首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 452 毫秒
1.
The T1 and T2 temperature dependence of female breast adipose tissue was investigated at 1.5 T in order to evaluate the applicability of relaxation‐based MR thermometry in fat for the monitoring of thermal therapies in the breast. Relaxation times T1, T2 and T2TSE (the apparent T2 measured using a turbo spin echo readout sequence) were measured in seven fresh adipose breast samples for temperatures from 25 to 65 °C. Spectral water suppression was used to reduce the influence of the residual water signal. The temperature dependence of the relaxation times was characterized. The expected maximum temperature measurement errors based on average calibration lines were calculated. In addition, the heating–cooling reversibility was investigated for two samples. The T1 and T2TSE temperature (T) dependence could be fitted well with an exponential function of 1/T. A linear relationship between T2 and temperature was found. The temperature coefficients (mean ± inter‐sample standard deviation) of T1 and T2TSE increased from 25 °C (dT1/dT = 5.35 ± 0.08 ms/°C, dT2TSE/dT = 3.82 ± 0.06 ms/°C) to 65 °C (dT1/dT = 9.50 ± 0.16 ms/°C, dT2TSE/dT = 7.99 ± 0.38 ms/°C). The temperature coefficient of T2 was 0.90 ± 0.03 ms/°C. The temperature‐induced changes in the relaxation times were found to be reversible after heating to 65 °C. Given the small inter‐sample variation of the temperature coefficients, relaxation‐based MR thermometry appears to be feasible in breast adipose tissue, and may be used as an adjunct to proton resonance frequency shift (PRFS) thermometry in aqueous tissue (glandular + tumor). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Online MR temperature monitoring during radiofrequency (RF) ablation of cardiac arrhythmias may improve the efficacy and safety of the treatment. MR thermometry at 1.5 T using the proton resonance frequency (PRF) method was assessed in 10 healthy volunteers under normal breathing conditions, using a multi-slice, ECG-gated, echo planar imaging (EPI) sequence in combination with slice tracking. Temperature images were post-processed to remove residual motion-related artifacts. Using an MR-compatible steerable catheter and electromagnetic noise filter, RF ablation was performed in the ventricles of two sheep in vivo. The standard deviation of the temperature evolution in time (TSD) was computed. Temperature mapping of the left ventricle was achieved at an update rate of approximately 1 Hz with a mean TSD of 3.6 ± 0.9 °C. TSD measurements at the septum showed a higher precision (2.8 ± 0.9 °C) than at the myocardial regions at the heart-lung and heart-liver interfaces (4.1 ± 0.9 °C). Temperature rose maximally by 9 °C and 16 °C during 5 W and 10 W RF applications, respectively, for 60 s each. Tissue temperature can be monitored at an update rate of approximately 1 Hz in five slices. Typical temperature changes observed during clinical RF application can be monitored with an acceptable level of precision.  相似文献   

3.
Intracardiac blood flow patterns are affected by the morphology of cardiac structures and are set up to support the heart's pump function. Exercise affects contractility and chamber size as well as pre‐ and afterload. The aim of this study was to test the feasibility of four‐dimensional phase contrast cardiovascular MRI under pharmacological stress and to study left ventricular blood flow under stress. 4D flow data were successfully acquired and analysed in 12 animals. During dobutamine infusion, heart rate and ejection fraction increased (82 ± 5 bpm versus 124 ± 3 bpm/46 ± 9% versus 65 ± 7%; both p < 0.05). A decrease in left ventricular end‐diastolic volume (72 ± 14 mL versus 55 ± 8 mL; p < 0.05) and end‐systolic volume (40 ± 15 mL versus 19 ± 6 mL; p < 0.05) but no change in stroke volume were observed. Trans‐mitral diastolic inflow velocity increased under dobutamine and the trajectory of inflowing blood was directed towards the anterior septum with increased inflow angle (26 ± 5°) when compared with controls (15 ± 2°). In 5/6 animals undergoing stress diastolic vortices developed later, and in 3/6 animals vortices collapsed earlier with significantly smaller cross‐sectional area during diastole. The vorticity index was not affected. Under the stress condition direct flow (% ejection within the next heart beat) increased from 43 ± 6% to 53 ± 8%. 4D MRI blood flow acquisition and analysis are feasible in pig hearts under dobutamine‐induced stress. Flow patterns characterized by high blood velocity and antero‐septally oriented diastolic inflow as well as decreased ventricular volumes are unfavourable conditions for diastolic vortex development under pharmacological stress, and cardiac output is increased by a rise in heart rate and directly ejected left ventricular blood volume.  相似文献   

4.
High intensity focused ultrasound (HIFU) under MRI guidance may provide minimally invasive treatment for localized prostate cancer. In this study, ex vivo and in vivo experiments were performed using a prostate-dedicated endorectal phased array (16 circular elements arranged on a truncated spherical cap of radius 60 mm) and a translation-rotation mechanical actuator in order to evaluate the lesion formation and the potential interest of dual-modality (electronic and mechanical) interleaved displacement of the focus for volumetric sonication paradigms. Different sonication sequences, including elementary lesions, line scan, slice sweeping and volume sonications, were investigated with a clinical 1.5 T MR scanner. Two orthogonal planes (axial and sagittal) were simultaneously monitored using rapid MR thermometry (PRFS method) and the temperature and thermal dose maps were displayed in real time. No RF interferences were detected in MR acquisition during sonications. The shape of the thermal lesions in vivo was examined at day 5 post-treatment by MRI follow-up (T2w sequence and Gd-T1w-TFE) and postmortem histological analysis. This study suggests that electronic displacement of the focus (along the ultrasound propagation axis) interleaved with mechanical X-Z translations and rotation around B(0) can be a suitable modality to treat patient-specific sizes and shapes of a pathologic tissue. The electronic displacement of focus (achieved in less than 0.1 s) is an order of magnitude faster than the mechanical motion of the HIFU device (1 s latency). As an example, for an in vivo volumetric sonication with foci between 32 and 47 mm (7 successive line scans, 11 lines/slice, 4 foci/line) with applied powers between 17.4 and 39.1 Wac, a total duration of sonication of 408.1 s was required to ablate a volume of approximately 5.7 cm(3) (semi-chronic lesion measured at day 5), while the maximum temperature elevation reached was 30 °C. While electronic focusing is necessary to speed up the procedure, one should consider as a potential drawback the non-negligible risk for generating secondary lobes with full steering in 3D. Reference-free PRFS thermometry accurately removed the effects of B(o) dynamic perturbation in the vicinity of the moving transducer. Therefore, the dual-modality volumetric sonication paradigm represents a cost-effective technological compromise to induce the desired shape of the lesion in the prostate through the limited endorectal space, in a reasonable period of time and without side effects.  相似文献   

5.
In magnetic resonance (MR) imaging, the most widely used and accurate method for measuring temperature is based on the shift in proton resonance frequency (PRF). However, inter-scan motion and bulk magnetic field shifts can lead to inaccurate temperature measurements in the PRF-shift MR thermometry method. The self-reference PRF-shift MR thermometry method was introduced to overcome such problems by deriving a reference image from the heated or treated image, and approximates the reference phase map with low-order polynomial functions. In this note, a new approach is presented to calculate the baseline phase map in self-reference PRF-shift MR thermometry. The proposed method utilizes the phase gradient to remove the phase unwrapping step inherent to other self-reference PRF-shift MR thermometry methods. The performance of the proposed method was evaluated using numerical simulations with temperature distributions following a two-dimensional Gaussian function as well as phantom and in vivo experimental data sets. The results from both the numerical simulations and experimental data show that the proposed method is a promising technique for measuring temperature.  相似文献   

6.
Magnetic resonance imaging (MRI) and ultrasonography have been used simultaneously in this ex vivo study for the image-guidance of high intensity focused ultrasound (HIFU) treatment in moving tissue. A ventilator-driven balloon produced periodic and non-rigid (i.e. breathing-like) motion patterns in phantoms. MR-compatible ultrasound (US) imaging enabled near real-time 2D motion tracking based on optical flow detection, while near-harmonic reference-free proton resonance frequency shift (PRFS) MR thermometry (MRT) was used to monitor the thermal buildup on line. Reference-free MRT was applied to gradient-echo echo-planar imaging phase maps acquired at the frame rate of 250 to 300 ms/slice with voxel size 1.25×1.25×5 mm(3). The MR-US simultaneous imaging was completely free of mutual interferences while minor RF interferences from the HIFU device were detected in the far field of the US images. The effective duty-cycle of the HIFU sonication was close to 100 % and no off-interval was required to temporally decouple it from the ultrasonography. The motion compensation of the HIFU sonication was achieved with an 8 Hz frame rate and sub-millimeter spatial accuracy, both for single-focus mode and for an iterated multi-foci line scan. Near harmonic reference-less PRFS MRT delivered motion-robust thermal maps perpendicular or parallel to the HIFU beam (0.7 °C precision, 0.5 °C absolute accuracy). Out-of-plane motion compensation was not addressed in this study.  相似文献   

7.
The purpose of this work was to validate in phantom studies and demonstrate the clinical feasibility of MR proton resonance frequency thermometry at 1.5 T with segmented gradient-echo echo planar imaging (GRE-EPI) sequences during liver tumour radiofrequency (RF) ablation. Classical GRE acquisitions and segmented GRE-EPI acquisitions were performed at 1.5 T during simultaneous RF heating with an MR-compatible RF electrode placed in an agar gel phantom. Temperature increments were calculated and compared with four optical temperature probe measurements using Bland- Altman analysis. In a preliminary clinical feasibility study, the rapid GRE-EPI sequence (echo train length = 13) was used for MR temperature monitoring of RF ablation of liver tumours in three patient procedures. For phantom experiments, the Bland-Altman mean of differences between MR and optical probe temperature measurements was <0.4 degrees C, and the 95% limits of agreement value was <1.4 degrees C. For the in vivo studies, respiratory-triggered GRE-EPI acquisitions yielded a temperature accuracy of 1.3 +/- 0.4 degrees C (acquisition time = 0.6 s/image, spatial coverage of three slices/respiratory cycle). MR proton resonance frequency thermometry at 1.5 T yields precise and accurate measurements of temperature increment with both classical GRE and rapid GRE-EPI sequences. Rapid GRE-EPI sequences minimize intra-scan motion effects and can be used for MR thermometry during RF ablation in moving organs. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

8.
In MR elastography (MRE), periodic tissue motion is phase encoded using motion‐encoding gradients synchronized to an externally applied periodic mechanical excitation. Conventional methods result in extended scan time for quality phase images, thus limiting the broad application of MRE in the clinic. For practical scan times, researchers have been relying on one‐dimensional or two‐dimensional motion‐encoding, low‐phase sampling and a limited number of slices, and artifact‐prone, single‐shot, echo planar imaging (EPI) readout. Here, we introduce a rapid multislice pulse sequence capable of three‐dimensional motion encoding that is also suitable for simultaneously encoding motion with multiple frequency components. This sequence is based on a gradient‐recalled echo (GRE) sequence and exploits the principles of fractional encoding. This GRE MRE pulse sequence was validated as capable of acquiring full three‐dimensional motion encoding of isotropic voxels in a large volume within less than a minute. This sequence is suitable for monofrequency and multifrequency MRE experiments. In homogeneous paraffin phantoms, the eXpresso sequence yielded similar storage modulus values as those obtained with conventional methods, although with markedly reduced variances (7.11 ± 0.26 kPa for GRE MRE versus 7.16 ± 1.33 kPa for the conventional spin‐echo EPI sequence). The GRE MRE sequence obtained better phase‐to‐noise ratios than the equivalent spin‐echo EPI sequence (matched for identical acquisition time) in both paraffin phantoms and in vivo data in the liver (59.62 ± 11.89 versus 27.86 ± 3.81, 61.49 ± 14.16 versus 24.78 ± 2.48 and 58.23 ± 10.39 versus 23.48 ± 2.91 in the X, Y and Z components, respectively, in the case of liver experiments). Phase‐to‐noise ratios were similar between GRE MRE used in monofrequency or multifrequency experiments (75.39 ± 14.93 versus 86.13 ± 18.25 at 28 Hz, 71.52 ± 24.74 versus 86.96 ± 30.53 at 56 Hz and 95.60 ± 36.96 versus 61.35 ± 26.25 at 84Hz, respectively). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Respiratory induced resonance offset (RIRO) is a periodic disturbance of a magnetic field due to breathing. Such disturbance handicaps the accuracy of the proton resonance frequency shift (PRFS) method of MRI temperature mapping in anatomies situated nearby the lungs and chest wall. In this work, we propose a method capable of minimizing errors caused by RIRO in PRFS temperature maps. In this method, a set of baseline images characterizing RIRO at a variety of respiratory cycle instants is acquired before the thermal treatment starts. During the treatment, the temperature evolution is found from two successive images. Then, the calculated temperature changes are corrected for the additional contribution caused by RIRO using the pre-treatment baseline images acquired at the identical instances of the respiratory cycle. Our method is shown to improve the accuracy and stability of PRFS temperature maps in the presence of RIRO and inter-scan motion in phantom and volunteers' breathing experiments. Our method is also shown to be applicable to anatomies moving during breathing if a proper registration procedure is applied.  相似文献   

10.
Knowledge on the thermal dose delivered during thermal balloon angioplasty (TBA) is desirable to understand why TBA's outcome varies widely among patients and why it is subject to high restenosis rates. In its conventional implementation, TBA involves injection of a heated medium into a balloon positioned within a stenotic blood vessel. The medium injection causes flow, motion and susceptibility-redistribution artefacts that are devastating to the proton resonance frequency shift (PRFS) technique of MRI temperature mapping. Here, we propose to separate in time medium injection and heating by first inflating a balloon with a medium at an initial temperature, and then by heating the medium up using laser light. The separation is shown to eliminate all the mentioned artefacts and to enable real-time MRI temperature mapping using the PRFS technique. Accurate and reliable temperature maps were acquired in a TBA balloon itself and in the surrounding phantom tissue during heat application.  相似文献   

11.
Brain metabolism declines with age, but cerebral blood flow (CBF) is less age dependent. We therefore hypothesized that the brain temperature would decline with age, and measured the temperatures of the lateral ventricles in healthy volunteers. Diffusion‐weighted imaging (DWI) data from 45 healthy volunteers [mean (± standard deviation) age, 30.6 ± 8.66 years; range, 19–56 years] were used for this study. The temperature of water molecules is directly related to the diffusion coefficient, so that the temperature of cerebrospinal fluid can be measured using DWI. Temperature was calculated using the equation, T ( °C) = 2256.74/ln(4.39221/D) – 273.15, where D is the diffusion coefficient. The lateral ventricles were manually extracted by an experienced neuroradiologist on b0 images. The mean ventricular temperature was determined from the distribution function of the temperature of all selected voxels. The mean lateral ventricular temperature in healthy volunteers showed a linear decrease with age (correlation coefficient R2 = 0.8879; p < 0.01), presumably caused by an asynchronous decline in brain metabolism and CBF. DWI‐based thermometry demonstrates that ventricular temperature declines with the normal aging process. Further study is warranted to define the relationships between temperature, metabolism and circulation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The aim of this study was to use manganese (Mn)‐enhanced MRI (MEMRI) to detect changes in calcium handling associated with cardiac hypertrophy in a mouse model, and to determine whether the impact of creatine kinase ablation is detectable using this method. Male C57BL/6 (C57, n = 11) and male creatine kinase double‐knockout (CK‐M/Mito–/–, DBKO, n = 12) mice were imaged using the saturation recovery Look–Locker T1 mapping sequence before and after the development of cardiac hypertrophy. Hypertrophy was induced via subcutaneous continuous 3‐day infusion of isoproterenol, and sham mice not subjected to cardiac hypertrophy were also imaged. During each scan, the contrast agent Mn was administered and the resulting change in R1 (=1/T1) was calculated. Two anatomical regions of interest (ROIs) were considered, the left‐ventricular free wall (LVFW) and the septum, and one ROI in an Mn‐containing standard placed next to the mouse. We found statistically significant (p < 0.05) decreases in the uptake of Mn in both the LVFW and septum following the induction of cardiac hypertrophy. No statistically significant decreases were detected in the standard, and no statistically significant differences were found among the sham mice. Using a murine model, we successfully demonstrated that changes in Mn uptake as a result of cardiac hypertrophy are detectable using the functional contrast agent and calcium mimetic Mn. Our measurements showed a decrease in the relaxivity (R1) of the myocardium following cardiac hypertrophy compared with normal control mice. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The combination of flow‐sensitive alternating inversion recovery (FAIR) and single‐shot k‐space‐banded gradient‐ and spin‐echo (kbGRASE) is proposed here to measure perfusion in the mouse brain with high sensitivity and stability. Signal‐to‐noise ratio (SNR) analysis showed that kbGRASE‐FAIR boosts image and temporal SNRs by 2.01 ± 0.08 and 2.50 ± 0.07 times, respectively, when compared with standard single‐shot echo planar imaging (EPI)‐FAIR implemented in our experimental systems, although the practically achievable spatial resolution was slightly reduced. The effects of varying physiological parameters on the precision and reproducibility of cerebral blood flow (CBF) measurements were studied following changes in anesthesia regime, capnia and body temperature. The functional MRI time courses with kbGRASE‐FAIR showed a more stable response to 5% CO2 than did those with EPI‐FAIR. The results establish kbGRASE‐FAIR as a practical and robust protocol for quantitative CBF measurements in mice at 9.4 T. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
A method for the measurement of temperature in the lateral ventricle using diffusion‐weighted imaging (DWI) has been proposed recently. This method uses predetermined arbitrary thresholds, but a more objective method of calculation would be useful. We therefore compared four different calculation methods, two of which were newly created and did not require predetermined thresholds. A rectangular polyethylene terephthalate bottle (8 × 10 × 28 cm3) was filled with heated water (35.0–38.8 °C) and used as a water phantom. The DWI data of 23 healthy subjects (aged 26–75 years; mean ± standard deviation, 50.13 ± 19.1 years) were used for this study. The temperature was calculated using the following equation: T(°C) = 2256.74/ln(4.39221/D) ? 273.15, where D is the diffusion coefficient. The mean ventricular temperature was calculated by four methods: two thresholding methods and two histogram curve‐fitting methods. As a reference, we used the temperature measured at the tympanic membrane, which is known to be approximately 1 °C lower than the brain temperature. The averaged differences in temperature between mercury thermometry and classical predetermined thresholding methods for the water phantom were 0.10 ± 0.42 and 0.05 ± 0.41 °C, respectively. The histogram curve‐fitting methods, however, yielded temperatures a little lower (averaged differences of ?0.24 ± 0.32 and ?0.14 ± 0.31 °C, respectively) than mercury thermometry. There was very little difference in temperature between tympanic thermometry and classical predetermined thresholding methods (+0.01 and ?0.07 °C, respectively). In humans, however, the histogram curve‐fitting methods yielded temperatures approximately 1 °C higher (+1.04 °C and +1.36 °C, respectively), suggesting that temperatures measured in this way more closely approximate the true brain temperature. The histogram curve‐fitting methods were more objective and better matched the estimated brain temperature than did classical predetermined thresholding methods, although the standard deviation was wider in the former methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The embryonic heart consists of five segments comprising the fast‐conducting atrial and ventricular segments flanked by slow‐conducting segments, i.e. inflow tract, atrioventricular canal and outflow tract. Although the incorporation of the flanking segments into the definitive atrial and ventricular chambers with development is generally accepted now, the contribution of the outflow tract myocardium to the definitive ventricles remained controversial mainly due to the lack of appropriate markers. For that reason we performed a detailed study of the pattern of expression of myosin light chain (MLC) 2a and 2v by in situ hybridization and immunohistochemistry during rat and mouse heart development. Expression of MLC2a mRNA displays a postero‐anterior gradient in the tubular heart. In the embryonic heart it is down‐regulated in the ventricular compartment and remains high in the outflow tract, atrioventricular canal, atria and inflow tract myocardium. MLC2v is strongly expressed in the ventricular myocardium and distinctly lower in the outflow tract and atrioventricular canal. The co‐expression of MLC2a and MLC2v in the outflow tract and atrioventricular canal, together with the single expression in the atrial (MLC2a) and ventricular (MLC2v) myocardium, permits the delineation of their boundaries. With development, myocardial cells are observed in the lower endocardial ridges that share MLC2a and MLC2v expression with the myocardial cells of the outflow tract. In neonates, MLC2a continues to be expressed around both right and left semilunar valves, the outlet septum and the non‐trabeculated right ventricular outlet. These findings demonstrate the contribution of the outflow tract to the definitive ventricles and demonstrate that the outlet septum is derived from outflow tract myocardium. Anat Rec 254:135–146, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

16.
Non-invasive thermometry using hyperfine-shifted MR signals from paramagnetic lanthanide complexes has attracted attention recently because the chemical shifts of these complexes are many times more sensitive to temperature than the water 1H signal. Among all the lanthanide complexes examined thus far, thulium tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (TmDOTMA-) appears to be the most suitable for MR thermometry. In this paper, the feasibility of imaging the methyl 1H signal from TmDOTMA- using a frequency-selective radiofrequency excitation pulse and chemical shift-selective (CHESS) water suppression is demonstrated. A temperature imaging method using a phase-sensitive spin-echo imaging sequence was validated in phantom experiments. A comparison of regional temperature changes measured with fiber-optic probes and the temperatures calculated from the phase shift near each probe showed that the accuracy of imaging the temperature with TmDOTMA- is at least 0.1-0.2 degrees C. The feasibility of imaging temperature changes in an intact rat at 0.5-0.6 mmol/kg dose in only a few minutes is demonstrated. Similar to commonly used MRI contrast agents, the lanthanide complex does not cross the blood-brain barrier. TmDOTMA- may prove useful for temperature imaging in many biomedical applications but further studies relating to acceptable dose and signal-to-noise ratio are necessary before clinical applications.  相似文献   

17.
To identify the anatomical basis for cardiac electrical signal conduction, particularly seeking the intramural terminals of conduction pathway within the ventricles, sheep hearts were examined compared with human hearts utilizing the characteristic morphology of Purkinje cells as a histological marker. In 15 sheep and five human autopsies of noncardiac death, prevalence of Purkinje or Purkinje‐type cells were histologically examined in the atrioventricular node, its distal conduction pathway, the interventricular septum, and the right‐ and left‐ventricular free walls. Myocardial tissue cleavages were examined in the transmural sections (along cardiac base‐to‐apex axis) obtained from the septum and ventricular free walls. Serial histological sections through virtually the entirety of the septum in selected sheep were used as the basis of a three‐dimensional reconstruction of the conduction pathway, particularly of the intramural Purkinje cell network. Purkinje cells were found within the mural myocardium of sheep ventricles whereas no intramural Purkinje‐type cell was detected within the human ventricles. In the sheep septum, every intramural Purkinje cell composed a three‐dimensional network throughout the mural myocardium, which proximally connected to the subendocardial extension of the bundle branches and distally formed an occasional junction with ordinary working myocytes. The Purkinje‐cell network may participate in the ventricular excitation as the terminal conduction pathway. Individual connections among the Purkinje cells contain the links of through‐wall orientation which would benefit the signal conduction crossing the architectural barriers by cleavages in sheep hearts. The myocardial architectural changes found in diseased hearts could disrupt the network links including those with transmural orientation. Anat Rec, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

18.
Diastolic dysfunction is a sensitive early indicator of heart failure and can provide additional data to conventional measures of systolic function. Transmitral Doppler ultrasound, which measures the one‐dimensional flow of blood through the mitral valve, is currently the preferred method for the measurement of diastolic function, but the measurement of the left ventricular volume changes using high‐temporal‐resolution cinematic magnetic resonance imaging (CINE MRI) is an alternative approach which is emerging as a potentially more robust and user‐independent technique. Here, we investigated the performance of high‐temporal‐resolution CINE MRI and compared it with ultrasound for the detection of diastolic dysfunction in a mouse model of myocardial infarction. An in‐house, high‐temporal‐resolution, retrospectively gated CINE sequence was developed with a temporal resolution of 1 ms. Diastolic function in mice was assessed using a custom‐made, open‐source reconstruction package. Early (E) and late (A) left ventricular filling phases were easily identifiable, and these measurements were compared directly with high‐frequency, pulsed‐wave, Doppler ultrasound measurements of mitral valve inflow. A repeatability study established that high‐temporal‐resolution CINE MRI and Doppler ultrasound showed comparable accuracy when measuring E/A in normal control mice. However, when applied in a mouse model of myocardial infarction, high‐temporal‐resolution CINE MRI indicated diastolic heart failure (E/A = 0.94 ± 0.11), whereas ultrasound falsely detected normal cardiac function (E/A = 1.21 ± 0.11). The addition of high‐temporal‐resolution CINE MRI to preclinical imaging studies enhances the library of sequences available to cardiac researchers and potentially identifies diastolic heart failure early in disease progression.  相似文献   

19.
Pulmonary arterial hypertension (PAH) is a severe disease that leads to increased pulmonary vascular resistance and right heart failure. Noninvasive methods are needed to detect changes in the pulmonary artery circulation during PAH establishment and/or treatment. Pulmonary blood flow velocity can be evaluated by dynamic MR angiography, although the relevance of such data in the context of PAH remains to be demonstrated. A novel dynamic MR angiography technique was used in this work to measure blood flow velocity in the pulmonary arteries of the same living animals, before and after the establishment of chronic hypoxia‐induced PAH. Chronic hypoxia decreased significantly the blood flow velocity (43.8 ± 4.9 vs 24.3 ± 8.7 cm/s) on electrocardiography‐triggered time‐resolved angiograms. In parallel, chronic hypoxia‐induced PAH was confirmed from invasive measurements of the mean pulmonary arterial pressure (32.1 ± 4.8 vs 12.5 ± 2.2 mmHg) and the ratio of the right ventricle weight to the left ventricle plus septum weight (Fulton index: 0.54 ± 0.06 vs 0.27 ± 0.04). This study demonstrates the potential interest of dynamic MR angiography for the investigation of experimental models and for the evaluation of treatment efficacy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The sensitivity of proton MR Spectroscopic Imaging (1H‐MRSI) of the prostate can be optimized by using the high magnetic field strength of 7 T in combination with an endorectal coil. In the work described in this paper we introduce an endorectal transceiver at 7 T, validate its safety for in vivo use and apply a pulse sequence, optimized for three‐dimensional (3D) 1H‐MRSI of the human prostate at 7 T. A transmit/receive endorectal RF coil was adapted from a commercially available 3 T endorectal receive‐only coil and validated to remain within safety guidelines for radiofrequency (RF) power deposition using numerical models, MR thermometry of phantoms, and in vivo temperature measurements. The 1H‐MRSI pulse sequence used adiabatic slice selective refocusing pulses and frequency‐selective water and lipid suppression to selectively obtain the relevant metabolite signals from the prostate. Quantum mechanical simulations were used to adjust the inter‐pulse timing for optimal detection of the strongly coupled spin system of citrate resulting in an echo time of 56 ms. Using this endorectal transceiver and pulse sequence with slice selective adiabatic refocusing pulses, 3D 1H‐MRSI of the human prostate is feasible at 7 T with a repetition time of 2 s. The optimized inter‐pulse timing enables the absorptive detection of resonances of spins from spermine and citrate in phase with creatine and choline. These potential tumor markers may improve the in vivo detection, localization, and assessment of prostate cancer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号