首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fingolimod and natalizumab significantly reduce disease activity in relapsing-remitting multiple sclerosis (RRMS) and could promote tissue repair and neuroprotection. The ratio between conventional T1- and T2-weighted sequences (T1w/T2w-ratio) and magnetization transfer ratio (MTR) allow to quantify brain microstructural tissue abnormalities. Here, we compared fingolimod and natalizumab effects on brain T1w/T2w-ratio and MTR in RRMS over 2 years of treatment. RRMS patients starting fingolimod (n = 25) or natalizumab (n = 30) underwent 3T brain MRI scans at baseline (T0), month 6 (M6), month 12 (M12), and month 24 (M24). White matter (WM) lesions, normal-appearing (NA) WM, and gray matter (GM) T1w/T2w-ratio and MTR were estimated and compared between groups using linear mixed models. No baseline demographic, clinical, and MRI difference was found between groups. In natalizumab patients, lesion T1w/T2w-ratio and MTR significantly increased at M6 vs. T0 (p ≤ 0.035) and decreased at subsequent timepoints (p ≤ 0.037). In fingolimod patients, lesion T1w/T2w-ratio increased at M12 vs. T0 (p = 0.010), while MTR gradually increased at subsequent timepoints vs. T0 (p ≤ 0.027). Natalizumab stabilized NAWM and GM T1w/T2w-ratio and MTR. In fingolimod patients, NAWM T1w/T2w-ratio and MTR significantly increased at M24 vs. M12 (p ≤ 0.001). A significant GM T1w/T2w-ratio decrease at M6 vs. T0 (p = 0.014) and increase at M24 vs. M6 (p = 0.008) occurred, whereas GM MTR was significantly higher at M24 vs. previous timepoints (p ≤ 0.017) with significant between-group differences (p ≤ 0.034). Natalizumab may promote an early recovery of lesional damage and prevent microstructural damage accumulation in NAWM and GM during the first 2 years of treatment. Fingolimod enhances tissue damage recovery being visible after 6 months in lesions and after 2 years in NAWM and GM.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13311-020-00997-1.Key Words: Multiple sclerosis, MRI, disease-modifying drugs, magnetization transfer ratio, T1w/T2w-ratio, neuroprotection, repair  相似文献   

2.
Data regarding effectiveness and safety of ocrelizumab in the post-marking setting are lacking. The aim of our study was to provide effectiveness and safety data of ocrelizumab treatment in patients with relapsing–remitting (RR-) and progressive multiple sclerosis (PMS) and to evaluate clinical and immunological predictors of early treatment response. In this single-center prospective observational study, we investigated effectiveness outcomes (time-to-confirmed disability worsening, time-to-first relapse, time-to-first evidence of MRI activity and time-to-first evidence of disease activity), clinical and immunological predictors of early treatment response, and incidence of adverse events (AEs). One hundred and fifty-three subjects were included (93 RRMS; 84 females). Median follow-up was 1.9 (1.3–2.7). At 2-year follow-up (FU), disability worsening-free survival were 90.5%, 64.7%, and 68.8% for RRMS, primary-progressive MS (PPMS), and secondary-progressive MS (SPMS) patients, respectively. At 2-year FU, 67.1%, 72.7%, and 81.3% of patients with RRMS, PPMS, and SPMS were free of MRI activity, with NEDA-3 percentages of 62.1%, 54.6%, and 55.1%, respectively. Lower baseline EDSS was independently associated with a reduced risk of disability worsening (HR(95%CI) = 1.45(1.05–2.00), p = 0.024) and previous treatment exposure was independently associated with increased probability of radiological activity (HR = 2.53(1.05–6.10), p = 0.039). At 6-month FU, CD8 + cell decrease was less pronounced in patients with inflammatory activity (p = 0.022). Six patients (3.9%) discontinued ocrelizumab due to severe AEs. Our findings suggest that ocrelizumab is an effective treatment in real-world patients with RRMS and PMS, with a manageable safety profile. Better outcomes were observed in treatment-naïve patients and in patients with a low baseline disability level. Depletion of CD8 + cells could underlie early therapeutic effects of ocrelizumab.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13311-021-01104-8.  相似文献   

3.
Quantitative [15O]H2O positron emission tomography (PET) is the accepted reference method for regional cerebral blood flow (rCBF) quantification. To perform reliable quantitative [15O]H2O-PET studies in PET/MRI scanners, MRI-based attenuation-correction (MRAC) is required. Our aim was to compare two MRAC methods (RESOLUTE and DeepUTE) based on ultrashort echo-time with computed tomography-based reference standard AC (CTAC) in dynamic and static [15O]H2O-PET. We compared rCBF from quantitative perfusion maps and activity concentration distribution from static images between AC methods in 25 resting [15O]H2O-PET scans from 14 healthy men at whole-brain, regions of interest and voxel-wise levels. Average whole-brain CBF was 39.9 ± 6.0, 39.0 ± 5.8 and 40.0 ± 5.6 ml/100 g/min for CTAC, RESOLUTE and DeepUTE corrected studies respectively. RESOLUTE underestimated whole-brain CBF by 2.1 ± 1.50% and rCBF in all regions of interest (range −2.4%– −1%) compared to CTAC. DeepUTE showed significant rCBF overestimation only in the occipital lobe (0.6 ± 1.1%). Both MRAC methods showed excellent correlation on rCBF and activity concentration with CTAC, with slopes of linear regression lines between 0.97 and 1.01 and R2 over 0.99. In conclusion, RESOLUTE and DeepUTE provide AC information comparable to CTAC in dynamic [15O]H2O-PET but RESOLUTE is associated with a small but systematic underestimation.  相似文献   

4.
Natalizumab and fingolimod are effective multiple sclerosis (MS) therapies that disrupt lymphocyte migration but have differential effects on B cell maturation and trafficking. We investigated their effects on peripheral blood (PB) and cerebrospinal fluid (CSF) B cell repertoires using next-generation deep sequencing. Paired CSF and PB B cell subsets (naïve, CD27+ memory, and CD27IgD double-negative B cells and plasmablasts) were collected by applying flow cytometry at baseline and after 6 months of treatment and their respective heavy-chain variable region repertoires assessed by Illumina MiSeq. Treatment with fingolimod contracted, whereas natalizumab expanded circulating PB B cells. CSF B cell numbers remained stable following fingolimod treatment but decreased with natalizumab therapy. Clonal overlap between CSF and PB B cells was reduced with natalizumab treatment but remained stable with fingolimod therapy. Lineage analyses of pre- and posttreatment CSF B cell repertoires revealed large, clonally expanded B cell clusters in natalizumab-treated MS patients but no intrathecal clonal expansion following fingolimod therapy. Our findings suggest that natalizumab diminishes the exchange of peripheral and intrathecal B cells without impacting intrathecal clonal expansion. In contrast, fingolimod treatment fails to alter blood–brain barrier B cell exchange but diminishes intrathecal clonal expansion. Sphingosine-1 phosphate receptor inhibition may alter intrathecal B cell biology in MS.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13311-020-00975-7.Key Words: Natalizumab, fingolimod, cerebrospinal fluid, B cell migration, B cell maturation, mass sequencing.  相似文献   

5.
Natalizumab is the first selective adhesion molecule inhibitor indicated for treatment of active relapsing-remitting multiple sclerosis (RRMS). Natalizumab has been available in France since April 2007. The aims of this study are to analyze demographic, clinical, and tolerance data from French patients with RRMS treated with natalizumab in actual clinical practice and to draw comparisons with patients in the pivotal AFFIRM study. All patients with RRMS in the Nord-Pas de Calais and Alsace regions of France treated with natalizumab at any time since April 2007 were included. Variables analyzed included previous treatments; disability status [Expanded Disability Status Scale (EDSS) score]; annualized relapse rate (ARR) at baseline and after 12 months of treatment; and adverse events. Data from 384 patients (72% female) were evaluated. Mean baseline EDSS score was 3.53 and mean baseline ARR was 2.19, both significantly greater than in AFFIRM. One hundred twenty-seven patients completed 12 months of treatment; mean EDSS score in this group was 3.02 (14% reduction) and mean ARR was 0.59 (73% reduction). Although these patients had significantly different baseline characteristics and greater disability compared with patients receiving natalizumab in AFFIRM, average disability remained stable and ARR declined by 73%. Tolerability was similar to that observed in AFFIRM.  相似文献   

6.
We examined the relationship between white matter hyperintensities (WMH) and cortical neurodegeneration in cerebral small vessel disease (CSVD) by investigating whether cortical thickness is a remote effect of WMH through structural fiber tract connectivity in a population at increased risk of CSVD. We measured cortical thickness on T1-weighted images and segmented WMH on FLAIR images in 930 participants of a population-based cohort study at baseline. DWI-derived whole-brain probabilistic tractography was used to define WMH connectivity to cortical regions. Linear mixed-effects models were applied to analyze the relationship between cortical thickness and connectivity to WMH. Factors associated with cortical thickness (age, sex, hemisphere, region, individual differences in cortical thickness) were added as covariates. Median age was 64 [IQR 46–76] years. Visual inspection of surface maps revealed distinct connectivity patterns of cortical regions to WMH. WMH connectivity to the cortex was associated with reduced cortical thickness (p = 0.009) after controlling for covariates. This association was found for periventricular WMH (p = 0.001) only. Our results indicate an association between WMH and cortical thickness via connecting fiber tracts. The results imply a mechanism of secondary neurodegeneration in cortical regions distant, yet connected to subcortical vascular lesions, which appears to be driven by periventricular WMH.  相似文献   

7.
Angiogenesis has been implicated in the pathobiology of multiple sclerosis (MS). Osteopontin exerts a pro-angiogenetic effect and is increased in body fluid of MS patients. To evaluate the effect of 1 year natalizumab treatment on serum pro-angiogenic activity and on plasma osteopontin levels in relapsing (RR) MS patients. Ten RRMS patients scheduled for natalizumab treatment were enrolled and evaluated at baseline and after 1-year natalizumab treatment. Pro-angiogenic activity was assessed by a chick embryo chorioallantoic membrane assay (CAM), osteopontin levels were evaluated by an enzyme-linked immunosorbent assay. Plasma and serum samples of 10 treatment-naïve RRMS and 10 healthy controls (HCs) were used as controls of baseline evaluations. Both treatment-naïve and natalizumab scheduled RRMS patients had higher baseline vessel density (22.0?±?3.9 and 22.5?±?2.6, p?<?0.0001) and higher osteopontin levels (65.7?±?24.3 ng/ml and 65.9?±?16.6 ng/ml, p?=?0.019 and p?=?0.029, respectively) than HCs (9.0?±?2.2; 48.5?±?7.8 ng/ml, respectively). Baseline osteopontin levels and vessel density were significantly correlated (rs?=?0.373, p?=?0.043). After 1 year of treatment, the number of vessels and the osteopontin levels, were significantly reduced (11.9?±?2.1, p?<?0.005; 49.3?±?20.0 ng/ml, p?=?0.028). Our results suggest that natalizumab could exert its anti-inflammatory properties also by inhibiting the angiogenetic mechanisms in RRMS patients.  相似文献   

8.
Global cerebral hypoperfusion may be involved in the aetiology of brain atrophy; however, long-term longitudinal studies on this relationship are lacking. We examined whether reduced cerebral blood flow was associated with greater progression of brain atrophy. Data of 1165 patients (61 ± 10 years) from the SMART-MR study, a prospective cohort study of patients with arterial disease, were used of whom 689 participated after 4 years and 297 again after 12 years. Attrition was substantial. Total brain volume and total cerebral blood flow were obtained from magnetic resonance imaging scans and expressed as brain parenchymal fraction (BPF) and parenchymal cerebral blood flow (pCBF). Mean decrease in BPF per year was 0.22% total intracranial volume (95% CI: –0.23 to –0.21). Mean decrease in pCBF per year was 0.24 ml/min per 100 ml brain volume (95% CI: –0.29 to –0.20). Using linear mixed models, lower pCBF at baseline was associated with a greater decrease in BPF over time (p =0.01). Lower baseline BPF, however, was not associated with a greater decrease in pCBF (p =0.43). These findings indicate that reduced cerebral blood flow is associated with greater progression of brain atrophy and provide further support for a role of cerebral blood flow in the process of neurodegeneration.  相似文献   

9.
This phase 2, double-blind, placebo-controlled, hypothesis-generating study evaluated the effects of oral reldesemtiv, a fast skeletal muscle troponin activator, in patients with spinal muscular atrophy (SMA). Patients ≥ 12 years of age with type II, III, or IV SMA were randomized into 2 sequential, ascending reldesemtiv dosing cohorts (cohort 1: 150 mg bid or placebo [2:1]; cohort 2: 450 mg bid or placebo [2:1]). The primary objective was to determine potential pharmacodynamic effects of reldesemtiv on 8 outcome measures in SMA, including 6-minute walk distance (6MWD) and maximum expiratory pressure (MEP). Changes from baseline to weeks 4 and 8 were determined. Pharmacokinetics and safety were also evaluated. Patients were randomized to reldesemtiv 150 mg, 450 mg, or placebo (24, 20, and 26, respectively). The change from baseline in 6MWD was greater for reldesemtiv 450 mg than for placebo at weeks 4 and 8 (least squares [LS] mean difference, 35.6 m [p = 0.0037] and 24.9 m [p = 0.058], respectively). Changes from baseline in MEP at week 8 on reldesemtiv 150 and 450 mg were significantly greater than those on placebo (LS mean differences, 11.7 [p = 0.038] and 13.2 cm H2O [p = 0.03], respectively). For 6MWD and MEP, significant changes from placebo were seen in the highest reldesemtiv peak plasma concentration quartile (Cmax > 3.29 μg/mL; LS mean differences, 43.3 m [p = 0.010] and 28.8 cm H2O [p = 0.0002], respectively). Both dose levels of reldesemtiv were well tolerated. Results suggest reldesemtiv may offer clinical benefit and support evaluation in larger SMA patient populations.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13311-020-01004-3.Key Words: Reldesemtiv, spinal muscular atrophy clinical trial, pharmacodynamics, pharmacokinetics, six-minute walk test  相似文献   

10.
[11C]UCB-J is a novel radioligand that binds to synaptic vesicle glycoprotein 2A (SV2A). The main objective of this study was to determine the 28-day test–retest repeatability (TRT) of quantitative [11C]UCB-J brain positron emission tomography (PET) imaging in Alzheimer’s disease (AD) patients and healthy controls (HCs). Nine HCs and eight AD patients underwent two 60 min dynamic [11C]UCB-J PET scans with arterial sampling with an interval of 28 days. The optimal tracer kinetic model was assessed using the Akaike criteria (AIC). Micro-/macro-parameters such as tracer delivery (K1) and volume of distribution (VT) were estimated using the optimal model. Data were also analysed for simplified reference tissue model (SRTM) with centrum semi-ovale (white matter) as reference region. Based on AIC, both 1T2k_VB and 2T4k_VB described the [11C]UCB-J kinetics equally well. Analysis showed that whole-brain grey matter TRT for VT, DVR and SRTM BPND were –2.2% ± 8.5, 0.4% ± 12.0 and –8.0% ± 10.2, averaged over all subjects. [11C]UCB-J kinetics can be well described by a 1T2k_VB model, and a 60 min scan duration was sufficient to obtain reliable estimates for both plasma input and reference tissue models. TRT for VT, DVR and BPND was <15% (1SD) averaged over all subjects and indicates adequate quantitative repeatability of [11C]UCB-J PET.  相似文献   

11.
Natalizumab has been shown to be effective in pivotal clinical trials in multiple sclerosis; however, the patients in whom treatment is indicated in clinical practice have a different clinical profile from those included in the clinical trials. The aim of this study is therefore to collect data on natalizumab use in everyday clinical practice in Spain. The 86 participating centers throughout Spain submitted data on disease characteristics at baseline and after treatment. Valid data were available for 1,364 patients (69.3% women, 86.9% with relapsing–remitting disease). Ninety-three percent had received prior therapy for multiple sclerosis. For the 825 patients on treatment for at least a year, the annualized relapse rate (ARR) decreased from median 2.0 [mean 2.01, 95% confidence interval (CI) 1.92–2.11] in the year prior to natalizumab to 0.0 (mean 0.25, 95% CI 0.21–0.29) at 1?year (p?<?0.001). The Expanded Disability Status Scale (EDSS) score decreased from median 3.5 at baseline (mean 3.71, 95% CI 3.60–3.82) to 3.0 (mean 3.37, 95% CI 3.25–3.49) (p?<?0.0001). The discontinuation rate was 14%. One patient discontinued natalizumab due to progressive multifocal leukoencephalopathy (PML) and another due to probable PML (subsequently confirmed). Although our patients had more severe disease than those in the pivotal study, a similar reduction in ARR was observed. This finding is in line with previous observational studies. The effect was independent of baseline EDSS.  相似文献   

12.
The risk of cancer associated with persons with multiple sclerosis (pwMS) prescribed with disease modifying therapies (DMTs) is not well established. This observational, cross-sectional, pharmacovigilance cohort study examined individual case safety reports from the World Health Organization database: VigiBase®. All consecutive reports of DMTs prescribed to pwMS (alemtuzumab, dimethyl fumarate, fingolimod, glatiramer acetate, interferon-β, natalizumab, ocrelizumab, and teriflunomide), and their serious adverse event cases were eligible, excluding those reporting immunosuppressant DMTs used as anticancer therapies. The primary outcome was the multivariate odds ratio of cancer reporting (r-OR) for DMTs prescribed to pwMS after imputation of missing data. There were 5966 cancer cases from 240,993 reports of DMTs prescribed to pwMS. After adjustments on age, sex, and geographical region, natalizumab (r-OR 1.74, 95% CI 1.63–1.87), interferon-β (r-OR 1.39, 95% CI 1.30–1.49), dimethyl fumarate (r-OR 1.35, 95% CI 1.25–1.46), and fingolimod (r-OR 1.15, 95% CI 1.06–1.24) were significantly associated with a greater cancer reporting, whereas alemtuzumab, glatiramer acetate, ocrelizumab, and teriflunomide were not, in the disproportionality analysis. As exploratory analyses, upper aerodigestive tract, breast, urinary including the male genitourinary tract, and nervous system cancers were associated with natalizumab, interferon-β, and dimethyl fumarate. Fingolimod was only associated with skin cancer types. Cancer cases reporting these four DMTs prescribed to pwMS were younger in age than for non-pwMS drugs in the VigiBase® (p < 0.0001). A close and regular cancer screening in pwMS treated with natalizumab, interferon-β, dimethyl fumarate, and fingolimod may be warranted, even for persons at a younger age. Trial Registration NCT04237337Supplementary InformationThe online version contains supplementary material available at 10.1007/s13311-021-01073-y.  相似文献   

13.
Asymptomatic low-grade carotid artery stenosis (LGCS) is a common finding in patients with manifest arterial disease, however its relationship with brain MRI changes and cognitive decline is unclear. We included 902 patients (58 ± 10 years; 81% male) enrolled in the Second Manifestations of Arterial Disease – Magnetic Resonance (SMART-MR) study without a history of cerebrovascular disease. LGCS was defined as 1–49% stenosis on baseline carotid ultrasound, whereas no LGCS (reference category) was defined as absence of carotid plaque. Brain and white matter hyperintensity (WMH) volumes and cognitive function were measured at baseline and after 4 (n = 480) and 12 years (n = 222) of follow-up. Using linear mixed-effects models, we investigated associations of LGCS with progression of brain atrophy, WMH, and cognitive decline. LGCS was associated with greater progression of global brain atrophy (estimate −0.03; 95%CI, −0.06 to −0.01; p = 0.002), and a greater decline in executive functioning (estimate −0.02; 95%CI, −0.031 to −0.01; p < 0.001) and memory (estimate −0.012; 95%CI, −0.02 to −0.001; p = 0.032), independent of demographics, cardiovascular risk factors, and incident brain infarcts on MRI. No association was observed between LGCS and progression of WMH. Our results indicate that LGCS may represent an early marker of greater future brain atrophy and cognitive decline.  相似文献   

14.
IntroductionData on structural brain changes after infection with SARS‐CoV‐2 is sparse. We postulate multiple sclerosis as a model to study the effects of SARS‐CoV‐2 on brain atrophy due to the unique availability of longitudinal imaging data in this patient group, enabling assessment of intraindividual brain atrophy rates.MethodsGlobal and regional cortical gray matter volumes were derived from structural MRIs using FreeSurfer. A linear model was fitted to the measures of the matching pre‐SARS‐CoV‐2 images with age as an explanatory variable. The residuals were used to determine whether the post‐SARS‐CoV‐2 volumes differed significantly from the baseline.ResultsFourteen RRMS patients with a total of 113 longitudinal magnetic resonance images were retrospectively analyzed. We found no acceleration of brain atrophy after infection with SARS‐CoV‐2 for global gray matter volume (p = 0.17). However, on the regional level, parahippocampal gyri showed a tendency toward volume reduction (p = 0.0076), suggesting accelerated atrophy during or after infection.ConclusionsOur results illustrate the opportunity of using longitudinal MRIs from existing MS registries to study brain changes associated with SARS‐CoV‐2 infections. We would like to address the global MS community with a call for action to use the available cohorts, reproduce the proposed analysis, and pool the results.  相似文献   

15.
Background: Natalizumab (Tysabri) is a monoclonal antibody that was recently approved for the treatment of relapsing‐remitting multiple sclerosis (RRMS). Our primary objective was to analyse the efficacy of natalizumab on disability status and ambulation after switching patients with RRMS from other disease‐modifying treatments (DMTs). Methods: A retrospective, observational study was carried out. All patients (n = 45) initiated natalizumab after experiencing at least 1 relapse in the previous year under interferon‐beta (IFNB) or glatiramer acetate (GA) treatments. The patients also had at least 1 gadolinium‐enhancing (Gd+) lesion on their baseline brain MRI. Expanded Disability Status Scale (EDSS) scores, and performance on the Timed 25‐Foot Walk Test and on the Timed 100‐Metre Walk Test were prospectively collected every 4 weeks during 44 weeks of natalizumab treatment. Brain MRI scans were performed after 20 and 44 weeks of treatment. Results: Sixty‐two per cent of patients showed no clinical and no radiological signs of disease activity, and 29% showed a rapid and confirmed EDSS improvement over 44 weeks of natalizumab therapy. Patients with improvement on the EDSS showed similar levels of baseline EDSS and active T1 lesions, but had a significantly higher number of relapses, and 92% of them had experienced relapse‐mediated sustained EDSS worsening in the previous year. A clinically meaningful improvement in ambulation speed was observed in approximately 30% of patients. Conclusions: These results indicate that natalizumab silences disease activity and rapidly improves disability status and walking performance, possibly through delayed relapse recovery in patients with RRMS who had shown a high level of disease activity under other DMTs.  相似文献   

16.
Recent studies suggest that a subset of cortical microinfarcts may be identifiable on T2* but invisible on T1 and T2 follow-up images. We aimed to investigate whether cortical microinfarcts are associated with iron accumulation after the acute stage. The RUN DMC – InTENse study is a serial MRI study including individuals with cerebral small vessel disease (SVD). 54 Participants underwent 10 monthly 3 T MRIs, including diffusion-weighted imaging, quantitative R1 (=1/T1), R2 (=1/T2), and R2* (=1/T2*) mapping, from which MRI parameters within areas corresponding to microinfarcts and control region of interests (ROIs) were retrieved within 16 participants. Finally, we compared pre- and post-lesional values with repeated measures ANOVA and post-hoc paired t-tests using the mean difference between lesion and control ROI values. We observed 21 acute cortical microinfarcts in 7 of the 54 participants (median age 69 years [IQR 66–74], 63% male). R2* maps demonstrated an increase in R2* values at the moment of the last available follow-up MRI (median [IQR], 5 [5–14] weeks after infarction) relative to prelesional values (p = .08), indicative of iron accumulation. Our data suggest that cortical microinfarcts are associated with increased R2* values, indicative of iron accumulation, possibly due to microhemorrhages, neuroinflammation or neurodegeneration, awaiting histopathological verification.  相似文献   

17.
As P-glycoprotein (Pgp) inhibition at the blood–brain barrier (BBB) after administration of a single dose of tariquidar is transient, we performed positron emission tomography (PET) scans with the Pgp substrate (R)-[11C]verapamil in five healthy volunteers during continuous intravenous tariquidar infusion. Total distribution volume (VT) of (R)-[11C]verapamil in whole-brain gray matter increased by 273±78% relative to baseline scans without tariquidar, which was higher than previously reported VT increases. During tariquidar infusion whole-brain VT was comparable to VT in the pituitary gland, a region not protected by the BBB, which suggested that we were approaching complete Pgp inhibition at the human BBB.  相似文献   

18.
The objective of this study was to establish whether the time interval of 3 months is sufficient to detect whole-brain atrophy changes in patients with relapsing-remitting (RR) multiple sclerosis (MS). Another aim was to assess the value of monthly gadolinium (Gd)-enhanced magnetic resonance imaging (MRI) and of different Gd-enhancement patterns as predictors of brain atrophy. Thirty patients with RRMS (mean disease duration 4.9 years, mean age 34.4 years and mean Expanded Disability Status Scale [EDSS] 1.4) were assessed at baseline and monthly for a period of 3 months with clinical and MRI examinations. Calculations of baseline and monthly absolute and percent changes of MRI measures have been obtained using two semiautomated (Buffalo and Trieste) and one automated (SPM99) segmentation method. Changes of brain parenchymal fraction (BPF) were investigated according to Gd-enhancement patterns. Mean absolute and percent changes of BPF did not significantly differ at any time point in the study for any of the three methods. There was slight but not significant decrease of BPF from baseline to month 3: -0.0004 (0.05%), p=0.093 for Trieste; -0.0006 (0.07%), p=0.078 for Buffalo; and -0.0006 (0.08%), p=0.081 for SPM99 method. In ring-enhancement positive patients, there was a significant difference between baseline and month 3 changes of BPF, EDSS, and number of relapses. Over the study period, we did not demonstrate differences between changes of BPF according to the presence of Gd enhancement. Longitudinally, multiple regression analysis demonstrated that the only clinical or MRI parameter that predicted BPF decrease was the mean absolute change of ring-enhancing lesion load (R=0.62, p=0.003). The noteworthy findings of this study are (1) the observation that a significant brain atrophy progression cannot be detected over a 3-month period in RRMS; (2) the demonstration that the ring-enhancement pattern may contribute to more severe brain tissue loss in the short term; and (3) the lack of relationship between the presence and duration of Gd-enhancement activity and brain volume changes in the short term.  相似文献   

19.
The aim of this study was to assess whether the use of accelerated MRI scans in place of non-accelerated scans influenced brain volume and atrophy rate measures in controls and subjects with mild cognitive impairment and Alzheimer’s disease. We used data from 861 subjects at baseline, 573 subjects at 6 months and 384 subjects at 12 months from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We calculated whole-brain, ventricular and hippocampal atrophy rates using the k-means boundary shift integral (BSI). Scan quality was visually assessed and the proportion of good quality accelerated and non-accelerated scans compared. We also compared MMSE scores, vascular burden and age between subjects with poor quality scans with those with good quality scans. Finally, we estimated sample size requirements for a hypothetical clinical trial when using atrophy rates from accelerated scans and non-accelerated scans. No significant differences in whole-brain, ventricular and hippocampal volumes and atrophy rates were found between accelerated and non-accelerated scans. Twice as many non-accelerated scan pairs suffered from at least some motion artefacts compared with accelerated scan pairs (p ≤ 0.001), which may influence the BSI. Subjects whose accelerated scans had significant motion had a higher mean vascular burden and age (p ≤ 0.05) whilst subjects whose non-accelerated scans had significant motion had poorer MMSE scores (p ≤ 0.05). No difference in estimated sample size requirements was found when using accelerated vs. non-accelerated scans. Accelerated scans reduce scan time and are better tolerated. Therefore it may be advantageous to use accelerated over non-accelerated scans in clinical trials that use ADNI-type protocols, especially in more cognitively impaired subjects.  相似文献   

20.
In the 12-month phase 3 TRANSFORMS study, fingolimod showed greater efficacy than intramuscular interferon beta (IFNβ)-1a in patients with relapsing–remitting multiple sclerosis (RRMS). This study analyzed fingolimod efficacy compared with IFNβ-1a in patient subgroups from TRANSFORMS. Patients were randomized to receive fingolimod or weekly IM IFNβ-1a for 12 months. Analyses of efficacy included annualized relapse rate (ARR), and magnetic resonance imaging (MRI) measures [gadolinium (Gd)-enhancing T1 lesions, new/newly enlarged (active) T2 lesions, brain volume change]. Subgroups were defined based on demographics, disease characteristics (baseline EDSS score, relapse rate, and MRI parameters), and response to previous therapy. Fingolimod 0.5 mg reduced ARR over 12 months by 32–59 % relative to IFNβ-1a in all subgroups defined by demographic factors or baseline disease characteristics. Fingolimod also reduced the number of new Gd-enhancing lesions, active T2 lesions, and the rate of brain volume loss, versus IFNβ-1a in most (95 %) subgroups. In patients with high disease activity despite IFNβ treatment in the year before study, fingolimod 0.5 mg reduced ARR by 61 % relative to IFNβ-1a. Reductions in lesion counts and brain volume loss also favored fingolimod in these patients. In conclusion, consistently better efficacy was observed for fingolimod compared with IFNβ-1a across different subgroups of patients with RRMS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号