首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of shape memory polymer composites is growing rapidly in smart structure applications. In this work, an active asymmetric composite called “controlled behavior composite material (CBCM)” is used as shape memory polymer composite. The programming and the corresponding initial fixity of the composite structure is obtained during a bending test, by heating CBCM above thermal glass transition temperature of the used Epoxy polymer. The shape memory properties of these composites are investigated by a bending test. Three types of recoveries are conducted, two classical recovery tests: unconstrained recovery and constrained recovery, and a new test of partial recovery under load. During recovery, high recovery displacement and force are produced that enables the composite to perform strong two-way actuations along with multi-shape memory effect. The recovery force confirms full recovery with two-way actuation even under a high load. This unique property of CBCM is characterized by the recovered mechanical work.  相似文献   

2.
Triple-shape memory epoxy (EP)/polycaprolactone (PCL) systems (PCL content: 23 wt %) with different structures (PCL nanoweb embedded in EP matrix and EP/PCL with co-continuous phase structure) were produced. To set the two temporary shapes, the glass transition temperature (Tg) of the EP and the melting temperature (Tm) of PCL served during the shape memory cycle. An attempt was made to reinforce the PCL nanoweb by graphene nanoplatelets prior to infiltrating the nanoweb with EP through vacuum assisted resin transfer molding. Morphology was analyzed by scanning electron microscopy and Raman spectrometry. Triple-shape memory characteristics were determined by dynamic mechanical analysis in tension mode. Graphene was supposed to act also as spacer between the nanofibers, improving the quality of impregnation with EP. The EP phase related shape memory properties were similar for all systems, while those belonging to PCL phase depended on the structure. Shape fixity of PCL was better without than with graphene reinforcement. The best shape memory performance was shown by the EP/PCL with co-continuous structure. Based on Raman spectrometry results, the characteristic dimension of the related co-continuous network was below 900 nm.  相似文献   

3.
A shape memory composite (SMC) was fabricated with a shape memory alloy (SMA) and a shape memory polymer (SMP), and its two-way bending deformation and recovery force were investigated. The results obtained can be summarized as follows: (1) two kinds of SMA tapes which show the shape memory effect (SME) and superelasticity (SE) were heat-treated to memorize the round shape. The shape-memorized round SMA tapes were arranged facing in the opposite directions and were sandwiched between the SMP sheets. The SMC belt can be fabricated by using the appropriate factors: the number of SMP sheets, the pressing force, the heating temperature and the hold time. (2) The two-way bending deformation with an angle of 56 degrees in the fabricated SMC belt is observed based on the SME and SE of the SMA tapes during heating and cooling. (3) If the SMC belt is heated and cooled by keeping the bent form, the recovery force increases during heating and degreases during cooling based on the two-way properties of the SMC. (4) The development and application of high-functional SMCs are expected by the combination of the SMA and the SMP with various kinds of phase transformation temperatures, volume fractions, configurations and heating-cooling rates.  相似文献   

4.
A series of novel Si–O–Si crosslinked organic/inorganic hybrid semi-crystalline polymers with shape memory properties was prepared from alkoxysilane-terminated poly(butylene succinate) (PBS) by water-induced silane crosslinking under organic solvent-free and catalyst-free conditions. The hydrolyzation and condensation of alkoxysilane end groups allowed for the generation of silica-like crosslinking points between the polymeric chains, acting not only as chemical net-points, but also as inorganic filler for a reinforcement effect. The resulting networks were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic-mechanical analysis (DMA) and tensile and shape memory tests to gain insight into the relationship between the polymeric structure, the morphology and the properties. By controlling the molecular weight of the PBS precursor, a fine tuning of the crosslinking density and the inorganic content of the resulting network was possible, leading to different thermal, mechanical and shape memory properties. Thanks to their suitable morphology consisting of crystalline domains, which represent the molecular switches between the temporary and permanent shapes, and chemical net-points, which permit the shape recovery, the synthesized materials showed good shape memory characteristics, being able to fix a significant portion of the applied strain in a temporary shape and to restore their original shape above their melting temperature.  相似文献   

5.
Developing a joining technology for 2G HTS tapes without significantly reducing their superconducting property is crucial for numerous applications (MRI, motor/generator, power transmission, etc.). In this study, low sintering temperature (~230 °C) nano-silver paste was used as solder to join two 2G HTS tapes. In addition, two heating methods, i.e., furnace heating (heat flux outside-in) and resistive Joule heating (heat flux inside-out), were studied. This study indicates that the heat flux from internal by resistive Joule heating method shows less deteriorating impact to the 2G RE-Ba-Cu-O tape (RE: rare earth element) during the sintering process with the best specific resistance of 0.074 μΩ∙cm2 and Ic retention percentage of 99% (i.e., Ic reduced from 100 A before joining to 99 A after joining). This study indicates that nano-silver paste together with resistive Joule heating can possibly be used as soldering materials to join 2G HTS tapes.  相似文献   

6.
In the present study, the shape, memory, and mechanical properties of cold-rolled and annealed Fe-17Mn-5Si-5Cr-4Ni-1Ti-0.3C (wt.%) alloy were investigated. The cold-rolled alloy was annealing heat-treated at different temperatures in the range of 500–900 °C for 30 min. The shape recovery behavior of the alloy was investigated using strip bending test followed by recovery heating. The microstructural evolution and the stress-strain response of the alloy heat-treated at different temperatures revealed that the recovery took place at a heat-treatment temperature higher than 600 °C. Recrystallization occurred when the heat-treatment temperature was higher than 800 °C. Meaningful shape recovery was observed only when the alloy was annealed at temperatures higher than 600 °C. The highest recovery strain of up to 2.56% was achieved with a pre-strain of 5.26% and recovery heating temperature of 400 °C, when the alloy was heat-treated at 700 °C. Conversely, the yield strength reduced significantly with increasing annealing heat-treatment temperature. The experimental observations presented in this paper provide a guideline for post-annealing heat-treatment when a good compromise between mechanical property and shape recovery performance is required.  相似文献   

7.
Self-healing materials have the potential to create a paradigm shift in the life cycle design of engineered structures, by changing the relation between material damage and structural failure, affecting structures’ lifetime, safety, and reliability. However, the knowledge of self-healing capabilities in metallic materials is still in its infancy compared to other material systems because of challenges in the synthesis of organized and complex structures. This paper presents a study of a metal matrix composite system that was synthesized with an off-eutectic Tin (Sn)-Bismuth (Bi) alloy matrix, reinforced with Nickel–Titanium (NiTi) shape memory alloy (SMA) wires. The ability to close cracks, recover bulk geometry, and regenerate strength upon the application of heat was investigated. NiTi wires were etched and coated in flux before being incorporated into the matrix to prevent disbonding with the matrix. Samples were subjected to large deformations in a three-point bending setup. Subsequent thermo-mechanical testing of the composites confirmed the materials’ ability to restore their geometry and recover strength, without using any consumable components. Self-healing was accomplished through a combination of activation of the shape memory effect in the NiTi to recover the samples’ original macroscopic geometry, closing cracks, and melting of the eutectic material in the matrix alloy, which resealed the cracks. Subsequent testing indicated a 92% strength recovery.  相似文献   

8.
In the last few years, we have witnessed significant progress in developing high performance shape memory polymer (SMP) nanocomposites, in particular, for shape recovery activated by indirect heating in the presence of electricity, magnetism, light, radio frequency, microwave and radiation, etc. In this paper, we critically review recent findings in Joule heating of SMP nanocomposites incorporated with nanosized conductive electromagnetic particles by means of nanoscale control via applying an electro- and/or magnetic field. A few different nanoscale design principles to form one-/two-/three- dimensional conductive networks are discussed.  相似文献   

9.
Imposing curvature on crystalline sheets, such as 2D packings of colloids or proteins, or covalently bonded graphene leads to distinct types of structural instabilities. The first type involves the proliferation of localized defects that disrupt the crystalline order without affecting the imposed shape, whereas the second type consists of elastic modes, such as wrinkles and crumples, which deform the shape and also are common in amorphous polymer sheets. Here, we propose a profound link between these types of patterns, encapsulated in a universal, compression-free stress field, which is determined solely by the macroscale confining conditions. This “stress universality” principle and a few of its immediate consequences are borne out by studying a circular crystalline patch bound to a deformable spherical substrate, in which the two distinct patterns become, respectively, radial chains of dislocations (called “scars”) and radial wrinkles. The simplicity of this set-up allows us to characterize the morphologies and evaluate the energies of both patterns, from which we construct a phase diagram that predicts a wrinkle–scar transition in confined crystalline sheets at a critical value of the substrate stiffness. The construction of a unified theoretical framework that bridges inelastic crystalline defects and elastic deformations opens unique research directions. Beyond the potential use of this concept for finding energy-optimizing packings in curved topographies, the possibility of transforming defects into shape deformations that retain the crystalline structure may be valuable for a broad range of material applications, such as manipulations of graphene’s electronic structure.  相似文献   

10.
Plates are commonly used in many engineering disciplines, including aerospace. With the continuous improvement in the capacity of high value-added airplanes, large transport aircrafts, and fighter planes that have high strength, high toughness, and corrosion resistance have gradually become the development direction of airplane plate structure production and research. The strength and stability of metal plate structures can be improved by adding reinforced materials. This paper studies graphene platelets (GPLs) reinforced with a free vibration porous composite plate. The porous plate is constructed with a multi-layer model in a metal matrix containing uniform or non-uniformly distributed open-cell internal pores. Considering the random and directional arrangement of graphene platelets in the matrix, the elastic modulus of graphene composites was estimated using the Halpin–Tsai micromechanical model, and the vibration frequencies of graphene composite were calculated using the differential quadrature method. The effects of the total number of layers, GPL distribution pattern, porosity coefficient, GPL weight fraction, and boundary conditions on the free vibration frequency of GPLs reinforced porous composite plates are studied, and the accuracy of the conclusions are verified by the finite element software.  相似文献   

11.
12.
Resistive pressure sensors are appealing due to having several advantages, such as simple reading mechanisms, simple construction, and quick dynamic response. Achieving a constantly changeable microstructure of sensing materials is critical for the flexible pressure sensor and remains a difficulty. Herein, a flexible, tunable resistive pressure sensors is developed via simple, low-cost microsphere self-assembly and graphene/carbon nanotubes (CNTs) solution drop coating. The sensor uses polystyrene (PS) microspheres to construct an interlocked dome microstructure with graphene/CNTs as a conductive filler. The results indicate that the interlocked microdome-type pressure sensor has better sensitivity than the single microdome-type and single planar-type without surface microstructure. The pressure sensor’s sensitivity can be adjusted by varying the diameter of PS microspheres. In addition, the resistance of the sensor is also tunable by adjusting the number of graphene/CNT conductive coating layers. The developed flexible pressure sensor effectively detected human finger bending, demonstrating tremendous potential in human motion monitoring.  相似文献   

13.
Lignin-based polyols were synthesized through microwave-assisted liquefaction under different microwave heating times (5–30 min). The liquefaction reactions were carried out using polyethylene glycol (PEG-400)/glycerol as liquefying solvents and 97 wt% sulfur acid as a catalyst at 140 °C. The polyols obtained were analyzed for their yield, composition and structural characteristics using gel permeation chromatography (GPC), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra. FT-IR and NMR spectra showed that the liquefying solvents reacted with the phenol hydroxyl groups of the lignin in the liquefied product. With increasing microwave heating time, the viscosity of polyols was slightly increased and their corresponding molecular weight (MW) was gradually reduced. The optimal condition at the microwave heating time (5 min) ensured a high liquefaction yield (97.47%) and polyol with a suitable hydroxyl number (8.628 mmol/g). Polyurethane (PU) foams were prepared by polyols and methylene diphenylene diisocyanate (MDI) using the one-shot method. With the isocyanate/hydroxyl group ([NCO]/[OH]) ratio increasing from 0.6 to 1.0, their mechanical properties were gradually increased. This study provided some insight into the microwave-assisted liquefied lignin polyols for the production of rigid PU foam.  相似文献   

14.
Graphene nanostructures are widely perceived as a promising material for fundamental components; their high-performance electronic properties offer the potential for the construction of graphene nanoelectronics. Numerous researchers have paid attention to the fabrication of graphene nanostructures, based on both top-down and bottom-up approaches. However, there are still some unavoidable challenges, such as smooth edges, uniform films without folds, and accurate dimension and location control. In this work, a direct writing method was reported for the in-situ preparation of a high-resolution graphene nanostructure of controllable size (the minimum feature size is about 15 nm), which combines the advantages of e-beam lithography and copper-catalyzed growth. By using the Fourier infrared absorption test, we found that the hydrogen and oxygen elements were disappearing due to knock-on displacement and the radiolysis effect. The graphene crystal is also formed via diffusion and the local heating effect between the e-beam and copper substrate, based on the Raman spectra test. This simple process for the in-situ synthesis of graphene nanostructures has many promising potential applications, including offering a way to make nanoelectrodes, NEMS cantilever resonant structures, nanophotonic devices and so on.  相似文献   

15.
The emergence of graphene-based polymer composite fibers provides a new opportunity to study the high-performance and functional chemical fibers. In this work, we have developed an efficient and convenient method with polydopamine (PDA) to functionalize and reduce graphene oxide (GO) simultaneously, and the modified graphene nanosheets can obtain uniform dispersion and strong interfacial bonding in nylon 6 (PA6). Furthermore, the reinforced PA6 composite fibers were prepared through mixing PDA-rGO into the PA6 polymer matrix and then melt spinning. The functional modification was characterized by surface analysis and structural testing including SEM, TEM, FTIR, and Raman. When the addition amount of the modified GO was 0.15 wt%, the tensile strength and Young’s modulus of the composite fiber reached 310.4 MPa and 462.3 MPa, respectively. The results showed a meaningful reinforcement with an effect compared to the pure nylon 6 fiber. Moreover, the composite fiber also exhibited an improved crystallinity and thermal stability, as measured by DSC and TGA.  相似文献   

16.
Polydrug Use in an Inpatient Treatment Sample of Problem Drinkers   总被引:3,自引:0,他引:3  
Over the past 30 years in the United States, there have been marked secular increases in polydrug use. Alcohol and other substance use disorders are highly comorbid. Yet, little research has characterized patterns of polydrug use in persons with alcohol dependence. In particular, little is known about this population's use of alcohol and other drugs in combination or on the same day, which is termed simultaneous polydrug use (SPU). This research assessed patterns of SPU in 212 problem drinkers who participated in an alcohol treatment outcome study. Subjects were given a Time-Line Follow-Back interview that assessed the use of alcohol and nine other drug classes for each day of the 120 days before treatment entry. A majority of subjects (61%) reported SPU during this assessment interval. Subjects who reported SPU were disproportionately younger, male, and unmarried, compared with those who did not report SPU. The most common alcohol/drug combinations were alcohol with cocaine (60% of subjects who reported SPU), alcohol with marijuana (51 % of SPU subjects), and alcohol with sedatives (31 % of SPU subjects). The most common three-drug combination was alcohol, cocaine, and marijuana (23% of SPU subjects). Alcohol use and drug use were associated at the event level, significantly more than association predicted by the base rates of the individual behaviors. Time-Line Follow-Back data correlated highly with a questionnaire measure of SPU. Results indicate that polydrug use is an important focus for assessment and intervention in alcohol treatment programs.  相似文献   

17.
We present scanning tunneling microscopy (STM) images of single-layer graphene crystals examined under ultrahigh vacuum conditions. The samples, with lateral dimensions on the micrometer scale, were prepared on a silicon dioxide surface by direct exfoliation of crystalline graphite. The single-layer films were identified by using Raman spectroscopy. Topographic images of single-layer samples display the honeycomb structure expected for the full hexagonal symmetry of an isolated graphene monolayer. The absence of observable defects in the STM images is indicative of the high quality of these films. Crystals composed of a few layers of graphene also were examined. They exhibited dramatically different STM topography, displaying the reduced threefold symmetry characteristic of the surface of bulk graphite.  相似文献   

18.
NiTi alloy’s shape memory effect provides additional restoring force under temperature loads, making it an ideal material for gaskets. However, its yield stress is too large to form the initial seal. In this paper, by combining the advantages of corrugated structure and NiTi alloy’s shape memory effect, a NiTi alloy corrugated gasket is proposed. Its mechanical properties were studied using experiments and the finite element method. The influences of geometric parameters on gasket performance were discussed. The results show that the shape memory effect can greatly improve the contact stress of gaskets. The corrugation can effectively reduce the pre-tightening force. The contact stress of NiTi alloy corrugated gasket is significantly affected by plate thickness, gasket height, and corrugation pitch and shows a high nonlinear characteristic. The proposed finite element method (FEM) and the gasket contact stress prediction model are accurate and engineering available.  相似文献   

19.
3D printing by selective laser sintering (SLS) of high-dose drug delivery systems using pure brittle crystalline active pharmaceutical ingredients (API) is possible but impractical. Currently used pharmaceutical grade excipients, including polymers, are primarily designed for powder compression, ensuring good mechanical properties. Using these excipients for SLS usually leads to poor mechanical properties of printed tablets (printlets). Composite printlets consisting of sintered carbon-stained polyamide (PA12) and metronidazole (Met) were manufactured by SLS to overcome the issue. The printlets were characterized using DSC and IR spectroscopy together with an assessment of mechanical properties. Functional properties of the printlets, i.e., drug release in USP3 and USP4 apparatus together with flotation assessment, were evaluated. The printlets contained 80 to 90% of Met (therapeutic dose ca. 600 mg), had hardness above 40 N (comparable with compressed tablets) and were of good quality with internal porous structure, which assured flotation. The thermal stability of the composite material and the identity of its constituents were confirmed. Elastic PA12 mesh maintained the shape and structure of the printlets during drug dissolution and flotation. Laser speed and the addition of an osmotic agent in low content influenced drug release virtually not changing composition of the printlet; time to release 80% of Met varied from 0.5 to 5 h. Composite printlets consisting of elastic insoluble PA12 mesh filled with high content of crystalline Met were manufactured by 3D SLS printing. Dissolution modification by the addition of an osmotic agent was demonstrated. The study shows the need to define the requirements for excipients dedicated to 3D printing and to search for appropriate materials for this purpose.  相似文献   

20.
目的探讨液体加温联合充气保温毯保温护理对全子宫切除术患者麻醉复苏的影响。方法选取2018年1月至2019年8月在我院行腹腔镜下全子宫切除术治疗者90例,按随机数字表法分为两组,各45例。对照组行常规保温,试验组行液体加温+充气保温毯保温护理。对比两组围术期指标、不良事件发生情况。结果试验组麻醉时间为(92.08±11.98)分钟、手术时间为(91.39±12.25)分钟、苏醒时间分别为(14.29±3.10)分钟,均短于对照组。术中输液量为(921.65±52.18)ml、术后24h引流量为(299.32±23.78)ml、术中冲洗量为(428.32±33.65)ml、尿量为(241.65±21.98)ml,均低于对照组,差异有统计学意义(P<0.05)。试验组35℃≤体温<36℃、外感发热反应、寒战、体温<35℃等发生率均低于对照组,差异有统计学意义(P<0.05)。结论对腹腔镜下行全子宫切除术患者麻醉前实施液体加温+充气保温毯保温护理可有效缩短麻醉复苏时间、手术时间,减少术中输液量、术后24h引流量、术中冲洗量、尿量以及不良事件发生率,利于提高手术安全性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号