首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The advanced tendencies in building materials development are related to the design of cement composites with a reduced amount of Portland cement, contributing to reduced CO2 emissions, sustainable development of used non-renewal raw materials, and decreased energy consumption. This work deals with water cured for 28 and 120 days cement composites: Sample A—reference (white Portland cement + sand + water); Sample B—white Portland cement + marble powder + water; and Sample C white Portland cement + marble powder + polycarboxylate-based water reducer + water. By powder X-ray diffraction and FTIR spectroscopy, the redistribution of CO32−, SO42−, SiO44−, AlO45−, and OH (as O-H bond in structural OH anions and O-H bond belonging to crystal bonded water molecules) from raw minerals to newly formed minerals have been studied, and the scheme of samples hydration has been defined. By thermal analysis, the ranges of the sample’s decomposition mechanisms were distinct: dehydration, dehydroxylation, decarbonation, and desulphuration. Using mass spectroscopic analysis of evolving gases during thermal analysis, the reaction mechanism of samples thermal decomposition has been determined. These results have both practical (architecture and construction) and fundamental (study of archaeological artifacts as ancient mortars) applications.  相似文献   

2.
The mechanism of decomposition of peroxynitrite (OONO(-)) in aqueous sodium phosphate buffer solution at neutral pH was investigated. The OONO(-) was synthesized by directly reacting nitric oxide with superoxide anion at pH 13. The hypothesis was explored that OONO(-), after protonation at pH 7.0 to HOONO, decomposes into (1)O(2) and HNO according to a spin-conserved unimolecular mechanism. Small aliquots of the concentrated alkaline OONO(-) solution were added to a buffer solution (final pH 7.0-7.2), and the formation of (1)O(2) and NO(-) in high yields was observed. The (1)O(2) generated was trapped as the transannular peroxide (DPAO(2)) of 9, 10-diphenylanthracene (DPA) dissolved in carbon tetrachloride. The nitroxyl anion (NO-) formed from HNO (pKa 4.5) was trapped as nitrosylhemoglobin (HbNO) in an aqueous methemoglobin (MetHb) solution. In the presence of 25 mM sodium bicarbonate, which is known to accelerate the rate of decomposition of OONO(-), the amount of singlet oxygen trapped was reduced by a factor of approximately 2 whereas the yield of trapping of NO(-) by methemoglobin remained unaffected. Because NO(3)(-) is known to be the ultimate decomposition product of OONO(-), these results suggest that the nitrate anion is not formed by a direct isomerization of OONO(-), but by an indirect route originating from NO(-).  相似文献   

3.
Acetylene hydratase is a tungsten-dependent enzyme that catalyzes the nonredox hydration of acetylene to acetaldehyde. Density functional theory calculations are used to elucidate the reaction mechanism of this enzyme with a large model of the active site devised on the basis of the native X-ray crystal structure. Based on the calculations, we propose a new mechanism in which the acetylene substrate first displaces the W-coordinated water molecule, and then undergoes a nucleophilic attack by the water molecule assisted by an ionized Asp13 residue at the active site. This is followed by proton transfer from Asp13 to the newly formed vinyl anion intermediate. In the subsequent isomerization, Asp13 shuttles a proton from the hydroxyl group of the vinyl alcohol to the α-carbon. Asp13 is thus a key player in the mechanism, but also W is directly involved in the reaction by binding and activating acetylene and providing electrostatic stabilization to the transition states and intermediates. Several other mechanisms are also considered but the energetic barriers are found to be very high, ruling out these possibilities.  相似文献   

4.
The analysis of gaseous products reveals the characteristics, mechanisms, and kinetic equations describing the dehydroxylation and decarburization in coal series kaolinite. The results show that the dehydroxylation of coal series kaolinite arises from the calcination of kaolinite and boehmite within the temperature range of 350–850 °C. The activation energy for dehydroxylation is 182.71 kJ·mol−1, and the mechanism conforms to the A2/3 model. Decarburization is a two-step reaction, occurring as a result of the combustion of carbon and the decomposition of a small amount of calcite. The temperature range in the first step is 350–550 °C, and in the second is 580–830 °C. The first step decarburization reaction conforms to the A2/3 mechanism function, and the activation energy is 160.94 kJ·mol−1. The second step decarburization reaction follows the B3 mechanism function, wherein the activation energy is 215.47 kJ·mol−1. A comparison with the traditional methods proves that the kinetics method utilizing TG-FTIR-MS is feasible.  相似文献   

5.
Fires in landfills, where used plastic packaging waste is discarded, have shown how great a fire hazard these types of materials pose. In this study, the course of thermo-oxidation of samples made of polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) based plastics was determined. Based on an analysis of the dissociation energy of bonds between atoms in a polymer molecule, the mechanisms responsible for the character and course of degradation were observed. It was found that the degradation rate of PP and PS could be a result of the stability of C-H bonds on the tertiary carbon atom. In the case of PS, due to facilitated intramolecular hydrogen transfer, stabilization of hydroperoxide, and formation of a stable tertiary alcohol molecule, the onset of degradation is shifted towards higher temperatures than in the case of PP. Notably, the PP fragmentation occurs to a greater extent due to the easier course of β-scission. In addition, it was found that during a fire, the least amount of heat would be generated by thermo-oxidation of PS-based plastics. This is a result of the formation of a styrene molecule during decomposition that, due to the high stability of bonds in the aromatic ring, escapes from the combustion zone without oxidation. It has been proven that the greatest thermal effect accompanies PET decomposition, during which a phenyl radical is produced, where the C-H bonds break more easily in comparison with the bonds of an intact ring.  相似文献   

6.
Insights into the mechanisms of normal and pathological neural development may be gained by studying the reorganization of developing neural connections, caused experimentally or by disease. Many reorganized connections are assumed to arise by the anomalous stabilization of transient connections that occur during normal development. We report that, although the retina projects transiently to the somatosensory system in normal developing hamsters, the permanent retinal projections to the somatosensory system that arise as a consequence of early brain lesions are not formed by the stabilization of the normally transient projection. Instead, the transient retinal axons are replaced by retinal axons that do not normally project to the somatosensory system. The distinction between anomalous stabilization and substitution is significant for determining the cellular mechanisms underlying the development of neural connectivity.  相似文献   

7.
Experiments with isolated rat hearts demonstrated that in the course of adaptation to continuous immobilized stress of moderate intensity (1, 5, and 15 days), the heart gradually (at day 15) formed the defense mechanism previously described, that is the adaptive structural stabilization phenomenon (ASSP). ASSP defends cardiac contractile function and has a powerful antiarrhythmic and cytoprotective effect in total ischemia, reperfusion, and under the action of toxic concentrations of calcium and catecholamines. The protective ASSP effect formed over 15 days of continuous stress proved to be steady-state, remaining for 15 days of adaptation cessation. Thus, during adaptation to continuous stress higher regulatory mechanisms determine the gradual development of a highly effective defense mechanism in the heart at the cellular level.  相似文献   

8.
Melt flow and dripping of the pyrolysing polymer melt can be both a benefit and a detriment during a fire. In several small-scale fire tests addressing the ignition of a defined specimen with a small ignition source, well-adjusted melt flow and dripping are usually beneficial to pass the test. The presence of flame retardants often changes the melt viscosity crucially. The influence of certain flame retardants on the dripping behaviour of four commercial polymers, poly(butylene terephthalate) (PBT), polypropylene (PP), polypropylene modified with ethylene-propylene rubber (PP-EP) and polyamide 6 (PA 6), is analysed based on an experimental monitoring of the mass loss due to melt dripping, drop size and drop temperature as a function of the furnace temperature applied to a rod-shaped specimen. Investigating the thermal transition (DSC), thermal and thermo-oxidative decomposition, as well as the viscosity of the polymer and collected drops completes the investigation. Different mechanisms of the flame retardants are associated with their influence on the dripping behaviour in the UL 94 test. Reduction in decomposition temperature and changed viscosity play a major role. A flow limit in flame-retarded PBT, enhanced decomposition of flame-retarded PP and PP-EP and the promotion of dripping in PA 6 are the salient features discussed.  相似文献   

9.
Dielectric elastomers (DE) are novel composite architectures capable of large actuation strains and the ability to be formed into a variety of actuator configurations. However, the high voltage requirement of DE actuators limits their applications for a variety of applications. Fiber actuators composed of DE fibers are particularly attractive as they can be formed into artificial muscle architectures. The interest in manufacturing micro or nanoscale DE fibers is increasing due to the possible applications in tissue engineering, filtration, drug delivery, catalysis, protective textiles, and sensors. Drawing, self-assembly, template-direct synthesis, and electrospinning processing have been explored to manufacture these fibers. Electrospinning has been proposed because of its ability to produce sub-mm diameter size fibers. In this paper, we investigate the impact of electrospinning parameters on the production of composite dielectric elastomer fibers. In an electrospinning setup, an electrostatic field is applied to a viscous polymer solution at an electrode’s tip. The polymer composite with carbon black and carbon nanotubes is expelled and accelerated towards a collector. Factors that are considered in this study include polymer concentration, solution viscosity, flow rate, electric field intensity, and the distance to the collector.  相似文献   

10.
Oligonucleotide-directed mutagenesis was used to investigate the nature of transition state stabilization in the catalytic mechanism of the serine protease, subtilisin BPN'. The gene for this extracellular enzyme from Bacillus amyloliquefaciens has been cloned and expressed in Bacillus subtilis. In the transition state complex, the carbonyl group of the peptide bond to be hydrolyzed is believed to adopt a tetrahedral configuration rather than the ground-state planar configuration. Crystallographic studies suggest that stabilization of this activated complex is accomplished in part through the donation of a hydrogen bond from the amide side group of Asn-155 to the carbonyl oxygen of the peptide substrate. To specifically test this hypothesis, leucine was introduced at position 155. Leucine is isosteric with asparagine but is incapable of donating a hydrogen bond to the tetrahedral intermediate. The Leu-155 variant was found to have an unaltered Km but a greatly reduced catalytic rate constant, kcat, (factor of 200-300 smaller) when assayed with a peptide substrate. These kinetic results are consistent with the Asn-155 mediating stabilization of the activated complex and lend further experimental support for the transition-state stabilization hypothesis of enzyme catalysis.  相似文献   

11.
Flavin is one of the most versatile redox cofactors in nature and is used by many enzymes to perform a multitude of chemical reactions. d-Amino acid oxidase (DAAO), a member of the flavoprotein oxidase family, is regarded as a key enzyme for the understanding of the mechanism underlying flavin catalysis. The very high-resolution structures of yeast DAAO complexed with d-alanine, d-trifluoroalanine, and l-lactate (1.20, 1.47, and 1.72 A) provide strong evidence for hydride transfer as the mechanism of dehydrogenation. This is inconsistent with the alternative carbanion mechanism originally favored for this type of enzymatic reaction. The step of hydride transfer can proceed without involvement of amino acid functional groups. These structures, together with results from site-directed mutagenesis, point to orbital orientation/steering as the major factor in catalysis. A diatomic species, proposed to be a peroxide, is found at the active center and on the Re-side of the flavin. These results are of general relevance for the mechanisms of flavoproteins and lead to the proposal of a common dehydrogenation mechanism for oxidases and dehydrogenases.  相似文献   

12.
To assess the impact of graphite fillers on the thermal processing of graphite/poly(lactic acid) (PLA) composites, a series of the composite samples with different graphite of industrial grade as fillers was prepared by melt mixing. The average size of the graphite grains ranged between 100 µm and 6 µm. For comparative purposes, one of the carbon fillers was expandable graphite. Composites were examined by SEM, FTIR, and Raman spectroscopy. As revealed by thermogravimetric (TG) analyses, graphite filler slightly lowered the temperature of thermal decomposition of the PLA matrix. Differential scanning calorimetry (DSC) tests showed that the room temperature crystallinity of the polymer matrix is strongly affected by the graphite filler. The crystallinity of the composites determined from the second heating cycle reached values close to 50%, while these values are close to zero for the neat polymer. The addition of graphite to PLA caused a slight reduction in the oxidation induction time (OIT). The melt flow rate (MFR) of the graphite/PLA composites was lower than the original PLA due to an increase in flow resistance associated with the high crystallinity of the polymer matrix. Expandable graphite did not cause changes in the structure of the polymer matrix during thermal treatment. The crystallinity of the composite with this filler did not increase after first heating and was close to the neat PLA MFR value, which was extremely high due to the low crystallinity of the PLA matrix and delamination of the filler at elevated temperature.  相似文献   

13.
A detailed investigation of the catalytic mechanism of angiotensin converting enzyme was undertaken in order to establish a molecular basis for its mode of action. These studies include the characterization of the kinetic properties of the enzyme. In particular, a mechanism for the anion activation, a characteristic feature of angiotensin converting enzyme, has been established. The active site of the enzyme contains a catalytically essential zinc atom which appears to be directly involved in the hydrolytic step of catalysis. Further components of the active site are the carboxyl group of an aspartyl or glutamyl residue, tyrosyl, arginyl and lysyl residues. The latter one is involved in mediating the anion activation. These results have enabled us to compare the active site of angiotensin converting enzyme with those of two other zinc peptidases and, thereby, deduce a mechanism for its mode of action. These investigations have confirmed a hypothetical model of the active site of angiotensin converting enzyme which has served to construct potent inhibitors of the enzyme now being used as anti-hypertensive agents.  相似文献   

14.
Carbamoyl phosphate (CP) has a half-life for thermal decomposition of <2 s at 100 degrees C, yet this critical metabolic intermediate is found even in organisms that grow at 95-100 degrees C. We show here that the binding of CP to the enzymes aspartate and ornithine transcarbamoylase reduces the rate of thermal decomposition of CP by a factor of >5,000. Both of these transcarbamoylases use an ordered-binding mechanism in which CP binds first, allowing the formation of an enzyme.CP complex. To understand how the enzyme.CP complex is able to stabilize CP we investigated the mechanism of the thermal decomposition of CP in aqueous solution in the absence and presence of enzyme. By quantum mechanics/molecular mechanics calculations we show that the critical step in the thermal decomposition of CP in aqueous solution, in the absence of enzyme, involves the breaking of the C O bond facilitated by intramolecular proton transfer from the amine to the phosphate. Furthermore, we demonstrate that the binding of CP to the active sites of these enzymes significantly inhibits this process by restricting the accessible conformations of the bound ligand to those disfavoring the reactive geometry. These results not only provide insight into the reaction pathways for the thermal decomposition of free CP in an aqueous solution but also show why these reaction pathways are not accessible when the metabolite is bound to the active sites of these transcarbamoylases.  相似文献   

15.
We propose a motility mechanism that may result in the displacement of objects within the cell. The mechanism, which we call polymer-guided diffusion, involves a microscopic cycle of polymer association and dissociation from a lateral binding site. Reassociation occurs at the polymer subunit adjacent to that which has just dissociated, thus generating an apparent sliding movement. The displacement involves only free diffusion and the spontaneous fluctuations of the polymer; the movement thus requires no other energy sources than thermal energy and the energy originally required for the formation of the polymer. In this manner polymer-associated organelles can be guided (inevitably) by diffusional processes toward a final destination. The specific example of the anaphase movement of chromosomes poleward is detailed.  相似文献   

16.
Uracil phosphoribosyltransferase (UPRT) is a member of a large family of salvage and biosynthetic enzymes, the phosphoribosyltransferases, and catalyzes the transfer of ribose 5-phosphate from alpha-d-5-phosphoribosyl-1-pyrophosphate (PRPP) to the N1 nitrogen of uracil. The UPRT from the opportunistic pathogen Toxoplasma gondii represents a promising target for rational drug design, because it can create intracellular, lethal nucleotides from subversive substrates. However, the development of such compounds requires a detailed understanding of the catalytic mechanism. Toward this end we determined the crystal structure of the T. gondii UPRT bound to uracil and cPRPP, a nonhydrolyzable PRPP analogue, to 2.5-A resolution. The structure suggests that the catalytic mechanism is substrate-assisted, and a tetramer would be the more active oligomeric form of the enzyme. Subsequent biochemical studies revealed that GTP binding, which has been suggested to play a role in catalysis by other UPRTs, causes a 6-fold activation of the T. gondii enzyme and strikingly stabilizes the tetramer form. The basis for stabilization was revealed in the 2.45-A resolution structure of the UPRT-GTP complex, whereby residues from three subunits contributed to GTP binding. Thus, our studies reveal an allosteric mechanism involving nucleotide stabilization of a more active, higher order oligomer. Such regulation of UPRT could play a role in the balance of purine and pyrimidine nucleotide pools in the cell.  相似文献   

17.
In describing the DNA double helix, Watson and Crick suggested that “spontaneous mutation may be due to a base occasionally occurring in one of its less likely tautomeric forms.” Indeed, among many mispairing possibilities, either tautomerization or ionization of bases might allow a DNA polymerase to insert a mismatch with correct Watson–Crick geometry. However, despite substantial progress in understanding the structural basis of error prevention during polymerization, no DNA polymerase has yet been shown to form a natural base–base mismatch with Watson–Crick-like geometry. Here we provide such evidence, in the form of a crystal structure of a human DNA polymerase λ variant poised to misinsert dGTP opposite a template T. All atoms needed for catalysis are present at the active site and in positions that overlay with those for a correct base pair. The mismatch has Watson–Crick geometry consistent with a tautomeric or ionized base pair, with the pH dependence of misinsertion consistent with the latter. The results support the original idea that a base substitution can originate from a mismatch having Watson–Crick geometry, and they suggest a common catalytic mechanism for inserting a correct and an incorrect nucleotide. A second structure indicates that after misinsertion, the now primer-terminal G•T mismatch is also poised for catalysis but in the wobble conformation seen in other studies, indicating the dynamic nature of the pathway required to create a mismatch in fully duplex DNA.  相似文献   

18.
Fluorescent biopolymer derivatives are increasingly used in biology and medicine, but their resistance to heat and UV radiation, which are sterilizing agents, is relatively unknown. In this work, chitosan (CS) modified by three different heterocyclic aromatic dyes based on benzimidazole, benzothiazole, and benzoxazole (assigned as IBm, BTh, and BOx) has been studied. The thermal properties of these CS derivatives have been determined using the Thermogravimetric Analysis coupled with the Fourier Transform Infrared spectroscopy of volatile degradation products. The influence of UV radiation on the thermal resistance of modified, fluorescent chitosan samples was also investigated. Based on the temperature onset as well as the decomposition temperatures at a maximal rate, IBm was found to be more thermally stable than BOx and BTh. However, this dye gave off the most volatile products (mainly water, ammonia, carbon oxides, and carbonyl/ether compounds). The substitution of dyes for chitosan changes its thermal stability slightly. Characteristic decomposition temperatures in modified CS vary by a few degrees (<10 °C) from the virgin sample. Considering the temperatures of the main decomposition stage, CS-BOx turned out to be the most stable. The UV irradiation of chitosan derivatives leads to minor changes in the thermal parameters and a decrease in the number of volatile degradation products. It was concluded that the obtained CS derivatives are characterized by good resistance to heat and UV irradiation, which extends the possibilities of using these innovative materials.  相似文献   

19.
Nearly all chemical processes fractionate 17O and 18O in a mass-dependent way relative to 16O, a major exception being the formation of ozone from diatomic oxygen in the presence of UV radiation or electrical discharge. Investigation of oxygen three-isotope behavior during thermal decomposition of naturally occurring carbonates of calcium and magnesium in vacuo has revealed that, surprisingly, anomalous isotopic compositions are also generated during this process. High-precision measurements of the attendant three-isotope fractionation line, and consequently the magnitude of the isotopic anomaly (delta17O), demonstrate that the slope of the line is independent of the nature of the carbonate but is controlled by empirical factors relating to the decomposition procedure. For a slope identical to that describing terrestrial silicates and waters (0.5247 +/- 0.0007 at the 95% confidence level), solid oxides formed during carbonate pyrolysis fit a parallel line offset by -0.241 +/- 0.042 per thousand. The corresponding CO2 is characterized by a positive offset of half this magnitude, confirming the mass-independent nature of the fractionation. Slow, protracted thermolysis produces a fractionation line of shallower slope (0.5198 +/- 0.0007). These findings of a 17O anomaly being generated from a solid, and solely by thermal means, provide a further challenge to current understanding of the nature of mass-independent isotopic fractionation.  相似文献   

20.
Analysis of structures and sequences of several hyperthermostable proteins from various sources reveals two major physical mechanisms of their thermostabilization. The first mechanism is "structure-based," whereby some hyperthermostable proteins are significantly more compact than their mesophilic homologues, while no particular interaction type appears to cause stabilization; rather, a sheer number of interactions is responsible for thermostability. Other hyperthermostable proteins employ an alternative, "sequence-based" mechanism of their thermal stabilization. They do not show pronounced structural differences from mesophilic homologues. Rather, a small number of apparently strong interactions is responsible for high thermal stability of these proteins. High-throughput comparative analysis of structures and complete genomes of several hyperthermophilic archaea and bacteria revealed that organisms develop diverse strategies of thermophilic adaptation by using, to a varying degree, two fundamental physical mechanisms of thermostability. The choice of a particular strategy depends on the evolutionary history of an organism. Proteins from organisms that originated in an extreme environment, such as hyperthermophilic archaea (Pyrococcus furiosus), are significantly more compact and more hydrophobic than their mesophilic counterparts. Alternatively, organisms that evolved as mesophiles but later recolonized a hot environment (Thermotoga maritima) relied in their evolutionary strategy of thermophilic adaptation on "sequence-based" mechanism of thermostability. We propose an evolutionary explanation of these differences based on physical concepts of protein designability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号