首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
Current development of high-performance fiber-reinforced cementitious composites (HPFRCC) mainly relies on intensive experiments. The main purpose of this study is to develop a machine learning method for effective and efficient discovery and development of HPFRCC. Specifically, this research develops machine learning models to predict the mechanical properties of HPFRCC through innovative incorporation of micromechanics, aiming to increase the prediction accuracy and generalization performance by enriching and improving the datasets through data cleaning, principal component analysis (PCA), and K-fold cross-validation. This study considers a total of 14 different mix design variables and predicts the ductility of HPFRCC for the first time, in addition to the compressive and tensile strengths. Different types of machine learning methods are investigated and compared, including artificial neural network (ANN), support vector regression (SVR), classification and regression tree (CART), and extreme gradient boosting tree (XGBoost). The results show that the developed machine learning models can reasonably predict the concerned mechanical properties and can be applied to perform parametric studies for the effects of different mix design variables on the mechanical properties. This study is expected to greatly promote efficient discovery and development of HPFRCC.  相似文献   

2.
Designing bending elements made of fiber composites requires knowledge of the residual strengths. Residual strengths determined according to PN-EN 14651, regardless of the type of matrix and the fibers used, are characterized by a very-high coefficient of variation, about 30%. The variability of this feature is so large that the normal distribution adopted in statistical analyses, which is consistent for compressive strength or tensile strength, may, in the case of residual strengths, result in a significant overdesign of the elements. Therefore, the article proposes a novel method of determining the residual strength with the use of centrally bent square plates simply supported at the perimeter. The coefficient of variation of this characteristic in the case of plate testing is about 8%.  相似文献   

3.
The purpose of this in vitro study was to evaluate the push-out bond strength of fiber-reinforced resin posts using self-adhesive cements with different adhesive systems. A total of 50 single-rooted human maxillary premolars with fully developed apices and 15–16 mm straight root canals were selected. The teeth were divided into 10 groups with coronal and apical parts according to the adhesive bonding system and luting material used: one universal adhesive with MDP-containing self-adhesive resin cement; another universal adhesive with MDP-containing self-adhesive resin cement; universal primer with MDP-containing self-adhesive resin cement; universal primer with dual-cure resin cement; MDP-containing self-adhesive resin cement only (Control). Each specimen was subjected to a fatigue load of 600,000 cycles using a chewing simulator with sliding movement and cut horizontally for push-out bond strength testing. Statistical evaluation consisted of a one-way ANOVA test using SPSS v23.0. The highest bond strength (7.05 MPa) was obtained in the coronal part of the Single Bond universal group treated with MDP-containing self-adhesive resin cement and the lowest strength (4.77 MPa) was observed in apical part of MDP-containing self-adhesive resin cement group (Control). However, the one-way ANOVA results showed no significant difference between all 10 groups (p > 0.05). The self-adhesive cement without adhesive bonding showed no statistically different value compared to self-adhesive cements with adhesive bonding.  相似文献   

4.
The objective of this study is to investigate Napa soil’s potential as an alternative additive in producing Portland composite cement. The Napa soil of Tanah Datar district, West Sumatra, Indonesia is a natural material which contains SiO2 and Al2O3 as its major components. The parameters used were the fineness of the cement particles, the amount left on a 45 μm sieve, the setting time, normal consistency, loss on ignition, insoluble parts, compressive strength and chemical composition. The composition of Napa soils (% w/w) used as variables include 4, 8, 12 and 16%. Furthermore, 8% pozzolan was used as a control in this research. The results showed that the compressive strength of Napa soil cement which contained 4% Napa soil was much better compared to that of the control on the 7th and 20th day. Furthermore, all the analyzed Napa soil cements met the standard of cement as stipulated in Indonesian National Standard, SNI 7064, 2016.  相似文献   

5.
In this study, optically transparent glass fiber-reinforced polymers (tGFRPs) were produced using a thermoset matrix and an E-glass fabric. In situ polymerization was combined with liquid composite molding (LCM) techniques both in a resin transfer molding (RTM) mold and a lite-RTM (L-RTM) setup between two glass plates. The RTM specimens were used for mechanical characterization while the L-RTM samples were used for transmittance measurements. Optimization in terms of the number of glass fabric layers, the overall degree of transparency of the composite, and the mechanical properties was carried out and allowed for the realization of high mechanical strength and high-transparency tGFRPs. An outstanding degree of infiltration was achieved maintaining up to 75% transmittance even when using 29 layers of E-glass fabric, corresponding to 50 v.% fiber, using an L-RTM setup. RTM specimens with 44 v.% fiber yielded a tensile strength of 435.2 ± 17.6 MPa, and an E-Modulus of 24.3 ± 0.7 GPa.  相似文献   

6.
With the increasing importance of offshore wind turbines, a critical issue in their construction is the high-performance concrete (HPC) used for grouting underwater foundations, as such materials must be better able to withstand the extremes of the surrounding natural environment. This study produced and tested 12 concrete sample types by varying the water/binder ratio (0.28 and 0.30), the replacement ratios for fly ash (0%, 10%, and 20%) and silica fume (0% and 10%), as substitutes for cement, with ground granulated blast-furnace slag at a fixed proportion of 30%. The workability of fresh HPC is discussed with setting time, slump, and V-funnel flow properties. The hardened mechanical properties of the samples were tested at 1, 7, 28, 56, and 91 days, and durability tests were performed at 28, 56, and 91 days. Our results show that both fly ash (at 20%) and silica fume (at 10%) are required for effective filling of interstices and better pozzolanic reactions over time to produce HPC that is durable enough to withstand acid sulfate and chloride ion attacks, and we recommend this admixture for the best proportioning of HPC suitable for constructing offshore wind turbine foundations under the harsh underwater conditions of the Taiwan Bank. We established a model to predict a durability parameter (i.e., chloride permeability) of a sample using another mechanical property (i.e., compressive strength), or vice versa, using the observable relationship between them. This concept can be generalized to other pairs of parameters and across different parametric categories, and the regression model will make future experiments less laborious and time-consuming.  相似文献   

7.
This paper provides experimental results to investigate the mechanical properties of sustainable strain-hardening cement composite (2SHCC) for infrastructures after freeze-thaw actions. To improve the sustainability of SHCC materials in this study, high energy-consumptive components—silica sand, cement, and polyvinyl alcohol (PVA) fibers—in the conventional SHCC materials are partially replaced with recycled materials such as recycled sand, fly ash, and polyethylene terephthalate (PET) fibers, respectively. To investigate the mechanical properties of green SHCC that contains recycled materials, the cement, PVA fiber and silica sand were replaced with 10% fly ash, 25% PET fiber, and 10% recycled aggregate based on preliminary experimental results for the development of 2SHCC material, respectively. The dynamic modulus of elasticity and weight for 2SHCC material were measured at every 30 cycles of freeze-thaw. The effects of freeze-thaw cycles on the mechanical properties of sustainable SHCC are evaluated by conducting compressive tests, four-point flexural tests, direct tensile tests and prism splitting tests after 90, 180, and 300 cycles of rapid freeze-thaw. Freeze-thaw testing was conducted according to ASTM C 666 Procedure A. Test results show that after 300 cycles of freezing and thawing actions, the dynamic modulus of elasticity and mass loss of damaged 2SHCC were similar to those of virgin 2SHCC, while the freeze-thaw cycles influence mechanical properties of the 2SHCC material except for compressive behavior.  相似文献   

8.
Unreinforced masonry (URM) is one of the most popular construction materials around the world, but vulnerable during earthquakes. Due to its brittle nature, the URM structures may lead to a possible collapse of the wall of a building during earthquake events causing casualties. In the current research, an attempt is made to enhance the seismic capacity of URM structures by proposing a new innovative composite material that can improve the shear strength and deformation capacity of the URM wall systems. The results revealed that the fiber-reinforced plastic having high tensile and shear stiffness can significantly increase in-plane as well as out-of-plane bending strength of the URM wall. It was recorded that the bending moment of the prism increased up to 549.5% by increasing the bending moment from 490 N*mm to 3183 N*mm per mm deflection of prism upon using glass fibers. Moreover, the ductility ratio amplified up to 5.73 times while the stiffness ratio increased up to 4.16 times with the aid of glass fibers. Since the material used in this research work is low cost, easily available, and no need for any skilled labor, which is economically good. Therefore, the URM walls retrofitted with fiber-reinforced plastic is an economical solution.  相似文献   

9.
Natural fiber-reinforced concrete (NFRC) has the advantages of environmental protection, energy conservation and regeneration. However, studies conducted to improve the macro mechanical properties of concrete by pine needle fiber have achieved good results. In this paper, the deformation and compression damage of pine needle fiber-reinforced concrete (PNFRC) are analyzed by digital image correlation; a fractal dimension is used to quantify the shape of PNFRC after compression damage; and the results of scanning electron microscopy confirm the effect of fiber treatment on deformation and damage of concrete. The results showed that the horizontal strain field of PNFRC has strain concentration zones in the elastic deformation stage, indicating that the fiber enhances the deformation ability of concrete. The defined damage factor can reflect the damage of fiber-reinforced concrete (FRC). The damage curve of natural fiber concrete increases evenly and slowly compared to ordinary concrete.  相似文献   

10.
The use of phase change materials (PCMs) in the construction industry is one of the primary strategies for addressing the building industry’s present excessive energy usage. However, since PCMs must be enclosed before being used in construction, their efficiency is limited and their compatibility with concrete is poor. Thus, polyethylene glycol (PEG), a sequence of PCMs that may be put directly into concrete, is the target of this research. The fluidity, mechanical properties, thermal properties, hydration process, and hydration products of PEG-600 cement slurry were examined by TAM, XRD, FTIR, DSC, MALDI, etc., methods in this study. Furthermore, we tested the thermal properties of PEG-800 to confirm that the same depolymerization of PEG occurred in an alkaline environment. When PEG, with a molecular weight of 600 (PEG-600), dose was increased to 10%, both compressive and flexural strength fell by 19% and 18%, respectively. The phase change points of both PEG-600 cement paste and PEG-800 cement paste decreased to 10~15 °C, and the enthalpy of the phase change was about 6 J/g. Additionally, it was discovered that PEG entered the reaction during the hydration step. PEG underwent depolymerization and subsequently formed a complex with Ca2+. However, due to the large dose of PEG used in this investigation, a self-curing effect of PEG in concrete was not seen. The findings of this research suggest a novel use for PCMs: PEG may be directly applied to concrete to fulfill both mechanical and thermal requirements. Additionally, the number of hydration products and phase compositions remained almost constant.  相似文献   

11.
This study evaluates the effect of vehicle–bridge coupled vibration on the mechanical properties of fiber-reinforced magnesium phosphate cement (FR-MPC) composites and the bonding properties of repaired systems. By means of compressive and flexural bond strengths, fiber pullout, mercury intrusion porosimeter (MIP) and backscattered electron imaging (BSE) analysis, an enhanced insight was gained into the evolution of FR-MPC performance before and after vibration. Experimental results showed that the compressive strength and flexural strength of FR-MPC was increased when it was subjected to vibration. However, the effects of vibration on the flexural strength of plain magnesium phosphate cement (MPC) mortars was insignificant. The increased flexural strength of FR-MPC after vibration could be due to the high average bond strength and pull-out energy between the micro-steel fiber and the MPC matrix. Moreover, BSE analysis revealed that the interface structure between FR-MPC and an ordinary Portland cement (OPC) substrate was more compacted after vibration, which could possibly be responsible for the better bonding properties of FR-MPC. These findings are beneficial for construction project applications of FR-MPC in bridge repairing and widening.  相似文献   

12.
Structural steel and concrete are essential materials for the construction of social infrastructures. However, these materials undergo degradation over time, thereby causing steel corrosion. To address this problem, a fiber-reinforced polymer (FRP) is used for reinforcement. In this study, tensile tests were performed to evaluate the material properties for the application of the FRP to cable bridge structures. These tests aimed to investigate various parameters to improve bond performance. Based on experiments with different parameters, sufficient bond performance could be achieved if the following conditions are met: mortar water ≤16%, regardless of the manufacturer; a depth of splitting and steel pipe length ratio ≥75%; upward/downward directions for the mortar injection; and the use of fiber-sheet reinforcement. In addition, the steel pipe used in the test (length of 410 mm and outer diameter of 42.7 mm) performed the best in terms of workability and cost effectiveness. By conducting more accurate tests to study the basic properties of materials, more accurate conditions to accomplish sufficient bond performance can likely be achieved. This will contribute to improved cost effectiveness and safety in the use of carbon FRP cables in cable bridge constructions.  相似文献   

13.
This paper presents an experimental study on use of hot-melt polyamide (HMP) to prepare mortar specimens with improved crack healing and engineering properties. The role of HMP in the crack repairing of cement mortar subjected to several rounds of heat treatment was investigated. Compatibility between HMP and hydraulic cement was investigated through X-ray diffraction (XRD) and Fourier transform infrared spectra (FTIR) technology. Mortar specimens were prepared using standard cement mortar mixes with HMP at 1%, 3% and 5% (by volume) for fine aggregate substitute. After curing for 28 days, HMP specimens were subjected to heating at temperature of 160 °C for one, two, and three days and then natural cooling down to ambient temperature. Mechanical and durability properties of the heated HMP mortars were evaluated and compared with those of the corresponding mortars without heating. The microscopic observation of the interfacial transition zone (ITZ) of HMP mortar was conducted through environmental scanning electron microscopy (ESEM). Results reveal that incorporation of HMP improves the workability of the HMP/cement binder while leading to decrease in compressive strength and durability. The heated HMP mortars after exposure to heating for one, two, and three days exhibit no obvious change in compressive strength while presenting notable increase in flexural strength and durability compared with the corresponding mortars without heating. The XRD, FTIR and ESEM analyses indicate that no obvious chemical reaction occurs between HMP and hydraulic cement, and thus the self-repairing for interfacial micro-crack in HMP/cement composite system is ascribed to the physical adhesion of HMP to cement matrix rather than the chemical bonding between them.  相似文献   

14.
To investigate the shear performance and failure mechanism of stud shear connectors in steel fiber-reinforced cementitious composite (SFRCC) beams, six steel-SFRCC and six steel-normal strength concrete (NC) push-out specimens with two heights (80 mm, 120 mm) and three diameters (14 mm, 18 mm, 22 mm) of stud connectors were prepared. The experimental results revealed that the stud shearing failure was the main failure mode of all push-out specimens. In comparison to the steel-NC specimens, the development of cracks in the SFRCC beams was efficiently restrained due to the existence of high-strength steel fibers added to the normal concrete. The shear resistance and stiffness of studs in the steel-SFRCC beams were, respectively, 22.3% and 15.1% greater than those in the steel-NC specimens; however, their ductility was reduced, and the stud shear connectors failed in advance. The finite element (FE) model was developed and verified by push-out test results. FE analysis results indicated that the shear resistance of stud shear connectors was significantly improved with the increase in the concrete compressive strength, the stud diameter and tensile strength, whereas the aspect ratio of studs had a small impact on the ultimate resistance of stud shear connectors. Based on the as-obtained push-out experiment and FE analysis results, empirical formulas were presented to predict the load-slip curves and ultimate shear resistance of stud shear connectors in the steel-SFRCC specimens, and higher accuracy and a wider application range were obtained than with previous formulas.  相似文献   

15.
Adherent hardened cement paste attached to recycled concrete aggregates (RCA) generally presents a higher porosity than natural aggregates, which induces a lower porosity in the properties of RCA. The characterization of the adherent hardened cement paste content (HCPC) in the fine RCA would promote better applications of RCA in concrete, but the determination of HCPC in fine RCA is not well established. A simple method based on salicylic acid dissolution was specifically developed to quantify the HCPC in RCA, especially for RCA containing limestone aggregates. The results demonstrated that the soluble fraction in salicylic acid (SFSA) was equal to the HCPC for white cement and slightly lower for grey Portland cement, which was also confirmed by a theoretical approach using modelling the hydration of cement paste with the chemical equations and the stoichiometric ratios. The physical and mechanical properties of RCA (e.g., water absorption) were strongly correlated to the SFSA. For industrial RCA, SFSA did not give the exact value of HCPC, but it was sufficient to correlate HCPC with the other properties of RCA. The water absorption could be estimated with good accuracy for very fine RCA (laboratory-manufactured RCA or industrial RCA) by extrapolating the relationship between water absorption and HCPC, which is very important for concrete formulation.  相似文献   

16.
This study reports fabrication, mechanical characterization, and finite element modeling of a novel lattice structure based bimetallic composite comprising 316L stainless steel and a functional dissolvable aluminum alloy. A net-shaped 316L stainless steel lattice structure composed of diamond unit cells was fabricated by selective laser melting (SLM). The cavities in the lattice structure were then filled through vacuum-assisted melt infiltration to form the bimetallic composite. The bulk aluminum sample was also cast using the same casting parameters for comparison. The compressive and tensile behavior of 316L stainless steel lattice, bulk dissolvable aluminum, and 316L stainless steel/dissolvable aluminum bimetallic composite is studied. Comparison between experimental, finite element analysis (FEA), and digital image correlation (DIC) results are also investigated in this study. There is no notable difference in the tensile behavior of the lattice and bimetallic composite because of the weak bonding in the interface between the two constituents of the bimetallic composite, limiting load transfer from the 316L stainless steel lattice to the dissolvable aluminum matrix. However, the aluminum matrix is vital in the compressive behavior of the bimetallic composite. The dissolvable aluminum showed higher Young’s modulus, yield stress, and ultimate stress than the lattice and composite in both tension and compression tests, but much less elongation. Moreover, FEA and DIC have been demonstrated to be effective and efficient methods to simulate, analyze, and verify the experimental results through juxtaposing curves on the plots and comparing strains of critical points by checking contour plots.  相似文献   

17.
In this research, we focused on the development of composite phase-change materials (CPCMs) by incorporation of a paraffin through vacuum impregnation in widely used building materials (Kaolin and ground granulated blast-furnace slag (GGBS)). The composite PCMs were characterized using environmental scanning electron microscopy (ESEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) techniques. Moreover, thermal performance of cement paste composite PCM panels was evaluated using a self-designed heating system. Test results showed that the maximum percentage of paraffin retained by Kaolin and GGBS was found to be 18% and 9%, respectively. FT-IR results show that CPCMs are chemically compatible. The phase-change temperatures of CPCMs were in the human comfort zone, and they possessed considerable latent-heat storage capacity. TGA results showed that CPCMs are thermally stable, and they did not show any sign of degradation below 150 °C. From thermal cycling tests, it was revealed that the CPCMs are thermally reliable. Thermal performance tests showed that in comparison to the control room model, the room models prepared with CPCMs reduced both the temperature fluctuations and maximum indoor center temperature. Therefore, the prepared CPCMs have some potential in reducing peak loads in buildings when applied to building facade.  相似文献   

18.
The aim of this study was to compare the stiffness of gravelly sand under various load conditions—static conditions using the CBR test and cyclic conditions using the resilient modulus test. The tests were conducted on natural soil and soil improved by the addition of polypropylene fibers and/or 1.5% cement. The impacts of the compaction and curing time of the stabilized samples were also determined. The soil was sheared during the Mr tests, even after fiber reinforcement, so the resilient modulus value for the unbound sand could not be obtained. The cement addition improved Mr, and the curing time also had an impact on this parameter. The fiber addition increased the value of the resilient modulus. The CBR value of the compacted gravelly sand was relatively high. It increased after adding 0.1% fibers in the case of the standard compacted samples. The greater fiber addition lowered the CBR value. For the modified compacted samples, each addition of fibers reduced the CBR value reduced the CBR value. The addition of cement influenced the CBR increase, which was also affected by the compaction method and the curing time. The addition of fibers to the stabilized sample improved the CBR value. The relationship Mr=f(CBR) obtained for all data sets was statistically significant but characterized by a large error of estimate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号