首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glioma is the most common and aggressive primary adult brain tumor. Long non-coding RNAs (lncRNAs) have important roles in a variety of biological properties of cancers. Here, we elucidated the function and the possible molecular mechanisms of lncRNA HOTAIR in human glioma U87 and U251 cell lines. Quantitative RT-PCR demonstrated that HOTAIR expression was up-regulated in glioma tissues and cell lines. Knockdown of HOTAIR exerted tumor-suppressive function in glioma cells. Further, HOTAIR was confirmed to be the target of miR-326 and miR-326 mediated the tumor-suppressive effects of HOTAIR knockdown on glioma cell lines. Moreover, over-expressed miR-326 reduced the FGF1 expression which played an oncogenic role in glioma by activating PI3K/AKT and MEK 1/2 pathways. In addition, the in vivo studies also supported the above findings. Taken together, knockdown of HOTAIR up-regulated miR-326 expression, and further inducing the decreased expression of FGF1, these results provided a comprehensive analysis of HOTAIR-miR-326-FGF1 axis in human glioma and provided a new potential therapeutic strategy for glioma treatment.  相似文献   

2.
3.
The M2 isoform of pyruvate kinase (PK) is upregulated in most cancers including glioblastoma. Although PKM2 has been reported to use dual kinase activities to regulate cell growth, it also interacts with phosphotyrosine (pY)‐containing peptides independently of its kinase activity. The potential for PKM2 to use the binding of pY‐containing proteins to control tumor growth has not been fully examined. We here describe a novel mechanism by which PKM2 interacts in the nucleus with the RNA binding protein HuR to regulate HuR sub‐cellular localization, p27 levels, cell cycle progression and glioma cell growth. Suppression of PKM2 in U87, T98G and LN319 glioma cells resulted in increased p27 levels, defects in entry into mitosis, increased centrosome number, and decreased cell growth. These effects could be reversed by shRNA targeting p27. The increased levels of p27 in PKM2 knock‐down cells were caused by a loss of the nuclear interaction between PKM2 and HuR, and a subsequent cytoplasmic re‐distribution of HuR, which in turn led to increased cap‐independent p27 mRNA translation. Consistent with these results, the alterations in p27 mRNA translation, cell cycle progression and cell growth caused by PKM2 suppression could be reversed in vitro and in vivo by suppression of HuR or p27 levels, or by introduction of forms of PKM2 that could bind pY, regardless of their kinase activity. These results define a novel mechanism by which PKM2 regulates glioma cell growth, and also define a novel set of potential therapeutic targets along the PKM2–HuR–p27 pathway.  相似文献   

4.
5.
Glioblastoma multiforme is the most malignant and common brain tumor in adults and is characterized by poor survival and high resistance to chemotherapy and radiotherapy. Among the new chemotherapy drugs, curcumin, a popular dietary supplement, has proven to have a potent anticancer effect on a variety of cancer cell types; however, it remains difficult to achieve a satisfactory therapeutic effect with curcumin using the traditional single-drug treatment. In this study, we found that expression of miR-326, a tumor suppressor microRNA in various tumor types, resulted in a marked increase of curcumin-induced cytotoxicity and apoptosis and a decrease of proliferation and migration in glioma cells. Moreover, we found that combination treatment of miR-326 and curcumin caused significant inhibition of the SHH/GLI1 pathway in glioma cells compared with either treatment alone, independent of p53 status. Furthermore, in vivo, the curcumin-induced increase in miR-326 expression altered the anti-glioma mechanism of this combination treatment, which further reduced tumor volume and prolonged the survival period compared to either treatment alone. Taken together, our data strongly support an important role for miR-326 in enhancing the chemosensitivity of glioma cells to curcumin.  相似文献   

6.
BackgroundFew studies have associated microRNAs (miRNAs) with the hedgehog (Hh) pathway. Here, we investigated whether targeting smoothened (SMO) with miR-326 would affect glioma biological behavior and stemness.MethodsTo investigate the expression of SMO and miR-326 in glioma specimens and cell lines, we utilized quantitative real-time (qRT)-PCR, Western blot, immunohistochemistry, and fluorescence in situ hybridization. The luciferase reporter assay was used to verify the relationship between SMO and miR-326. We performed cell counting kit-8, transwell, and flow cytometric assays using annexin-V labeling to detect changes after transfection with siRNA against SMO or miR-326. qRT-PCR assays, neurosphere formation, and immunofluorescence were utilized to detect the modification of self-renewal and stemness in U251tumor stem cells. A U251-implanted intracranial model was used to study the effect of miR-326 on tumor volume and SMO suppression efficacy.ResultsSMO was upregulated in gliomas and was associated with tumor grade and survival period. SMO inhibition suppressed the biological behaviors of glioma cells. SMO expression was inversely correlated with miR-326 and was identified as a novel direct target of miR-326. miR-326 overexpression not only repressed SMO and downstream genes but also decreased the activity of the Hh pathway. Moreover, miR-326 overexpression decreased self-renewal and stemness and partially prompted differentiation in U251 tumor stem cells. In turn, the inhibition of Hh partially elevated miR-326 expression. Intracranial tumorigenicity induced by the transfection of miR-326 was reduced and was partially mediated by the decreased SMO expression.ConclusionsThis work suggests a possible molecular mechanism of the miR- 326/SMO axis, which can be a potential alternative therapeutic pathway for gliomas.  相似文献   

7.
8.
MicroRNA (miRNA) expression profiling studies revealed a number of miRNAs dysregulated in the malignant brain tumor glioblastoma. Molecular functions of these miRNAs in gliomagenesis are mainly unknown. We show that inhibition of miR-10b, a miRNA not expressed in human brain and strongly upregulated in both low-grade and high-grade gliomas, reduces glioma cell growth by cell-cycle arrest and apoptosis. These cellular responses are mediated by augmented expression of the direct targets of miR-10b, including BCL2L11/Bim, TFAP2C/AP-2γ, CDKN1A/p21, and CDKN2A/p16, which normally protect cells from uncontrolled growth. Analysis of The Cancer Genome Atlas expression data set reveals a strong positive correlation between numerous genes sustaining cellular growth and miR-10b levels in human glioblastomas, while proapoptotic genes anticorrelate with the expression of miR-10b. Furthermore, survival of glioblastoma patients expressing high levels of miR-10 family members is significantly reduced in comparison to patients with low miR-10 levels, indicating that miR-10 may contribute to glioma growth in vivo. Finally, inhibition of miR-10b in a mouse model of human glioma results in significant reduction of tumor growth. Altogether, our experiments validate an important role of miR-10b in gliomagenesis, reveal a novel mechanism of miR-10b-mediated regulation, and suggest the possibility of its future use as a therapeutic target in gliomas.  相似文献   

9.
Src‐family kinase (SFK) signaling impacts multiple tumor‐related properties, particularly in the context of the brain tumor glioblastoma. Consequently, the pan‐SFK inhibitor dasatinib has emerged as a therapeutic strategy, despite physiologic limitations to its effectiveness in the brain. We investigated the importance of individual SFKs (Src, Fyn, Yes, and Lyn) to glioma tumor biology by knocking down individual SFK expression both in culture (LN229, SF767, GBM8) and orthotopic xenograft (GBM8) contexts. We evaluated the effects of these knockdowns on tumor cell proliferation, migration, and motility‐related signaling in culture, as well as overall survival in the orthotopic xenograft model. The four SFKs differed significantly in their importance to these properties. In culture, Src, Fyn, and Yes knockdown generally reduced growth and migration and altered motility‐related phosphorylation patterns while Lyn knockdown did so to a lesser extent. However the details of these effects varied significantly depending on the cell line: in no case were conclusions about the role of a particular SFK applicable to all of the measures or all of the cell types examined. In the orthotopic xenograft model, mice implanted with non‐target or Src or Fyn knockdown cells showed no differences in survival. In contrast, mice implanted with Yes knockdown cells had longer survival, associated with reduced tumor cell proliferation. Those implanted with Lyn knockdown cells had shorter survival, associated with higher overall tumor burden. Together, our results suggest that Yes signaling directly affects tumor cell biology in a pro‐tumorigenic manner, while Lyn signaling affects interactions between tumor cells and the microenvironment in an anti‐tumor manner. In the context of therapeutic targeting of SFKs, these results suggest that pan‐SFK inhibitors may not produce the intended therapeutic benefit when Lyn is present.  相似文献   

10.
Glioblastoma multiforme, a highly aggressive tumor of the central nervous system, has a dismal prognosis that is due in part to its resistance to radio- and chemotherapy. The protein kinase C (PKC) family of serine threonine kinases has been implicated in the formation and proliferation of glioblastoma multiforme. Members of the protein kinase D (PKD) family, which consists of PKD1, -2 and, -3, are prominent downstream targets of PKCs and could play a major role in glioblastoma growth. PKD2 was highly expressed in both low-grade and high-grade human gliomas. The number of PKD2-positive tumor cells increased with glioma grading (P < .001). PKD2 was also expressed in CD133-positive glioblastoma stem cells and various glioblastoma cell lines in which the kinase was found to be constitutively active. Inhibition of PKDs by pharmacological inhibitors resulted in substantial inhibition of glioblastoma proliferation. Furthermore, specific depletion of PKD2 by siRNA resulted in a marked inhibition of anchorage-dependent and -independent proliferation and an accumulation of glioblastoma cells in G0/G1, accompanied by a down-regulation of cyclin D1 expression. In addition, PKD2-depleted glioblastoma cells exhibited substantially reduced tumor formation in vivo on chicken chorioallantoic membranes. These findings identify PKD2 as a novel mediator of glioblastoma cell growth in vitro and in vivo and thereby as a potential therapeutic target for this devastating disease.  相似文献   

11.
12.
Glioblastomas rely mainly on aerobic glycolysis to sustain proliferation and growth; however, little is known about the regulatory mechanisms of metabolism in glioblastoma stem cells. We show that miR-143 is significantly down-regulated in glioma tissues and glioblastoma stem-like cells (GSLCs), while miR-143 over-expression inhibits glycolysis by directly targeting hexokinase 2, and promotes differentiation of GSLCs. Moreover, miR-143 inhibits proliferation of GSLCs under hypoxic conditions and decreases tumor formation capacity of GSLCs in vivo. We also show that a combination of miR-143 and 2-DG, a widely used glycolysis inhibitor, has synergistic effects against GSLCs. miR-143 is a potential therapeutic target for glioblastoma treatment.  相似文献   

13.
14.
MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate protein expression by cleaving or repressing the translation of target mRNAs. miR-125b, one of the neuronal miRNAs, was recently found to be necessary for stem cell fission and for making stem cells insensitive to chemotherapy signals. Temozolomide (TMZ) is a promising chemotherapeutic agent for treating glioblastomas. However, resistance develops quickly and with a high frequency. Given the insensitivity of some glioblastomas to TMZ and the hypothesis that glioma stem cells cause resistance to drug therapy, exploring the functions and mechanisms of miR-125b action on TMZ-treated glioblastoma stem cells would be valuable. In this study, we found that miR-125b-2 is overexpressed in glioblastoma multiforme tissues and the corresponding stem cells (GBMSC); downregulation of miR-125b-2 expression in GBMSC could allow TMZ to induce GBMSC apoptosis. Additionally, the expression of the anti-apoptotic protein Bcl-2 was decreased after the TMZ+miR-125b-2 inhibitor treatment, while the expression of the proapoptotic protein Bax was increased. Further research demonstrated that the induction of apoptosis in GBMSC is also associated with increased cytochrome c release from mitochondria, induction of Apaf-1, activation of caspase-3 and poly-ADP-ribose polymerase (PARP). Taken together, these results suggest that miR-125b-2 overexpression might confer glioblastoma stem cells resistance to TMZ.  相似文献   

15.
M2型丙酮酸激酶(PKM2)是糖酵解途径的一个关键限速酶,在多种恶性肿瘤细胞中高表达.在肿瘤糖代谢通路中,PKM2可以通过在高活性的四聚体和低活性的二聚体之间相互转化,促进肿瘤的糖酵解和细胞增殖.肿瘤细胞通过多种方式调节PKM2的表达和酶活性如转录调节、变构调节和翻译后修饰调节.PKM2在肿瘤发生和肿瘤代谢中的重要作用使它有望成为肿瘤治疗的新靶点.  相似文献   

16.
The concept of cancer stem-like cells (CSCs) has gained considerable attention in various solid tumors including glioblastoma, the most common primary brain tumor. This sub-population of tumor cells has been intensively investigated and their role in therapy resistance as well as tumor recurrence has been demonstrated. In that respect, development of therapeutic strategies that target CSCs (and possibly also the tumor bulk) appears a promising approach in patients suffering from primary brain tumors. In the present study, we utilized RNA interference (RNAi) to screen the complete human kinome and phosphatome (682 and 180 targets, respectively) in order to identify genes and pathways relevant for the survival of brain CSCs and thereby potential therapeutical targets for glioblastoma. We report of 46 putative candidates including known survival-related kinases and phosphatases. Interestingly, a number of genes identified are involved in metabolism, especially glycolysis, such as PDK1 and PKM2 and, most prominently PFKFB4. In vitro studies confirmed an essential role of PFKFB4 in the maintenance of brain CSCs. Furthermore, high PFKFB4 expression was associated with shorter survival of primary glioblastoma patients. Our findings support the importance of the glycolytic pathway in the maintenance of malignant glioma cells and brain CSCs and imply tumor metabolism as a promising therapeutic target in glioblastoma.  相似文献   

17.
Malignant gliomas are the prototype of highly infiltrative tumors and this characteristic is the main factor for the inevitable tumor recurrence and short survival after most aggressive therapies. The aberrant communication between glioma cells and tumor microenvironment represents one of the major factors regulating brain tumor dispersal. Our group has previously reported that the tyrosine kinase receptor Tie2/TEK is expressed in glioma cells and brain tumor stem cells and is associated with the malignant progression of these tumors. In this study, we sought to determine whether the angiopoietin 1 (Ang1)/Tie2 axis regulates crosstalk between glioma cells and endothelial cells. We found that Ang1 enhanced the adhesion of Tie2-expressing glioma and brain tumor stem cells to endothelial cells. Conversely, specific small interfering RNA (siRNA) knockdown of Tie2 expression inhibited the adhesion capability of glioma cells. Tie2 activation induced integrin β1 and N-cadherin upregulation, and neutralizing antibodies against these molecules inhibited the adhesion of Tie2-positive glioma cells to endothelial cells. In 2D and 3D cultures, we observed that Ang1/Tie2 axis activation was related to increased glioma cell invasion, which was inhibited by using Tie2 siRNA. Importantly, intracranial co-implantation of Tie2-positive glioma cells and endothelial cells in a mouse model resulted in diffusely invasive tumors with cell clusters surrounding glomeruloid vessels mimicking a tumoral niche distribution. Collectively, our results provide new information about the Tie2 signaling in glioma cells that regulates the cross-talk between glioma cells and tumor microenvironment, envisioning Tie2 as a multi-compartmental target for glioma therapy.  相似文献   

18.
Glioblastoma (GBM) is the most common central nervous system tumor and the molecular mechanism driving its development is still largely unknown, limiting the treatment of this disease. In the present study, we explored the potential role of miR-152 in glioblastoma stem cells (GSCs) as well as the possible molecular mechanisms. Our results proved that miR-152 was down-regulated in human GSCs. Restoring the expression of miR-152 dramatically reduced the cell proliferation, cell migration and invasion as well as inducing apoptosis. Mechanistic investigations defined Krüppel-like factor 4 (KLF4) as a direct and functional downstream target of miR-152, which was involved in the miR-152-mediated tumor-suppressive effects in GSCs. Meanwhile, this process was coincided with the down-regulated LGALS3 that could be bound and promoted by KLF4, leading to attenuate the activation of MEK1/2 and PI3K signal pathways. Moreover, the in vivo study showed that miR-152 over-expression and KLF4 knockdown produced the smallest tumor volume and the longest survival in nude mice. Taken together, these results elucidated the function of miR-152 in GSCs progression and suggested a promising application of it in glioma treatment.  相似文献   

19.
Disease progression of glioblastoma involves a complex interplay between tumor cells and the peri-tumor microenvironment. The propensity of malignant glioma cells to disperse throughout the brain typifies the disease and portends a poor response to surgical resection, radiotherapy, and current chemotherapeutics. The focal adhesion kinases FAK and Pyk2 function as important signaling effectors in glioma through stimulation of pro-migratory and proliferative signaling pathways. In the current study, we examined the importance of Pyk2 and FAK in the pathobiology of malignant glioma in an intracranial xenograft model. We show that mice with xenografts established with glioma cells with specific knockdown of Pyk2 or FAK expression by RNA interference had significantly increased survival compared to control mice. Furthermore, the effect of inhibition of Pyk2 activity in xenografts was compared to the effect of knockdown of Pyk2 expression. Inhibition of Pyk2 activity by stable expression an autonomous FERM domain in glioma cells slowed disease progression in the intracranial xenograft model. In contrast, expression of a variant FERM domain that does not inhibit Pyk2 activity did not alter survival. These results substantiate the disease relevance of both Pyk2 and FAK in glioma and suggest a novel approach to target Pyk2 for therapeutic benefit.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号