首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the second-order and third-order Runge-Kutta discontinuous Galerkin (RKDG) methods with multi-resolution weighted essentially non-oscillatory (WENO) limiters are proposed on tetrahedral meshes. The multi-resolution WENO limiter is an extension of a finite volume multi-resolution WENO scheme developed in [81], which serves as a limiter for RKDG methods on tetrahedral meshes. This new WENO limiter uses information of the DG solution essentially only within the troubled cell itself which is identified by a new modified version of the original KXRCF indicator [42], to build a sequence of hierarchical $L^2$ projection polynomials from zeroth degree to the second or third degree of the DG solution. The second-order and third-order RKDG methods with the associated multi-resolution WENO limiters are developed as examples for general high-order RKDG methods, which could maintain the original order of accuracy in smooth regions and keep essentially non-oscillatory property near strong discontinuities by gradually degrading from the optimal order to the first order. The linear weights inside the procedure of the new multi-resolution WENO limiters can be set as any positive numbers on the condition that they sum to one. A series of polynomials of different degrees within the troubled cell itself are applied in a WENO fashion to modify the DG solutions in the troubled cell on tetrahedral meshes. These new WENO limiters are very simple to construct, and can be easily implemented to arbitrary high-order accuracy on tetrahedral meshes. Such spatial reconstruction methodology improves the robustness in the simulation on the same compact spatial stencil of the original DG methods on tetrahedral meshes. Extensive one-dimensional (run as three-dimensional problems on tetrahedral meshes) and three-dimensional tests are performed to demonstrate the good performance of the RKDG methods with new multi-resolution WENO limiters.  相似文献   

2.
This paper develops three high-order accurate discontinuous Galerkin (DG) methods for the one-dimensional (1D) and two-dimensional (2D) nonlinear Dirac (NLD) equations with a general scalar self-interaction. They are the Runge-Kutta DG (RKDG) method and the DG methods with the one-stage fourth-order Lax-Wendroff type time discretization (LWDG) and the two-stage fourth-order accurate time discretization (TSDG). The RKDG method uses the spatial DG approximation to discretize the NLD equations and then utilize the explicit multistage high-order Runge-Kutta time discretization for the first-order time derivatives, while the LWDG and TSDG methods, on the contrary, first give the one-stage fourth-order Lax-Wendroff type and the two-stage fourth-order time discretizations of the NLD equations, respectively, and then discretize the first- and higher-order spatial derivatives by using the spatial DG approximation. The $L^2$ stability of the 2D semi-discrete DG approximation is proved in the RKDG methods for a general triangulation, and the computational complexities of three 1D DG methods are estimated. Numerical experiments are conducted to validate the accuracy and the conservation properties of the proposed methods. The interactions of the solitary waves, the standing and travelling waves are investigated numerically and the 2D breathing pattern is observed.  相似文献   

3.
High-order discretization techniques offer the potential to significantly reduce the computational costs necessary to obtain accurate predictions when compared to lower-order methods. However, efficient and universally-applicable high-order discretizations remain somewhat illusive, especially for more arbitrary unstructured meshes and for incompressible/low-speed flows. A novel, high-order, central essentially non-oscillatory (CENO), cell-centered, finite-volume scheme is proposed for the solution of the conservation equations of viscous, incompressible flows on three-dimensional unstructured meshes. Similar to finite element methods, coordinate transformations are used to maintain the scheme's order of accuracy even when dealing with arbitrarily-shaped cells having non-planar faces. The proposed scheme is applied to the pseudo-compressibility formulation of the steady and unsteady Navier-Stokes equations and the resulting discretized equations are solved with a parallel implicit Newton-Krylov algorithm. For unsteady flows, a dual-time stepping approach is adopted and the resulting temporal derivatives are discretized using the family of high-order backward difference formulas (BDF). The proposed finite-volume scheme for fully unstructured mesh is demonstrated to provide both fast and accurate solutions for steady and unsteady viscous flows.  相似文献   

4.
In this paper, we propose a high-order accurate discontinuous Galerkin (DG) method for the compressible Euler equations under gravitational fields on unstructured meshes. The scheme preserves a general hydrostatic equilibrium state and provably guarantees the positivity of density and pressure at the same time. Comparing with the work on the well-balanced scheme for Euler equations with gravitation on rectangular meshes, the extension to triangular meshes is conceptually plausible but highly nontrivial. We first introduce a special way to recover the equilibrium state and then design a group of novel variables at the interface of two adjacent cells, which plays an important role in the well-balanced and positivity-preserving properties. One main challenge is that the well-balanced schemes may not have the weak positivity property. In order to achieve the well-balanced and positivity-preserving properties simultaneously while maintaining high-order accuracy, we carefully design DG spatial discretization with well-balanced numerical fluxes and suitable source term approximation. For the ideal gas, we prove that the resulting well-balanced scheme, coupled with strong stability preserving time discretizations, satisfies a weak positivity property. A simple existing limiter can be applied to enforce the positivity-preserving property, without losing high-order accuracy and conservation. Extensive one- and two-dimensional numerical examples demonstrate the desired properties of the proposed scheme, as well as its high resolution and robustness.  相似文献   

5.
This paper presents a novel high-order space-time method for hyperbolic conservation laws. Two important concepts, the staggered space-time mesh of the space-time conservation element/solution element (CE/SE) method and the local discontinuous basis functions of the space-time discontinuous Galerkin (DG) finite element method, are the two key ingredients of the new scheme. The staggered space-time mesh is constructed using the cell-vertex structure of the underlying spatial mesh. The universal definitions of CEs and SEs are independent of the underlying spatial mesh and thus suitable for arbitrarily unstructured meshes. The solution within each physical time step is updated alternately at the cell level and the vertex level. For this solution updating strategy and the DG ingredient, the new scheme here is termed as the discontinuous Galerkin cell-vertex scheme (DG-CVS). The high order of accuracy is achieved by employing high-order Taylor polynomials as the basis functions inside each SE. The present DG-CVS exhibits many advantageous features such as Riemann-solver-free, high-order accuracy, point-implicitness, compactness, and ease of handling boundary conditions. Several numerical tests including the scalar advection equations and compressible Euler equations will demonstrate the performance of the new method.  相似文献   

6.
A new approach to high-order accuracy for the numerical solution of conservation laws introduced by Huynh and extended to simplexes by Wang and Gao is renamed CPR (correction procedure or collocation penalty via reconstruction). The CPR approach employs the differential form of the equation and accounts for the jumps in flux values at the cell boundaries by a correction procedure. In addition to being simple and economical, it unifies several existing methods including discontinuous Galerkin, staggered grid, spectral volume, and spectral difference. To discretize the diffusion terms, we use the BR2 (Bassi and Rebay), interior penalty, compact DG (CDG), and I-continuous approaches. The first three of these approaches, originally derived using the integral formulation, were recast here in the CPR framework, whereas the I-continuous scheme, originally derived for a quadrilateral mesh, was extended to a triangular mesh. Fourier stability and accuracy analyses for these schemes on quadrilateral and triangular meshes are carried out. Finally, results for the Navier-Stokes equations are shown to compare the various schemes as well as to demonstrate the capability of the CPR approach.  相似文献   

7.
In this paper, a time implicit unified gas kinetic scheme (IUGKS) for 3D multi-group neutron transport equation with delayed neutron is developed. The explicit scheme, implicit 1st-order backward Euler scheme, and 2nd-order Crank-Nicholson scheme, become the subsets of the current IUGKS. In neutron transport, the microscopic angular flux and the macroscopic scalar flux are fully coupled in an implicit way with the combination of dual-time step technique for the convergence acceleration of unsteady evolution. In IUGKS, the computational time step is no longer limited by the Courant-Friedrichs-Lewy (CFL) condition, which improves the computational efficiency in both steady and unsteady simulations with a large time step. Mathematically, the current scheme has the asymptotic preserving (AP) property in recovering automatically the diffusion solution in the continuum regime. Since the explicit scanning along neutron traveling direction within the computational domain is not needed in IUGKS, the scheme can be easily extended to multi-dimensional and parallel computations. The numerical tests demonstrate that the IUGKS has high computational efficiency, high accuracy, and strong robustness when compared with other schemes, such as the explicit UGKS, the commonly used finite difference, and finite volume methods. This study shows that the IUGKS can be used faithfully to study neutron transport in practical engineering applications.  相似文献   

8.
A concept of "static reconstruction" and "dynamic reconstruction" was introduced for higher-order (third-order or more) numerical methods in our previous work. Based on this concept, a class of hybrid DG/FV methods had been developed for one-dimensional conservation law using a "hybrid reconstruction" approach, and extended to two-dimensional scalar equations on triangular and Cartesian/triangular hybrid grids. In the hybrid DG/FV schemes, the lower-order derivatives of the piecewise polynomial are computed locally in a cell by the traditional DG method (called as "dynamic reconstruction"), while the higher-order derivatives are reconstructed by the "static reconstruction" of the FV method, using the known lower-order derivatives in the cell itself and in its adjacent neighboring cells. In this paper, the hybrid DG/FV schemes are extended to two-dimensional Euler equations on triangular and Cartesian/triangular hybrid grids. Some typical test cases are presented to demonstrate the performance of the hybrid DG/FV methods, including the standard vortex evolution problem with exact solution, isentropic vortex/weak shock wave interaction, subsonic flows past a circular cylinder and a three-element airfoil (30P30N), transonic flow past a NACA0012 airfoil. The accuracy study shows that the hybrid DG/FV method achieves the desired third-order accuracy, and the applications demonstrate that they can capture the flow structure accurately, and can reduce the CPU time and memory requirement greatly than the traditional DG method with the same order of accuracy.  相似文献   

9.
In this paper, a new multi-resolution weighted essentially non-oscillatory (MR-WENO) limiter for high-order local discontinuous Galerkin (LDG) method is designed for solving Navier-Stokes equations on triangular meshes. This MR-WENO limiter is a new extension of the finite volume MR-WENO schemes. Such new limiter uses information of the LDG solution essentially only within the troubled cell itself, to build a sequence of hierarchical $L^2$ projection polynomials from zeroth degree to the highest degree of the LDG method. As an example, a third-order LDG method with associated same order MR-WENO limiter has been developed in this paper, which could maintain the original order of accuracy in smooth regions and could simultaneously suppress spurious oscillations near strong shocks or contact discontinuities. The linear weights of such new MR-WENO limiter can be any positive numbers on condition that their summation is one. This is the first time that a series of different degree polynomials within the troubled cell are applied in a WENO-type fashion to modify the freedom of degrees of the LDG solutions in the troubled cell. This MR-WENO limiter is very simple to construct, and can be easily implemented to arbitrary high-order accuracy and in higher dimensions on unstructured meshes. Such spatial reconstruction methodology improves the robustness in the numerical simulation on the same compact spatial stencil of the original LDG methods on triangular meshes. Some classicalviscous examples are given to show the good performance of this third-order LDG method with associated MR-WENO limiter.  相似文献   

10.
A high-order, well-balanced, positivity-preserving quasi-Lagrange moving mesh DG method is presented for the shallow water equations with non-flat bottom topography. The well-balance property is crucial to the ability of a scheme to simulate perturbation waves over the lake-at-rest steady state such as waves on a lake or tsunami waves in the deep ocean. The method combines a quasi-Lagrange moving mesh DG method, a hydrostatic reconstruction technique, and a change of unknown variables. The strategies in the use of slope limiting, positivity-preservation limiting, and change of variables to ensure the well-balance and positivity-preserving properties are discussed. Compared to rezoning-type methods, the current method treats mesh movement continuously in time and has the advantages that it does not need to interpolate flow variables from the old mesh to the new one and places no constraint for the choice of a update scheme for the bottom topography on the new mesh. A selection of one- and two-dimensional examples are presented to demonstrate the well-balance property, positivity preservation, and high-order accuracy of the method and its ability to adapt the mesh according to features in the flow and bottom topography.  相似文献   

11.
The high-order gas-kinetic scheme (HGKS) has achieved success in simulating compressible flows with Cartesian meshes. To study the flow problems in general geometries, such as the flow over a wing-body, the development of HGKS in general curvilinear coordinates becomes necessary. In this paper, a two-stage fourth-order gas-kinetic scheme is developed for the Euler and Navier-Stokes solutions in the curvilinear coordinates from one-dimensional to three-dimensional computations. Based on the coordinate transformation, the kinetic equation is transformed first to the computational space, and the flux function in the gas-kinetic scheme is obtained there and is transformed back to the physical domain for the update of flow variables inside each control volume. To achieve the expected order of accuracy, the dimension-by-dimension reconstruction based on the WENO scheme is adopted in the computational domain, where the reconstructed variables are the cell averaged Jacobian and the Jacobian-weighted conservative variables. In the two-stage fourth-order gas-kinetic scheme, the point values as well as the spatial derivatives of conservative variables at Gaussian quadrature points have to be used in the evaluation of the time dependent flux function. The point-wise conservative variables are obtained by ratio of the above reconstructed data, and the spatial derivatives are reconstructed through orthogonalization in physical space and chain rule. A variety of numerical examples from the accuracy tests to the solutions with strong discontinuities are presented to validate the accuracy and robustness of the current scheme for both inviscid and viscous flows. The precise satisfaction of the geometrical conservation law in non-orthogonal mesh is also demonstrated through the numerical example.  相似文献   

12.
In [SIAM J. Sci. Comput., 35(2)(2013), A1049–A1072], a class of multi-domain hybrid DG and WENO methods for conservation laws was introduced. Recent applications of this method showed that numerical instability may encounter if the DG flux with Lagrangian interpolation is applied as the interface flux during the moment of conservative coupling. In this continuation paper, we present a more robust approach in the construction of DG flux at the coupling interface by using WENO procedures of reconstruction. Based on this approach, such numerical instability is overcome very well. In addition, the procedure of coupling a DG method with a WENO-FD scheme on hybrid meshes is disclosed in detail. Typical testing cases are employed to demonstrate the accuracy of this approach and the stability under the flexibility of using either WENO-FD flux or DG flux at the moment of requiring conservative coupling.  相似文献   

13.
The development of high-order schemes has been mostly concentrated on the limiters and high-order reconstruction techniques. In this paper, the effect of the flux functions on the performance of high-order schemes will be studied. Based on the same WENO reconstruction, two schemes with different flux functions, i.e., the fifth-order WENO method and the WENO-Gas-Kinetic scheme (WENO-GKS), will be compared. The fifth-order finite difference WENO-SW scheme is a characteristic variable reconstruction based method which uses the Steger-Warming flux splitting for inviscid terms, the sixth-order central difference for viscous terms, and three stages Runge-Kutta time stepping for the time integration. On the other hand, the finite volume WENO-GKS is a conservative variable reconstruction based method with the same WENO reconstruction. But it evaluates a time dependent gas distribution function along a cell interface, and updates the flow variables inside each control volume by integrating the flux function along the boundary of the control volume in both space and time. In order to validate the robustness and accuracy of the schemes, both methods are tested under a wide range of flow conditions: vortex propagation, Mach 3 step problem, and the cavity flow at Reynolds number 3200. Our study shows that both WENO-SW and WENO-GKS yield quantitatively similar results and agree with each other very well provided a sufficient grid resolution is used. With the reduction of mesh points, the WENO-GKS behaves to have less numerical dissipation and present more accurate solutions than those from the WENO-SW in all test cases. For the Navier-Stokes equations, since the WENO-GKS couples inviscid and viscous terms in a single flux evaluation, and the WENO-SW uses an operator splitting technique, it appears that the WENO-SW is more sensitive to the WENO reconstruction and boundary treatment. In terms of efficiency, the finite volume WENO-GKS is about 4 times slower than the finite difference WENO-SW in two dimensional simulations. The current study clearly shows that besides high-order reconstruction, an accurate gas evolution model or flux function in a high-order scheme is also important in the capturing of physical solutions. In a physical flow, the transport, stress deformation, heat conduction, and viscous heating are all coupled in a single gas evolution process. Therefore, it is preferred to develop such a scheme with multi-dimensionality, and unified treatment of inviscid and dissipative terms. A high-order scheme does prefer a high-order gas evolution model. Even with the rapid advances of high-order reconstruction techniques, the first-order dynamics of the Riemann solution becomes the bottleneck for the further development of high-order schemes. In order to avoid the weakness of the low order flux function, the development of high-order schemes relies heavily on the weak solution of the original governing equations for the update of additional degree of freedom, such as the non-conservative gradients of flow variables, which cannot be physically valid in discontinuous regions.  相似文献   

14.
The construction of symplectic numerical schemes for stochastic Hamiltonian systems is studied. An approach based on generating functions method is proposed to generate the stochastic symplectic integration of any desired order. In general, the proposed symplectic schemes are fully implicit, and they become computationally expensive for mean square orders greater than two. However, for stochastic Hamiltonian systems preserving Hamiltonian functions, the high-order symplectic methods have simpler forms than the explicit Taylor expansion schemes. A theoretical analysis of the convergence and numerical simulations are reported for several symplectic integrators. The numerical case studies confirm that the symplectic methods are efficient computational tools for long-term simulations.  相似文献   

15.
A reconstruction-based discontinuous Galerkin (RDG(P1P2)) method, avariant of P1P2 method, is presented for the solution of the compressible Euler equations on arbitrary grids. In this method, an in-cell reconstruction, designed to enhance the accuracy of the discontinuous Galerkin method, is used to obtain a quadratic polynomial solution (P2) from the underlying linear polynomial (P1) discontinuous Galerkin solution using a least-squares method. The stencils used in the reconstruction involve only the von Neumann neighborhood (face-neighboring cells) and are compact and consistent with the underlying DG method. The developed RDG method is used to compute a variety of flow problems on arbitrary meshes to demonstrate its accuracy, efficiency, robustness, and versatility. The numerical results indicate that this RDG(P1P2) method is third-order accurate, and outperforms the third-order DG method (DG(P2)) in terms of both computing costs and storage requirements.  相似文献   

16.
This study aimed to specialise a directional $\mathcal{H}^2 (\mathcal{D}\mathcal{H}^2)$ compression to matrices arising from the discontinuous Galerkin (DG) discretisation of the hypersingular equation in acoustics. The significant finding is an algorithm that takes a DG stiffness matrix and finds a near-optimal $\mathcal{D}\mathcal{H}^2$ approximation for low and high-frequency problems. We introduced the necessary special optimisations to make this algorithm more efficient in the case of a DG stiffness matrix. Moreover, an automatic parameter tuning strategy makes it easy to use and versatile. Numerical comparisons with a classical Boundary Element Method (BEM) show that a DG scheme combined with a $\mathcal{D}\mathcal{H}^2$ gives better computational efficiency than a classical BEM in the case of high-order finite elements and $hp$ heterogeneous meshes. The results indicate that DG is suitable for an auto-adaptive context in integral equations.  相似文献   

17.
High-order and conservative phase space direct solvers that preserve the Euler asymptotic limit of the Boltzmann-BGK equation for modelling rarefied gas flows are explored and studied. The approach is based on the conservative discrete ordinate method for velocity space by using Gauss Hermite or Simpsons quadrature rule and conservation of macroscopic properties are enforced on the BGK collision operator. High-order asymptotic-preserving time integration is adopted and the spatial evolution is performed by high-order schemes including a finite difference weighted essentially non-oscillatory method and correction procedure via reconstruction schemes. An artificial viscosity dissipative model is introduced into the Boltzmann-BGK equation when the correction procedure via reconstruction scheme is used. The effects of the discrete velocity conservative property and accuracy of high-order formulations of kinetic schemes based on BGK model methods are provided. Extensive comparative tests with one-dimensional and two-dimensional problems in rarefied gas flows have been carried out to validate and illustrate the schemes presented. Potentially advantageous schemes in terms of stable large time step allowed and higher-order of accuracy are suggested.  相似文献   

18.
We propose a new high order accurate nodal discontinuous Galerkin (DG) method for the solution of nonlinear hyperbolic systems of partial differential equations (PDE) on unstructured polygonal Voronoi meshes. Rather than using classical polynomials of degree $N$ inside each element, in our new approach the discrete solution is represented by piecewise continuous polynomials of degree $N$ within each Voronoi element, using a continuous finite element basis defined on a subgrid inside each polygon. We call the resulting subgrid basis an agglomerated finite element (AFE) basis for the DG method on general polygons, since it is obtained by the agglomeration of the finite element basis functions associated with the subgrid triangles. The basis functions on each sub-triangle are defined, as usual, on a universal reference element, hence allowing to compute universal mass, flux and stiffness matrices for the subgrid triangles once and for all in a pre-processing stage for the reference element only. Consequently, the construction of an efficient quadrature-free algorithm is possible, despite the unstructured nature of the computational grid. High order of accuracy in time is achieved thanks to the ADER approach, making use of an element-local space-time Galerkin finite element predictor.The novel schemes are carefully validated against a set of typical benchmark problems for the compressible Euler and Navier-Stokes equations. The numerical results have been checked with reference solutions available in literature and also systematically compared, in terms of computational efficiency and accuracy, with those obtained by the corresponding modal DG version of the scheme.  相似文献   

19.
A priori subcell limiting approach is developed for high-order flux reconstruction/correction procedure via reconstruction (FR/CPR) methods on two-dimensional unstructured quadrilateral meshes. Firstly, a modified indicator based on modal energy coefficients is proposed to detect troubled cells, where discontinuities exist. Then, troubled cells are decomposed into nonuniform subcells and each subcell has one solution point. A second-order finite difference shock-capturing scheme based on nonuniform nonlinear weighted (NNW) interpolation is constructed to perform the calculation on troubled cells while smooth cells are calculated by the CPR method. Numerical investigations show that the proposed subcell limiting strategy on unstructured quadrilateral meshes is robust in shock-capturing.  相似文献   

20.
This paper presents a new and better suited formulation to implement the limiting projection to high-order schemes that make use of high-order local reconstructions for hyperbolic conservation laws. The scheme, so-called MCV-WENO4 (multi-moment Constrained finite Volume with WENO limiter of 4th order) method, is an extension of the MCV method of Ii & Xiao (2009) by adding the 1st order derivative (gradient or slope) at the cell center as an additional constraint for the cell-wise local reconstruction. The gradient is computed from a limiting projection using the WENO (weighted essentially non-oscillatory) reconstruction that is built from the nodal values at 5 solution points within 3 neighboring cells. Different from other existing methods where only the cell-average value is used in the WENO reconstruction, the present method takes account of the solution structure within each mesh cell, and thus minimizes the stencil for reconstruction. The resulting scheme has 4th-order accuracy and is of significant advantage in algorithmic simplicity and computational efficiency. Numerical results of one and two dimensional benchmark tests for scalar and Euler conservation laws are shown to verify the accuracy and oscillation-less property of the scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号