首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
This research study analysed the effect of adding fine—fMRA (0.25% and 50%)—and coarse—cMRA (0%, 25% and 50%)—mixed recycled aggregate both individually and simultaneously in the development of sustainable recycled concretes that require a lower consumption of natural resources. For this purpose, we first conducted a physical and mechanical characterisation of the new recycled raw materials and then analysed the effect of its addition on fresh and hardened new concretes. The results highlight that the addition of fMRA and/or cMRA does not cause a loss of workability in the new concrete but does increase the amount of entrained air. Regarding compressive strength, we observed that fMRA and/or cMRA cause a maximum increase of +12.4% compared with conventional concrete. Tensile strength increases with the addition of fMRA (between 8.7% and 5.5%) and decreases with the use of either cMRA or fMRA + cMRA (between 4.6% and 7%). The addition of fMRA mitigates the adverse effect that using cMRA has on tensile strength. Regarding watertightness, all designed concretes have a structure that is impermeable to water. Lastly, the results show the feasibility of using these concretes to design elements with a characteristic strength of 25 MPa and that the optimal percentage of fMRA replacement is 25%.  相似文献   

2.
Ecological problems such as natural resource depletion and massive quantities of waste for disposal are now guiding progressive civilization towards sustainable construction. The reduction of natural resources and the discarding of debris into open landfills are the two main environmental concerns. As a result, managing these solid wastes is a major challenge worldwide. In comparison to disposal, insufficient landfills, ecological degradation and the economic load on the relevant agencies, recycling and reusing waste materials have a considerable influence. Waste fiber has been studied for use as a cement-based composite (CBC) ingredient. Recycling waste fibers not only makes the cement composite more cost-effective and long-lasting but also helps to reduce pollution. Plastics, carpets and steels are among the various types of waste fibers reviewed in this study for their applications in cement-based materials. The mechanical properties of CBCs with different kinds of recycled-waste fibers were explored, including their compressive, flexural and splitting tensile strength and durability properties. The use of recycled fibers in the construction industry can help to ensure sustainability from environmental, economic and social standpoints. As a result, additional scientific research is needed, as well as guidance for more researchers and experts in the construction sector to examine the unknown sustainability paths. The barriers to the effective implementation of waste fiber recycling techniques in the construction sector were reviewed, and various solutions were proposed to stimulate and ensure their use in CBCs. It was concluded that CBCs containing recycled fibers provide a long-term and cost-effective alternative for dealing with waste materials.  相似文献   

3.
Currently, millions of tons of textile waste from the garment and textile industries are generated worldwide each year. As a promising option in terms of sustainability, textile waste fibers could be used as internal reinforcement of cement-based composites by enhancing ductility and decreasing crack propagation. To this end, two extensive experimental programs were carried out, involving the use of either fractions of short random fibers at 6–10% by weight or nonwoven fabrics in 3–7 laminate layers in the textile waste-reinforcement of cement, and the mechanical and durability properties of the resulting composites were characterized. Flexural resistance in pre- and post-crack, toughness, and stiffness of the resulting composites were assessed in addition to unrestrained drying shrinkage testing. The results obtained from those programs were analyzed and compared to identify the optimal composite and potential applications. Based on the results of experimental analysis, the feasibility of using this textile waste composite as a potential construction material in nonstructural concrete structures such as facade cladding, raised floors, and pavements was confirmed. The optimal composite was proven to be the one reinforced with six layers of nonwoven fabric, with a flexural strength of 15.5 MPa and a toughness of 9.7 kJ/m2.  相似文献   

4.
Recycled powder (RP) is a by-product of preparing recycled aggregates from construction waste through debris removal, step-by-step crushing, screening, and mechanical strengthening. It is a fine powder with a particle size of less than 75 μm. Reasonable use of RP can increase the utilization rate of construction waste and reduce dust pollution. This study introduces the current research status of RP. It describes the source of RP; the activation mode of activity; the effect on several aspects, such as early performance and mechanical properties of cement-based materials; and its mechanism of action in light of the research and development. Moreover, the linear regression analysis method was used to obtain the mathematical model between the content of RP and the performance of cement-based materials. The correlation degree between the content of RP and the performance of cement-based materials was obtained based on the gray relation analysis method. It was concluded that the change of the content of RP had the most significant influence on the compressive strength of foamed concrete over 28 d. Finally, some feasible suggestions and prospects for RP are provided.  相似文献   

5.
The objective of this paper is to provide a comprehensive study about the performance of concrete using mixed coarse recycled aggregate (MCRA) as an alternative for natural aggregate (NA) at replacement levels of 0, 30, 60, and 100%, which can greatly reduce the environmental pollution by incorporating the construction and demolition wastes in the reproduction of concrete. The focus of this study was to use the raw MCRA that was directly obtained from a recycling plant and not further processed. Initially, MCRA was studied to ascertain if its property meets the recommended Indian standards for natural aggregates. Using the slump test, the workability of freshly prepared concrete with a characteristic strength of 30 MPa was assessed. Additionally, the mechanical performance of concrete was assessed on the specimens prepared in the different forms: cubes, cylinders, and beams. Moreover, Scanning Electron Microscopy (SEM) with EDAX, XRD, and FTIR were used to study the microstructural behavior of selected optimum and control mixes at 7 and 28 days of curing. The studies revealed that a higher MCRA content improved the workability of concrete and 30% replacement of MCRA improved the compressive strength by 11.01, 6.98, 6.19, and 14.24% at 7, 28, 56, and 90 days respectively. At the same time, the 30% replacement of the MCRA mix showed an improved split tensile and flexural strength by 2.92 and 6.26%, respectively. The microstructural analysis showed that the optimum mixture had a more condensed microstructure. Therefore, 30% replacement of MCRA can be incorporated in the characteristic strength of concrete of 30 MPa. In particular, MCRA incorporation had a positive influence similar to conventional concrete on the physical, mechanical, and microstructural properties, which can increase the utilization of all kinds of directly obtained construction and demolition wastes to increase the circular economy in the construction sector.  相似文献   

6.
The objective of this study was to analyze the physico-mechanical properties of gypsum boards including plastic waste aggregates from cable recycling. The plastic cable waste is incorporated into the gypsum matrix without going through any type of selection and/or treatment, as it is obtained after the cable recycling process. In the experimental process, gypsum boards of different dimensions were manufactured and tested for their Young’s modulus, shock-impact resistance, flexural strength, thermal conductivity, and thermal comfort. The results obtained show a significant increase in the elasticity of the boards with plastic waste (limited cracking), compliance with the minimum value of flexural strength, and a slight improvement in the thermal conductivity coefficient (lower energy demand) and surface comfort (reduced condensation and greater adherence). Therefore, the analyzed material could provide a suitable alternative to currently marketed gypsum boards, contributing to sustainable construction not only in new constructions, but also in building renovations.  相似文献   

7.
Mixed recycled aggregate (MRA) is a kind of recycled aggregate containing discarded bricks and other impurities that is inferior to ordinary recycled concrete aggregate. To study the effect of MRA in concrete, specimens with 100% MRA under different water–cement ratios (W/C) of 0.50, 0.42, 0.36 and 0.30 were prepared, and the mechanical properties and microstructure were tested. Results show that compared with ordinary concrete, the compressive strength of mixed recycled aggregate concrete (MRAC) with the same W/C was reduced by more than 50% at 28 days, but the axial compression ratio was relatively high, reaching over 0.87. Affected by the high water absorption of MRA, the hydration rate of cement slowed, which was beneficial to the long-term development of the properties of MRAC. An appropriate increase in cement content could strengthen MRA and densify the pore structure of MRAC. The research results of this article prove that MRA has high utilization value and could be used to prepare MRAC with application potential using optimal gradation, which is of positive significance for promoting the consumption of construction waste.  相似文献   

8.
In the 21st century, a great percentage of the plastic industry production is associated with both injection molding and extrusion processes. Manufactured plastic components/parts are used in several industry sectors, where the automotive and aeronautic stand out. In the injection process cycle, the cooling step represents 60% to 80% of the total injection process time, and it is used to estimate the production capabilities and costs. Therefore, efforts have been focused on obtaining more efficient cooling systems, seeking the best relationship between the shape, the quantity, and the distribution of the cooling channels into the injection molds. Concomitantly, the surface coating of the mold cavity also assumes great importance as it can provide increased hardness and a more straightforward demolding process. These aspects contribute to the decrease of rejected parts due to surface defects. However, the effect of the coated cavity on the heat transfer and, consequently, on the time of the injection cycle is not often addressed. This paper reviews the effects of the materials and surface coatings of molds cavity on the filling and cooling of the injection molding cycle. It shows how the design of cooling channels affects the cooling rates and warpage for molded parts. It also addresses how the surface coating influence the mold filling patterns and mold cooling. This review shows, more specifically, the influence of the coating process on the cooling step of the injection cycle and, consequently, in the productivity of the process.  相似文献   

9.
This study investigated vertical strain and stress through a dynamic load experiment at the testing area of Ke-Da Road, Pingtung, Taiwan. A thirty-five-ton truck was moved at constant speeds of 40, 60, and 80 km/h to simulate heavy load conditions to study the mechanical variations. From the results, it was found that the strain and stress curves of the permeable road pavement showed asymmetry due to the viscoelastic property of the open-grade friction course. The results showed that vertical strains and vertical stresses of permeable road pavement were greatly affected by the axle configuration and the change in traffic speed. Furthermore, to propose the design thickness of a permeable road pavement, the pavement strain and stress were modelled with respect to depth using regression based on these collected data. According to the stress regression models and considering the construction uncertainty, the recommend design depth of a permeable pavement is 30 cm. The findings of this study would be helpful in determining the permeable road pavement depth when subjected to heavy traffic load, and the material combination of open-graded friction concrete, porous asphalt concrete, and permeable cement concrete was proposed in this study during the design period.  相似文献   

10.
The objective of this research was to study the effect of an optimal mechanical treatment method to reduce the mortar adhered on recycled aggregates (RCA) on the long-term mechanical properties and durability of concretes containing RCA at different replacement levels. It was found that concretes incorporating treated RCA exhibited sharper and more significant increase on 90- and 365-day compressive strengths than any other investigated mixture. The same mixtures also benefitted from a ‘shrinkage-controlling’ effect, where strains and mass losses were reduced by almost 15% and 10%, respectively, compared to the reference concrete. While sulfate resistance and carbonation resistance are predominantly defined by the hydration products available within the cement paste and not to a large extent by the aggregate type and quality, the incorporation of either treated or untreated RCA in concrete did not appear to expose RACs to significant durability threats.  相似文献   

11.
Poor mechanical properties and durability of recycled aggregate concrete (RAC) hinder its application in the construction field. In this study, pre-wetted recycled coarse aggregate was used as the internal curing material for prepared RAC with low water-to-binder ratio (W/B), aiming to improve the mechanical properties and durability. The results show that the workability decreases with increasing contents of pre-wetted recycled coarse aggregate. The variation in compressive strength of RAC with different contents of pre-wetted recycled coarse aggregate is obvious within 28 d. After 28 d, the effect of internal curing of pre-wetted recycled coarse aggregate starts to occur, causing a sustained increase in compressive strength. The sealed concrete with 50% and 75% pre-wetted recycled coarse aggregate contents presents the highest compressive strength and better internal curing effect. The pre-wetted recycled coarse aggregate decreases the relative humidity inside the concrete and effectively inhibits the development of shrinkage in the early stages. The RAC with pre-wetted recycled coarse aggregate presents little effect on the drying shrinkage. Additionally, the electric flux of RAC cured for 28 d increases from 561C to 1001C, which presents good resistance to chloride permeation. Microscopic tests indicate that the incorporation of pre-wetted recycled coarse aggregate is beneficial to the improvements of internal structure of RAC.  相似文献   

12.
The safe disposal of an enormous amount of waste glass (WG) in several countries has become a severe environmental issue. In contrast, concrete production consumes a large amount of natural resources and contributes to environmental greenhouse gas emissions. It is widely known that many kinds of waste may be utilized rather than raw materials in the field of construction materials. However, for the wide use of waste in building construction, it is necessary to ensure that the characteristics of the resulting building materials are appropriate. Recycled glass waste is one of the most attractive waste materials that can be used to create sustainable concrete compounds. Therefore, researchers focus on the production of concrete and cement mortar by utilizing waste glass as an aggregate or as a pozzolanic material. In this article, the literature discussing the use of recycled glass waste in concrete as a partial or complete replacement for aggregates has been reviewed by focusing on the effect of recycled glass waste on the fresh and mechanical properties of concrete.  相似文献   

13.
Most biomaterials and tissues are viscoelastic; thus, evaluating viscoelastic properties is important for numerous biomedical applications. Compressional viscoelastography is an ultrasound imaging technique used for measuring the viscoelastic properties of biomaterials and tissues. It analyzes the creep behavior of a material under an external mechanical compression. The aim of this study is to use finite element analysis to investigate how loading conditions (the distribution of the applied compressional pressure on the surface of the sample) and boundary conditions (the fixation method used to stabilize the sample) can affect the measurement accuracy of compressional viscoelastography. The results show that loading and boundary conditions in computational simulations of compressional viscoelastography can severely affect the measurement accuracy of the viscoelastic properties of materials. The measurement can only be accurate if the compressional pressure is exerted on the entire top surface of the sample, as well as if the bottom of the sample is fixed only along the vertical direction. These findings imply that, in an experimental validation study, the phantom design should take into account that the surface area of the pressure plate must be equal to or larger than that of the top surface of the sample, and the sample should be placed directly on the testing platform without any fixation (such as a sample container). The findings indicate that when applying compressional viscoelastography to real tissues in vivo, consideration should be given to the representative loading and boundary conditions. The findings of the present simulation study will provide a reference for experimental phantom designs regarding loading and boundary conditions, as well as guidance towards validating the experimental results of compressional viscoelastography.  相似文献   

14.
Separation of hydrated cement paste from aggregate is a key technology to reduce the amount of radioactive concrete waste during the decommissioning process. If separated cement-paste portions can be recycled as a solidifying agent for other radioactive waste, the amount of radioactive concrete waste could be close to “zero”. A study was conducted to achieve circular economy in the area of concrete decommissioning and found it to be successfully used as a solidifying agent for immobilization of liquid radioactive waste. However, previous work used a process that requires large amounts of energy (heat treatment was applied to most of the concrete fraction) because the objective was to completely remove hydrated cement powder from the aggregate. In this work, the separation system was modified to increase energy efficiency (heat treatment was applied to separated powder only), but such a change decreased the surface area of the recycled cement powder due to a higher inclusion of aggregate powder. A relatively lower solution to binder ratio could have been achieved for the preparation of wasteform specimens, and as a result, a 28 day compressive strength of wasteform could have become higher, but the final leachability indices were lower than the results observed from previous work. The results from 28 day compressive strength, thermal cycling and 90 day leaching experiments met the acceptance criteria for wasteform, indicating that this modified system can also be used for immobilization of liquid radioactive waste to meet the “zero” production of concrete waste during the decommissioning of a nuclear power plant. It should be noted that accurate monitoring of aggregate content in recycled cement powder during production is important to maintain proper reactivity of recycled cement powder.  相似文献   

15.
A main global challenge is finding an alternative material for cement, which is a major source of pollution to the environment because it emits greenhouse gases. Investigators play a significant role in global waste disposal by developing appropriate methods for its effective utilization. Geopolymers are one of the best options for reusing all industrial wastes containing aluminosilicate and the best alternative materials for concrete applications. Waste wood ash (WWA) is used with other waste materials in geopolymer production and is found in pulp and paper, wood-burning industrial facilities, and wood-fired plants. On the other hand, the WWA manufacturing industry necessitates the acquisition of large tracts of land in rural areas, while some industries use incinerators to burn wood waste, which contributes to air pollution, a significant environmental problem. This review paper offers a comprehensive review of the current utilization of WWA with the partial replacement with other mineral materials, such as fly ash, as a base for geopolymer concrete and mortar production. A review of the usage of waste wood ash in the construction sector is offered, and development tendencies are assessed about mechanical, durability, and microstructural characteristics. The impacts of waste wood ash as a pozzolanic base for eco-concreting usages are summarized. According to the findings, incorporating WWA into concrete is useful to sustainable progress and waste reduction as the WWA mostly behaves as a filler in filling action and moderate amounts of WWA offer a fairly higher compressive strength to concrete. A detail study on the source of WWA on concrete mineralogy and properties must be performed to fill the potential research gap.  相似文献   

16.
The European Green Deal, which emphasizes zero-waste economies, and waste recycling in construction and building materials, has arisen due to significant worldwide needs for solid waste recovery and usage. This ambitious study focuses on recycling mixed construction and demolition (C&D) waste into burnt bricks and investigating the influence of firing temperature. While pursuing its objectives, this is dependent on raw material characterization and burnt-brick product quality assessment. The recycling of mixed C&D waste is explored by mixing the waste into two soil types (alluvial and laterite) in ratios ranging from 5% to 45% at three firing temperatures (700 °C, 850 °C and 900 °C). The utilization of mixed C&D waste in amounts of 10% at 700 °C and 25% at 850 °C and 900 °C fulfilled the Indian standard. Although a fire at 700 °C results in less optimal waste utilization, it is beneficial and recommended for reducing the carbon footprint and energy use. Additional mineralogical and microstructural analyzes are performed on the optimal fired samples. The study’s findings are promising for sustainable resource usage, reducing carbon footprint, and reducing waste disposal volume. This research is a big step toward the Sustainable Development Goals of the United Nations and a circular economy.  相似文献   

17.
The amount of steel chips generated by lathes and CNC machines is 1200 million tons per year, and they are difficult to recycle. The effect of adding steel chips without pre-cleaning (covered with production lubricants and cooling oils) on the properties of concrete was investigated. Steel waste was added as a replacement for fine aggregate in the amounts of 5%, 10% and 15% of the cement weight, which correspond with 1.1%, 2.2% and 3.3% mass of all ingredients and 0.33%, 0.66% and 0.99% volume of concrete mix, respectively. The slump cone, air content, pH value, density, compressive strength, tensile strength, tensile splitting strength, elastic modulus, Poisson’s ratio and thermal parameters were tested. It was observed that with the addition of lathe waste, the density decreased, but mechanical properties increased. With the addition of 5%, 10% and 15% metal chips, compressive strength increased by 13.9%, 20.8% and 36.3% respectively compared to plain concrete; flexural strength by 7.1%, 12.7% and 18.2%; and tensile splitting strength by 4.2%, 33.2% and 38.4%. Moreover, it was determined that with addition of steel chips, thermal diffusivity was reduced and specific heat capacity increased. With the addition of 15% metal chips, thermal diffusivity was 25.2% lower than in the reference sample, while specific heat was 23.0% higher. No effect was observed on thermal conductivity.  相似文献   

18.
The paper focuses on thermal and mechanical analysis of Periodic Surface Structure (PSS). PSS is a continuous surface with a specific topology that is mathematically formulated by geometric factors. Cubic P-surface (“primitive”), D-surface (“diamond”), and G-surface (“gyroid”) structures were simulated under load and heat transport using a numerical approach. We conducted our study by solving the stress and heat equations using the Finite Element Method (FEM). We achieved results using our software module, which generates PSS and simulates stress and temperature distribution. The stress model defined by dependence between stress and strain, gained from an experiment, and correlation of strain and displacement, gained from geometric conditions, was used in numerical experiments. The influence of geometric factors on the thermal and mechanical behavior of PSS was qualitatively determined. We showed decreasing effective stress values with an increased number of cells in the cubic domain for concerned PSS. It is important, because the increase in the number of cells does not increase the structure’s volume.  相似文献   

19.
To explore the basic mechanical properties and size effects of recycled aggregate concrete (RAC) with different substitution ratios of coarse recycled concrete aggregates (CRCAs) to replace natural coarse aggregates (NCA), the failure modes and mechanical parameters of RAC under different loading conditions including compression, splitting tensile resistance and direct shear were compared and analyzed. The conclusions drawn are as follows: the failure mechanisms of concrete with different substitution ratios of CRCAs are similar; with the increase in substitution ratio, the peak compressive stress and peak tensile stress of RAC decrease gradually, the splitting limit displacement decreases, and the splitting tensile modulus slightly increases; with the increase in the concrete cube’s side length, the peak compressive stress of RAC declines gradually, but the integrity after compression is gradually improved; and the increase in the substitution ratio of the recycled aggregate reduces the impact of the size effect on the peak compressive stress of RAC. Furthermore, an influence equation of the coupling effect of the substitution ratio and size effect on the peak compressive stress of RAC was quantitatively established. The research results are of great significance for the engineering application of RAC and the strength selection of RAC structure design.  相似文献   

20.
This review aims to present and discuss the mechanical and environmental properties of two different type of recycled aggregates obtain from construction and demolition waste (CDW): (1) Recycled Concrete Aggregates (RCA) and (2) Mixed Recycled Aggregates (MRA). In addition, the properties of the concrete in the fresh (workability, water/cement ratio) and hardened state (mechanical and durability properties), as well as the environmental impact of the concrete produced with the two types of recycled aggregates, are presented and discussed. Due to the heterogeneous composition of recycled aggregates, the concrete properties can be significantly variable. The systematic review concerns scientific papers published from 2010 to 2020 and it shows the importance of the selection process in order to obtain high quality CDW as well as of the type of recycled aggregates on concrete properties. In particular, recycled concrete aggregates show a better quality and homogeneity than mixed recycled aggregates that make them more suitable for concrete. This work presents an overview on the influence of recycled aggregate quality on the physical, mechanical and environmental properties of concrete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号