首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents results of a study on the effect of filler size in the form of 15 wt% corn stalk (CS) fibers on the mechanical and thermomechanical properties of polylactide (PLA) matrix composites. In the test, polylactidic acid (PLA) is filled with four types of length of corn stalk fibers with a diameter of 1 mm, 1.6 mm, 2 mm and 4 mm. The composites were composed by single screw extrusion and then samples were prepared by injection molding. The mechanical properties of the composites were determined by static tensile test, static bending test and Charpy impact test while the thermo-mechanical properties were determined by dynamic mechanical thermal analysis (DMTA). The composite structures were also observed using X-ray microcomputed tomography and scanning electron microscopy. In the PLA/CS composites, as the filler fiber diameter increased, the degradation of mechanical properties relative to the matrix was observed including tensile strength (decrease 22.9–51.1%), bending strength (decrease 18.9–36.6%) and impact energy absorption (decrease 58.8–69.8%). On the basis of 3D images of the composite structures for the filler particles larger than 2 mm a weak dispersion with the filler was observed, which is reflected in a significant deterioration of the mechanical and thermomechanical properties of the composite. The best mechanical and thermomechanical properties were found in the composite with filler fiber of 1 mm diameter. Processing resulted in a more than 6-fold decrease in filler fiber length from 719 ± 190 µm, 893 ± 291 µm, 1073 ± 219 µm, and 1698 ± 636 µm for CS1, CS1.6, CS2, and CS4 fractions, respectively, to 104 ± 43 µm, 123 ± 60 µm, 173 ± 60 µm, and 227 ± 89 µm. The fabricated green composites with 1 to 2 mm corn stalk fiber filler are an alternative to traditional plastic based materials in some applications.  相似文献   

2.
Laser sources emitting in the infrared range at around 2 µm are attracting great interest for a variety of applications like processing of transparent thermoplastic polymers in industry as well as plenty of applications in medicine, spectroscopy, gas sensing, nonlinear frequency conversion to the mid-infrared, to mention a few. Of late, fiber lasers compared to other kinds of lasers benefit from their all-fiber design, leading to a compact, robust, and well thermally manageable device. Particularly, thulium- and holmium-doped fiber lasers are the first choice in fiber lasers emitting light around 2 µm. In this paper, we give an overview of our recent results in the research on thulium- and holmium-doped optical fibers, fiber lasers, and related research topics in the 2-µm spectral range. In particular, we present, to our knowledge, the first results of improvement of pump absorption in double-clad fibers thanks to the fiber twist frozen during drawing. Finally, a brief demonstration of material processing by thulium all-fiber laser operating at 2 µm is presented.  相似文献   

3.
A novel cyclic olefin copolymer (COC)-based polymer optical fiber (POF) with a rectangular porous core is designed for terahertz (THz) sensing by the finite element method. The numerical simulations showed an ultrahigh relative sensitivity of 89.73% of the x-polarization mode at a frequency of 1.2 THz and under optimum design conditions. In addition to this, they showed an ultralow confinement loss of 2.18 × 10−12 cm−1, a high birefringence of 1.91 × 10−3, a numerical aperture of 0.33, and an effective mode area of 1.65 × 105 μm2 was obtained for optimum design conditions. Moreover, the range dispersion variation was within 0.7 ± 0.41 ps/THz/cm, with the frequency range of 1.0–1.4 THz. Compared with the traditional sensor, the late-model sensor will have application value in THz sensing and communication.  相似文献   

4.
In this paper, a Fabry–Pérot interference fiber sensor was fabricated by using a Polyvinyl chloride membrane (20 μm in thickness) attached at the end of a ferrule with an inner diameter of 1.1 mm. In consideration of the vibration response of the membrane, the feature of the first-order natural frequency of membrane was analyzed by COMSOL Multiphysics. The acoustic sensing performance of the Fabry–Pérot fiber interference sensor was studied in air. The results reveal that the sensor possessed good acoustic pressure sensitivity, in the order of 33.26 mV/Pa. In addition, the noise-limited minimum detectable pressure level was determined to be 58.9 μPa/Hz1/2 and the pressure-induced deflection obtained was 105 nm/Pa at the frequency of 1 kHz. The response of the sensor was approximately consistent with the reference sensor from 1 to 7 kHz. All these results support that the fabricated Fabry–Pérot fiber interference sensor may be applied for ultra-sensitive pressure sensing applications.  相似文献   

5.
Poor formability in hot-rolled strips may be attributed to the many pearlite-banded structures (PBSs) that develop in steel during the hot-rolling process. The challenge of manufacturing strips with minimum PBSs is that multiple factors influence the amount and distribution of the PBSs. This study used the Taguchi method to find the optimum hot-rolling parameters to obtain strips with a reduced number of PBSs. The strips were then subjected to bending tests to evaluate their ductility. The first part analyzes the contribution of selected parameters to the hot-rolling process: (1) finishing rolling temperature, (2) finishing rolling speed, (3) coiling temperature, and (4) coiling speed. The second part confirms, using bending tests, the influence of the finishing rolling temperatures 780, 800, 820, 840, 860, 870, and 880 °C on the formability of an A36 hot-rolled strip. Based on the experimental protocol for the study, the optimal process parameters were determined to be the finishing rolling speed (0.80 m/s), finishing rolling temperature (870 °C), coiling speed (2.80 m/s), and coiling temperature (650 °C). When the A36 strip was prepared at the optimum parameters, the average length and thickness of the PBS were 108.61 ± 0.11 μm and 10.18 ± 0.12 μm, respectively. According to the Taguchi analysis, the finishing rolling temperature had the most significant influence on the dimensions of the PBS. In tests where the hot-rolled A36 strip was bent to 90° and 180°, at the finishing rolling temperatures of 870 °C and 880 °C, no cracking was observed at the R angle.  相似文献   

6.
Carbon-fiber-reinforced plastic materials have attracted several applications, including the fused deposition modelling (FDM) process. As a cheaper and more environmentally friendly alternative to its virgin counterpart, the use of milled recycled carbon fiber (rCF) has received much attention. The quality of the feed filament is important to avoid filament breakage and clogged nozzles during the FDM printing process. However, information about the effect of material parameters on the mechanical and physical properties of short rCF-reinforced FDM filament is still limited. This paper presents the effect of fiber loading (10 wt%, 20 wt%, and 30 wt%) and fiber size (63 µm, 75 µm, and 150 µm) on the filament’s tensile properties, surface roughness, microstructure, porosity level, density, and water absorptivity. The results show that the addition of 63 µm fibers at 10 wt% loading can enhance filament tensile properties with minimal surface roughness and porosity level. The addition of rCF increased the density and reduced the material’s water intake. This study also indicates a clear trade-off between the optimized properties. Hence, it is recommended that the optimization of rCF should consider the final application of the product. The findings of this study provide a new manufacturing strategy in utilizing milled rCF in potential 3D printing-based applications.  相似文献   

7.
The optical gain spectrum has been investigated theoretically for various designs of active region based on InAs/GaInSb quantum wells—i.e., a type II material system employable in interband cascade lasers (ICLs) or optical amplifiers operating in the mid-infrared spectral range. The electronic properties and optical responses have been calculated using the eight-band k·p theory, including strain and external electric fields, to simulate the realistic conditions occurring in operational devices. The results show that intentionally introducing a slight nonuniformity between two subsequent stages of a cascaded device via the properly engineered modification of the type II quantum wells of the active area offers the possibility to significantly broaden the gain function. A −3 dB gain width of 1 µm can be reached in the 3–5 µm range, which is almost an order of magnitude larger than that of any previously reported ICLs. This is a property strongly demanded in many gas-sensing or free-space communication applications, and it opens a way for a new generation of devices in the mid-infrared range, such as broadly tunable single-mode lasers, mode-locked lasers for laser-based spectrometers, and optical amplifiers or superluminescent diodes which do not exist beyond 3 µm yet.  相似文献   

8.
Process parameters have a significant impact on the filament diameter of extrusion 3D printing. To precisely control filament diameter, this paper proposes a novel method based on experiments to guide process parameter design. Additionally, an extrusion 3D printing device was developed, by which the influence of crucial process parameters and rheological properties on the diameter of printed filaments could be investigated experimentally and theoretically. Furthermore, poly (l-lactide-co-ε-caprolactone) (PLCL) was used as a case study to detail the design procedure of the proposed method. The printable range of the process parameters for PLCL was acquired, and a fitting surface for the experimental data was calculated to guide the process parameter design. According to the results of the experiment, by adjusting the process parameters, PLCL filaments with five different diameters of 120, 130, 140, 150, and 160 μm can be fabricated with a 100 μm nozzle. The deviations between the actual filament diameters and the desired diameter are less than 5 μm, which validates the reliability of the proposed method.  相似文献   

9.
The lungs are a common site of metastases from malignant tumors. Their removal with a minimal but safe tissue margin is essential for the long-term survival of patients. The aim of this study was to evaluate the usefulness of a 1940 nm thulium-doped fiber laser (TDFL) and a 1470 nm diode laser (DL) in a pig model of lung surgery that involved the incision and excision of lung tissue. Histopathological analysis was performed on days 0 and 7 after surgery. Neither TDFL nor DL caused significant perioperative or postoperative bleeding. Histological analysis revealed the presence of carbonized necrotic tissue, mixed fibrin–cellular exudate in the superficial zone of thermal damage and bands of deeper thermal changes. The mean total width of thermal damage on day 0 was 499.46 ± 61.44 and 937.39 ± 109.65 µm for TDFL and DL, respectively. On day 7, cell activation and repair processes were visible. The total width of thermal damage was 2615.74 ± 487.17 µm for TDFL vs. 6500.34 ±1118.02 µm for DL. The superficial zone of thermal damage was narrower for TDFL on both days 0 and 7. The results confirm the effectiveness of both types of laser in cutting and providing hemostasis in the lungs. TDFL caused less thermal damage to the lung parenchyma than DL.  相似文献   

10.

Background

Left ventricular remodeling (LVR) after AMI characterizes a factor of poor prognosis. There is little information in the literature on the LVR analyzed with three-dimensional echocardiography (3D ECHO).

Objective

To analyze, with 3D ECHO, the geometric and volumetric modifications of the left ventricle (VE) six months after AMI in patients subjected to percutaneous primary treatment.

Methods

Prospective study with 3D ECHO of 21 subjects (16 men, 56 ± 12 years-old), affected by AMI with ST segment elevation. The morphological and functional analysis (LV) with 3D ECHO (volumes, LVEF, 3D sphericity index) was carried out up to seven days and six months after the AMI. The LVR was considered for increase > 15% of the end diastolic volume of the LV (LVEDV) six months after the AMI, compared to the LVEDV up to seven days from the event.

Results

Eight (38%) patients have presented LVR. Echocardiographic measurements (n = 21 patients): I- up to seven days after the AMI: 1- LVEDV: 92.3 ± 22.3 mL; 2- LVEF: 0.51 ± 0.01; 3- sphericity index: 0.38 ± 0.05; II- after six months: 1- LVEDV: 107.3 ± 26.8 mL; 2- LVEF: 0.59 ± 0.01; 3- sphericity index: 0.31 ± 0.05. Correlation coefficient (r) between the sphericity index up to seven days after the AMI and the LVEDV at six months (n = 8) after the AMI: r: 0.74, p = 0.0007; (r) between the sphericity index six months after the AMI and the LVEDV at six months after the AMI: r: 0.85, p < 0.0001.

Conclusion

In this series, LVR has been observed in 38% of the patients six months after the AMI. The three-dimensional sphericity index has been associated to the occurrence of LVR.  相似文献   

11.
Flow-rutting is the main distress leading asphalt pavement to undergo premature maintenance, and is produced by the rapid accumulation of shear deformation in asphalt layers under high temperature and heavy loads. The excessive permanent deformation of the asphalt mixture at high temperature is related to the decrease of the material’s stability during the temperature increase and an unfavorable stress state, e.g., low confining pressure and high shear stress, which eventually leads to significant nonlinear viscoplastic behavior. In this research, dynamic modulus tests and repeated loading tests were carried out at 35 °C and 50 °C to analyze the deformation response of materials under a strain amplitude of <200 με and 400~500 μεs, respectively. Based on the in-lab repeated loading tests, the total deformation of the asphalt mixture in each loading and rest cycle was divided into three parts, being elastic, viscoelastic, and viscoplastic strain, and the measurement of the axial and lateral strain of cylindrical samples was realized with the aid of optical fiber Bragg grating strain sensors. It was found that the experimental index of the ratio between lateral strain and longitudinal strain (RLSLS), derived, but distinguished, from Poisson’s ratio defined limited in elastic strain, can characterize the deformation in viscoelastic and viscoplastic behaviors of the mixes. Furthermore, the indices of dynamic modulus, phase angle, complex Poisson’s ratio, stiffness, and creep rate of four types of mixes containing different volcanic ash fillers and asphalt binders at 35 °C and 50 °C were systematically analyzed by the jointed experiments of modified dynamic modulus tests and repeated loading tests, and their consistent trending to the RLSLS index was obtained.  相似文献   

12.
In this paper, the application of a fiber Bragg grating written in a highly birefringent side-hole elliptical core optical fiber for two-axial strain measurement is presented. Hybrid optical fiber structures achieved by combining large side-holes and elliptical core result in a very high birefringence of 1 × 103 and thus high initial Bragg peak spectral separation of 1.16 nm, as well as a very high transverse force sensitivity, of up to 650 pm/(N/mm) or even −1150 pm/(N/mm), depending on the fiber orientation with respect to the applied force. Due to the ~22 %m/m GeO2 concentration in the core the fiber being highly photosensitive, which significantly simplifies FBG fabrication by UV illumination without the need for prior hydrogen loading, which worsens thermal stability. Finally, the developed FBGs written in the highly birefringent side-hole elliptical core optical fiber were embedded in the square composite plates and applied for strain measurements. Tests of two-directional four-point bending have shown usability of such FBG for two-axial in-plane strain measurement with a single FBG in iso-thermal conditions.  相似文献   

13.
The amount of photopolymer material consumed during the three-dimensional (3D) printing of a dental model varies with the volume and internal structure of the modeling data. This study analyzed how the internal structure and the presence of a cross-arch plate influence the accuracy of a 3D printed dental model. The model was designed with a U-shaped arch and the palate removed (Group U) or a cross-arch plate attached to the palate area (Group P), and the internal structure was divided into five types. The trueness and precision were analyzed for accuracy comparisons of the 3D printed models. Two-way ANOVA of the trueness revealed that the accuracy was 135.2 ± 26.3 µm (mean ± SD) in Group U and 85.6 ± 13.1 µm in Group P. Regarding the internal structure, the accuracy was 143.1 ± 46.8 µm in the 1.5 mm-thick shell group, which improved to 111.1 ± 31.9 µm and 106.7 ± 26.3 µm in the roughly filled and fully filled models, respectively. The precision was 70.3 ± 19.1 µm in Group U and 65.0 ± 8.8 µm in Group P. The results of this study suggest that a cross-arch plate is necessary for the accurate production of a model using 3D printing regardless of its internal structure. In Group U, the error during the printing process was higher for the hollowed models.  相似文献   

14.
This study characterized properties of Ti-6Al-4V ELI (extra low interstitial, ASTM grade 23) specimens fabricated by a laser beam melting (LBM) and an electron beam melting (EBM) system for dental applications. Titanium alloy specimens were made into required size and shape for each standard test using fabrication methods. The LBM specimens were made by an LBM machine utilizing 20 µm of Ti-6Al-4V ELI powder. Ti-6Al-4V ELI specimens were also fabricated by an EBM using 40 µm of Ti-6Al-4V ELI powder (average diameter, 40 µm: Arcam AB®) in a vacuum. As a control, cast Ti-6Al-4V ELI specimens (Cast) were made using a centrifugal casting machine in an MgO-based mold. Also, a wrought form of Ti-6Al-4V ELI (Wrought) was used as a control. The mechanical properties, corrosion properties and grindability (wear properties) were evaluated and data was analyzed using ANOVA and a non-parametric method (α = 0.05). The strength of the LBM and wrought specimens were similar, whereas the EBM specimens were slightly lower than those two specimens. The hardness of both the LBM and EBM specimens was similar and slightly higher than that of the cast and wrought alloys. For the higher grindability speed at 1,250 m/min, the volume loss of Ti64 LBM and EBM showed no significant differences among all the fabrication methods. LBM and EBM exhibited favorable results in fabricating dental appliances with excellent properties as found for specimens made by other fabricating methods.  相似文献   

15.
The online preparation of fibers using molten modified blast furnace slag can not only achieve the high-value-added utilization of the slag but can also make use of the sensible heat of the slag. In this paper, blast furnace slag was modified using iron tailings, and was then used to prepare slag fiber online; the effects of the acidity coefficient on the properties of the molten modified blast furnace slag and modified blast furnace slag fiber were investigated. With an increase in the acidity coefficient from 1.2 to 1.6, the temperature range of the slag melt, with viscosity in the 1–3 Pa·s range, increased from 101.2 °C to 119.9 °C. The melting temperature increased from 1326.2 °C to 1388.7 °C, and the suitable fiber-forming temperature range increased from 70.7 °C to 82.9 °C. With the increasing acidity coefficient, the crystallization temperature of the molten modified slag decreased markedly. When the acidity coefficient was greater than 1.4, the slag system was still in a disordered glassy phase at 1100 °C. The hardening speed gradually reduced with the increasing acidity coefficient when the modified slag was cooled at the critical cooling rate, resulting in a gradual increase in fiber formability. The fibers prepared from the modified slag at different acidity coefficients had smooth surfaces, and were arranged in a crossed manner at the macroscopic level. Their color was white, and small quantities of slag balls were doped inside the fibers. With an increase in the acidity coefficient from 1.2 to 1.6, the average fiber diameter increased from 4.2 μm to 8.2 μm, and their slag ball content increased from 0.73% to 4.49%. Overall, the acidity coefficient of modified blast furnace slag should be less than 1.5 in actual production.  相似文献   

16.
In the fabric industry, textile yarns are the fundamental building blocks. Hence, visualizing and studying yarn structure is essential to understand the structure and behavior of the fibers. Obtaining the yarn’s cross-section images is crucial in the calculations of yarn’s porosity; furthermore, a more precise expansion for the fiber’s migration can be concluded from the cross-sectional images. In this paper, three different methods (microtome, micro-computed tomography, and epoxy grinding–polishing methods) to image and visualize the yarn’s cross-section are presented. The experimental techniques are compared in terms of result useability, time of preparation, and overall outcome of the cross-sectional image. The images can be used for fiber distribution, air gap calculation, and twist analysis as well. The fiber diameter distribution of polyester yarn was measured based on the images obtained by the three different methods; the average fiber diameter measured based on the combined data from the three different methods was found to be 10.90 ± 0.30 µm.  相似文献   

17.
Pressure sensors based on diamond membranes were designed and tested for gas pressure measurement up to 6.8 MPa. The diamond film (2” diameter, 6 μm thickness)—grown by microwave plasma chemical vapor deposition on a silicon substrate—was a starting material to produce an array of membranes with different diameters in the 130–400 μm range, in order to optimize the sensor performance. Each 5 mm × 5 mm sensing element was obtained by subsequent silicon slicing. The fixed film thickness, full-scale pressure range, and sensor sensitivity were established by a proper design of the diameter of diamond membrane which represents the sensing element for differential pressure measurement. The pressure-induced deflection of the membrane was optically measured using a Fabry-Pérot interferometer formed by a single mode optical fiber front surface and the deflecting diamond film surface. The optical response of the system was numerically simulated using geometry and the elastic properties of the diamond diaphragm, and was compared with the experiments. Depending on the diamond membrane’s diameter, the fabricated sensors displayed a good modulation depth of response over different full-scale ranges, from 3 to 300 bar. In view of the excellent mechanical, thermal, and chemical properties of diamond, such pressure sensors could be useful for performance in a harsh environment.  相似文献   

18.
Extrusion-based ceramic printing is fast and convenient, but the green body strength is too low, and the application prospect is not high. An extrusion-based printing method of alumina ceramics toughened by short carbon fiber is reported in this paper. The bending strength and fracture toughness of 3D-printed alumina ceramics were improved by adding short carbon fiber. The toughening effects of four carbon fiber lengths (100 μm, 300 μm, 700 μm, and 1000 μm) and six carbon fiber contents (1, 2, 3, 4, 5, and 6 wt%) on ceramics were compared. The experimental results show that when the length of carbon fiber is 700 μm, and carbon fiber is 5 wt%, the toughening effect of fiber is the best, and the uniform distribution of fiber is an effective toughening method. Its bending strength reaches 33.426 ± 1.027 MPa, and its fracture toughness reaches 4.53 ± 0.46 MPa·m1/2. Compared with extrusion-based printed alumina ceramics without fiber, the bending strength and fracture toughness increase by 55.38% and 47.56%, respectively.  相似文献   

19.
After being adequately captured and concentrated, solar radiation can be conducted by optical fiber bundles/cables and directly used for illumination (lighting) or heating of confined spaces, or indirectly used by converting it in other forms of energy (e.g., for producing electricity). This article reports preliminary tests conducted on a 7-m-long optical fiber bundle/cable with an effective aperture circular area of 14 mm in diameter, specially designed and manufactured by a leading company to transmit up to 1000 Wth of unfiltered concentrated sunlight. The cable was tested in the typical receiver position at the top of a solar concentration central tower. The main purpose was the experimental determination of the transmission efficiency of the cable in function of the incidence angle using selected groups of heliostats belonging to the heliostat field. The testing methodology proved to be capable of evaluating the performance of the cable. The cable withstood the tests without revealing any type of damage. The results obtained showed that the transmissivity of the cable is higher than 50% when the incidence angle of the solar radiation is lower than 14.7°, increasing sharply to circa 95% when the incidence angle is lower than 4.5°.  相似文献   

20.
This research objective is to optimize the surface roughness of Nylon-6 (PA-6) and Acrylonitrile Butadiene Styrene (ABS) by analyzing the parametric effects of the Fused Filament Fabrication (FFF) technique of Three-Dimensional Printing (3DP) parameters. This article discusses how to optimize the surface roughness using Taguchi analysis by the S/N ratio, ANOVA, and modeling methods. The effects of ABS parameters (initial line thickness, raster width, bed temperature, build pattern, extrusion temperature, print speed, and layer thickness) and PA-6 parameters (layer thickness, print speed, extrusion temperature, and build pattern) were investigated with the average surface roughness (Ra) and root-mean-square average surface roughness (Rq) as response parameters. Validation tests revealed that Ra and Rq decreased significantly. After the optimization, the Ra-ABS and Rq-PA-6 for the fabricated optimized values were 1.75 µm and 21.37 µm, respectively. Taguchi optimization of Ra-ABS, Rq-ABS, Ra-PA-6, and Rq-PA-6 was performed to make one step forward to use them in further research and prototypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号