vivo. METHODS: Cisplatin (30 mg/kg) was injected intraperitoneally into wild-type and caspase-1-deficient (-/-) C57BL/6 mice. Serum creatinine and blood urea nitrogen (BUN), and renal caspase-1, -3, -8 and -9 activity were measured on days 1, 2, and 3 after cisplatin injection. Kidneys were examined for acute tubular necrosis (ATN), neutrophils, and apoptosis on days 1, 2, and 3. RESULTS: After cisplatin injection, serum creatinine and BUN were normal on day 1, began to increase on day 2, and peaked on day 3. Similarly, ATN scores and neutrophil counts peaked on day 3. In contrast, renal apoptosis significantly increased on day 2. Renal dysfunction, apoptosis, ATN scores and neutrophil infiltration were all reduced in the caspase-1(-/-) mice. In wild-type mice, caspase-1 and -3 activity increased on days 2 and 3. Caspase-3 activity was reduced by approximately 50% in caspase-1(-/-) mice; active caspase-3 detected by immunoblot was also reduced in caspase-1(-/-) mice. In vitro, addition of recombinant caspases to kidney cytosolic extracts determined that caspase-1 activates caspase-3 in renal tissue. CONCLUSION: These results indicate that caspase-1 contributes to cisplatin-induced ARF and ATN (day 3). Furthermore, caspase-1 affects caspase-3 activation and apoptosis in cisplatin-induced ARF (day 2).  相似文献   

17.
BACKGROUND: We investigated whether blockade of tumor necrosis factor receptor-ligand pathways could generate regulatory cells induced by intratracheal delivery of alloantigen. METHODS: CBA (H-2k) mice were pretreated with intratracheal delivery of splenocytes (1x10(7)) from C57BL/10 (H-2b) mice and intraperitoneal administration of monoclonal antibody (mAb) specific for CD70, CD134 ligand (CD134L), CD153, or CD137L. Seven days later, C57BL/10 hearts were transplanted into pretreated CBA mice. Some naive CBA mice underwent adoptive transfer of splenocytes (5x10(7)) from pretreated CBA mice and transplantation of a C57BL/10 heart on the same day. RESULTS: Untreated CBA mice rejected C57BL/10 cardiac grafts acutely (median survival time [MST] 12 days). Pretreatment with intratracheal delivery of C57BL/10 donor splenocytes prolonged graft survival significantly (MST 84 days). Mice given intratracheal delivery of alloantigen plus anti-CD70, anti-CD134L, or anti-CD153 mAb, but not those given intratracheal delivery of alloantigen plus anti-CD137L mAb, rejected their graft acutely (MST 16, 14, 10, and 65 days, respectively). Adoptive transfer of splenocytes from mice pretreated with intratracheal delivery of alloantigen plus anti-CD70, CD134L, or CD153 mAb did not prolong survival of C57BL/10 cardiac grafts in naive secondary CBA recipients (MST 14, 11, and 11 days, respectively), whereas adoptive transfer of splenocytes from mice given intratracheal delivery of alloantigen plus anti-CD137L mAb did (MST 75 days). CONCLUSION: The CD27/CD70, CD134/CD134L, and CD30/CD153 pathways are independently required for generation of regulatory cells in our model.  相似文献   

18.
目的研究过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptor,PPAR)-γ激动剂吡格列酮对顺铂(cisplatin,CDDP)诱导的小鼠急性肾损伤(acute kidney injury,AKI)的可能保护作用及其机制。方法腹腔注射顺铂制备小鼠AKI模型。18只小鼠随机分为正常对照组(CT组),AKI模型组(C组)和吡格列酮治疗组(C+P组)。C组和C+P组按25mg/kg给予顺铂处理。C+P组在顺铂注射前3d,连续三天给予吡格列酮灌胃。CT组给予生理盐水作为对照。顺铂或盐水处理72h后处死小鼠,收集血清和肾脏标本。测定血清肌酐和尿素氮,PAS染色后显微镜下观察肾脏形态学变化,同时通过Westernblot检测炎症指标诱生型一氧化氮合酶(inducible nitric oxide synthase,iNOS)。结果与CT组相比,CDDP诱导C组血清肌酐及尿素氮明显升高,病理检查可见肾小管上皮细胞肿胀坏死、蛋白管型形成及炎症细胞浸润明显增加,同时炎症指标iNOS表达上调。与C组相比,C+P组血清肌酐、尿素氮明显下降,肾小管上皮细胞肿胀坏死减轻,炎症细胞浸润减少,iNOS表达下调。结论PPAR-7激动剂吡格列酮可通过抑制iNOS削弱炎症反应从而减轻顺铂诱导的小鼠急性肾损伤。  相似文献   

19.
目的探讨小鼠肾缺血再灌注损伤模型中血管内皮生长因子C的表达变化及其意义。方法建立小鼠肾缺血再灌注损伤模型。雄性C57BL/6小鼠用无创性动脉夹夹闭左肾动脉,置于32℃温箱后1h松开血管夹,取出右肾。Sham组操作同上,但不夹闭左肾动脉。再灌注0,6,12,24,48h后处死小鼠,收集外周血及肾脏标本。测定血肌酐(SCr)和尿素氮(BUN)水平。HE染色观察Sham组和缺血再灌注24h组(IR24h组)肾脏病理学变化,免疫组织化学检测Sham组和IR24h组血管内皮生长因子C(vascularendothelialgrowthfactorC,VEGF-C)在肾脏的表达及分布,连续切片检测VEGF-C与其受体血管内皮生长因子受体3(VEGFR-3)的共定位。Westernblot检测缺血后不同灌注时间VEGF-C的表达变化。结果小鼠肾脏缺血再灌注损伤后,SCr和BUN水平上升,且随着再灌注时间的延长肾功能损伤逐渐加重,再灌注24h时肾功能损伤最明显,再灌注48h时肾功能已经有部分恢复。与Sham组比较,缺血再灌注24h肾脏组织肾小管管腔扩张,内有管型形成,肾小管上皮细胞肿胀坏死,空泡变性,刷状缘坏死脱落,并且伴有炎性细胞侵润,而肾小球未见明显病变。免疫组织化学结果显示,与Sham组比较,缺血再灌注24h肾脏VEGF-C及其受体VEGFR-3的表达均明显增加,二者存在着共定位现象,且主要表达在肾脏皮髓质交界处及髓质部的肾小管。Westernblot结果显示随着缺血后再灌注时间的延长,VEGF-C的表达增加。结论肾缺血再灌注损伤后存在肾脏VEGF-C的表达上升,且与其受体VEGFR-3的表达增加呈共定位,推测VEGF-C可能参与了肾脏缺血再灌注损伤。  相似文献   

20.
目的 研究静脉注射含饱和氢气生理盐水对小鼠肾脏缺血再灌注(IR)损伤的保护作用及其机制.方法 健康、雄性的C57BL/6小鼠随机分为3组,每组10只.假手术组(SO组)小鼠仅接受中线开腹、双侧肾蒂游离及关腹操作;缺血再灌注组(IR组)小鼠用无损伤动脉夹同时钳夹双侧肾蒂,阻断45 min,制成肾脏IR损伤模型,并于肾脏缺血同时经尾静脉注射生理盐水,5 ml/kg;实验组小鼠制成肾脏IR损伤模型,并于肾脏缺血同时经尾静脉注射含饱和氢气生理盐水,5 ml/kg.各组小鼠于肾脏再灌注6 h时检测血清尿素氮(BUN)和肌酐(Scr);检测肾组织中丙二醛(MDA)和髓过氧化物酶(MPO)的含量;观察肾脏组织形态学变化并检测肾小管上皮细胞的凋亡情况;观察肾组织中巨噬细胞的浸润情况;检测各组小鼠肾组织中肿瘤坏死因子α(TNF-α)、白细胞介素6(IL-6)、IL-1β和IL-17 mRNA的水平.结果 实验组血清BUN和Scr水平明显低于IR组(P<0.05).实验组肾组织病理改变较IR组明显减轻,其肾小管损伤评分明显低于IR组(P<0.01),肾小管上皮细胞凋亡明显轻于IR组(P<0.05).实验组肾组织内MDA含量低于IR组(P<0.05).实验组小鼠肾组织内中性粒细胞和巨噬细胞的浸润较IR组减少(P<0.05).实验组TNF-α、IL-6、IL-1β和IL-17mRNA的水平均低于IR组(P<0.05).结论 静脉注射含饱和氢气生理盐水能够在一定程度上减轻肾脏IR损伤,其机制可能与抑制肾脏IR后炎症反应有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号