首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The authors previously reported that the isoflurane-caused reduction of the carbachol-evoked cytoplasmic Ca transient increase ([Ca]cyt) was eliminated by K or caffeine-pretreatment. In this study the authors investigated whether the isoflurane-sensitive component of the carbachol-evoked [Ca]cyt transient involved Ca influx through the plasma membrane. METHODS: Perfused attached human neuroblastoma SH-SY5Y cells were exposed to carbachol (1 mm, 2 min) in the absence and presence of isoflurane (1 mm) and in the absence and presence of extracellular Ca (1.5 mm). The authors studied the effect of the nonspecific cationic channel blocker La (100 microm), of the L-type Ca channel blocker nitrendipine (10 microm), and of the N-type Ca channel blocker omega-conotoxin GVIA (0.1 microm) on isoflurane modulation of the carbachol-evoked [Ca]cyt transient. [Ca]cyt was detected with fura-2 and experiments were carried out at 37 degrees C. RESULTS: Isoflurane reduced the peak and area of the carbachol-evoked [Ca]cyt transient in the presence but not in the absence of extracellular Ca. La had a similar effect as the removal of extracellular Ca. Omega-conotoxin GVIA and nitrendipine did not affect the isoflurane sensitivity of the carbachol response although nitrendipine reduced the magnitude of the carbachol response. CONCLUSIONS: The current data are consistent with previous observations in that the carbachol-evoked [Ca]cyt transient involves both Ca release from intracellular Ca stores and Ca entry through the plasma membrane. It was found that isoflurane attenuates the carbachol-evoked Ca entry. The isoflurane sensitive Ca entry involves a cationic channel different from the L- or N- type voltage-dependent Ca channels. These results indicate that isoflurane attenuates the carbachol-evoked [Ca]cyt transient at a site at the plasma membrane that is distal to the muscarinic receptor.  相似文献   

2.
Background: Neuronal excitability is in part determined by Ca2+ availability that is controlled by regulatory mechanisms of cytosolic Ca2+ ([Ca2+]cyt). Alteration of any of those mechanisms by volatile anesthetics (VAs) may lead to a change in presynaptic transmission and postsynaptic excitability. Using a human neuroblastoma cell line, the effects of halothane and isoflurane on cytosolic Ca2+ concentration ([Ca2+]cyt) in response to K+ and carbachol stimulation were investigated.

Methods: Volatile anesthetic (0.05-1 mm) action on stimulated [Ca2+]cyt transients were monitored in suspensions of SH-SY5Y cells loaded with fura-2. Potassium chloride (KCl; 100 mm) was used to depolarize and activate Ca2+ entry through voltage-dependent calcium channels; 1 mm carbachol was used to activate muscarinic receptor-mediated inositol triphosphate (IP3)-dependent intracellular Ca2+ release. Sequential stimulations, KCl followed by carbachol and vice versa, were used to investigate interactions between intracellular Ca2+ stores.

Results: Halothane and isoflurane in clinically relevant concentrations enhanced the K+-evoked [Ca2+]cyt transient whether intracellular Ca2+ stores were full or partially depleted. In contrast, halothane and isoflurane reduced the carbachol-evoked [Ca2+]cyt transient when the intracellular Ca2+ stores were full but had no effect when the Ca2+ stores were partially depleted by KCl stimulation.  相似文献   


3.
BACKGROUND: Neuronal excitability is in part determined by Ca2+ availability that is controlled by regulatory mechanisms of cytosolic Ca2+ ([Ca2+]cyt). Alteration of any of those mechanisms by volatile anesthetics (VAs) may lead to a change in presynaptic transmission and postsynaptic excitability. Using a human neuroblastoma cell line, the effects of halothane and isoflurane on cytosolic Ca2+ concentration ([Ca2+]cyt) in response to K+ and carbachol stimulation were investigated. METHODS: Volatile anesthetic (0.05-1 mm) action on stimulated [Ca2+]cyt transients were monitored in suspensions of SH-SY5Y cells loaded with fura-2. Potassium chloride (KCl; 100 mm) was used to depolarize and activate Ca2+ entry through voltage-dependent calcium channels; 1 mm carbachol was used to activate muscarinic receptor-mediated inositol triphosphate (IP3)-dependent intracellular Ca2+ release. Sequential stimulations, KCl followed by carbachol and vice versa, were used to investigate interactions between intracellular Ca2+ stores. RESULTS: Halothane and isoflurane in clinically relevant concentrations enhanced the K+-evoked [Ca2+]cyt transient whether intracellular Ca2+ stores were full or partially depleted. In contrast, halothane and isoflurane reduced the carbachol-evoked [Ca2+]cyt transient when the intracellular Ca2+ stores were full but had no effect when the Ca2+ stores were partially depleted by KCl stimulation. CONCLUSIONS: Volatile anesthetics acted on sites that differently affect the K+- and carbachol-evoked [Ca2+]cyt transients. These data suggest the involvement of an intracellular Ca2+ translocation from the caffeine-sensitive Ca2+ store to the inositol triphosphate-sensitive Ca2+ store that was altered by halothane and isoflurane.  相似文献   

4.
Background: Local anesthetics (LAs) are known to inhibit voltage-dependent Na+ channels, as well as K+ and Ca2+ channels, but with lower potency. Since cellular excitability and responsiveness are largely determined by intracellular Ca2+ availability, sites along the Ca2+ signaling pathways may be targets of LAs. This study was aimed to investigate the LA effects on depolarization and receptor-mediated intracellular Ca2+ changes and to examine the role of Na+ and K+ channels in such functional responses.

Methods: Effects of bupivacaine, ropivacaine, mepivacaine, and lidocaine (0.1-2.3 mm) on evoked [Ca2+]i transients were investigated in neuronal SH-SY5Y cell suspensions using Fura-2 as the intracellular Ca2+ indicator. Potassium chloride (KCl, 100 mm) and carbachol (1 mm) were individually or sequentially applied to evoke increases in intracellular Ca2+. Coapplication of LA and Na+/K+ channel blockers was used to evaluate the role of Na+ and K+ channels in the LA effect on the evoked [Ca2+]i transients.

Results: All four LAs concentration-dependently inhibited both KCl- and carbachol-evoked [Ca2+]i transients with the potency order bupivacaine > ropivacaine > lidocaine >= mepivacaine. The carbachol-evoked [Ca2+]i transients were more sensitive to LAs without than with a KCl prestimulation, whereas the LA-effect on the KCl-evoked [Ca2+]i transients was not uniformly affected by a carbachol prestimulation. Na+ channel blockade did not alter the evoked [Ca2+]i transients with or without a LA. In the absence of LA, K+ channel blockade increased the KCl-, but decreased the carbachol-evoked [Ca2+]i transients. A coapplication of LA and K+ channel blocker resulted in larger inhibition of both KCl- and carbachol-evoked [Ca2+]i transients than by LA alone.  相似文献   


5.
Background: Many muscarinic functions are relevant to anesthesia, and alterations in muscarinic activity affect the anesthetic/analgesic potency of various drugs. Volatile anesthetics have been shown to depress muscarinic receptor function, and inhibition of the muscarinic signaling pathway alters the minimal alveolar anesthetic concentration of inhaled anesthetics. The purpose of this investigation was to determine in a neuronal cell which source of Ca2+ underlying the carbachol-evoked transient increase in cytoplasmic Ca2+ was reduced by isoflurane.

Methods: Experiments were performed at 37[degrees]C on continuously perfused monolayers of human neuroblastoma SH-SY5Y cells using Fura-2 as the cytoplasmic Ca2+ indicator. Carbachol (1 mm) was applied to evoke a transient increase in cytoplasmic Ca2+.

Results: Isoflurane (1 mm) reduces the carbachol-evoked transient increase in cytoplasmic Ca2+, and this isoflurane action is eliminated when the cells are continuously stimulated with 200 mm KCl or pretreated with 10 mm caffeine or 200 [mu]m ryanodine.  相似文献   


6.
Background: Isoflurane depresses the intracellular Ca2+ transient and force development during a twitch, but its effects on crossbridge cycling rates are difficult to predict because of the transient nature of the twitch. Measurements of the effects of isoflurane on crossbridge cycling kinetics during tetanic contractions, which provide a steady state level of activation in intact cardiac muscle, have not been previously reported.

Methods: Ferret right ventricular papillary muscles were isolated, and superficial cells were microinjected with the bioluminescent photoprotein aequorin to monitor the intracellular Ca2+ concentration. The rate of tension redevelopment (kTR) was measured during steady state isometric activation (tetanic stimulation, frequency 20 Hz, 1 [mu]m ryanodine, temperature = 30[degrees]C) in the absence of isoflurane (2, 6, and 12 mm extracellular [Ca2+]) and in the presence of 0.5, 1.0, and 1.5 minimum alveolar concentration isoflurane (12 mm extracellular [Ca2+]).

Results: Intracellular [Ca2+], isometric force, and kTR all increased when the extracellular [Ca2+] increased. Isoflurane (0.5, 1.0, and 1.5 minimum alveolar concentration) caused intracellular [Ca2+], isometric force, and kTR to decrease in a dose-dependent manner in the presence of 12 mm extracellular [Ca2+]. In the presence of increasing concentrations of isoflurane, the relation between intracellular [Ca2+] and force remained unchanged, whereas the relation between intracellular [Ca2+] and kTR was shifted toward higher [Ca2+].  相似文献   


7.
Background: Isoflurane has been shown to directly inhibit vascular reactivity. However, less information is available regarding its underlying mechanisms in systemic resistance arteries.

Methods: Endothelium-denuded smooth muscle strips were prepared from rat mesenteric resistance arteries. Isometric force and intracellular Ca2+ concentration ([Ca2+]i) were measured simultaneously in the fura-2-loaded strips, whereas only the force was measured in the [beta]-escin membrane-permeabilized strips.

Results: Isoflurane (3-5%) inhibited the increases in both [Ca2+]i and force induced by either norepinephrine (0.5 [mu]m) or KCl (40 mm). These inhibitions were similarly observed after depletion of intracellular Ca2+ stores by ryanodine. Regardless of the presence of ryanodine, after washout of isoflurane, its inhibition of the norepinephrine response (both [Ca2+]i and force) was significantly prolonged, whereas that of the KCl response was quickly restored. In the ryanodine-treated strips, the norepinephrine- and KCl-induced increases in [Ca2+]i were both eliminated by nifedipine, a voltage-gated Ca2+ channel blocker, whereas only the former was inhibited by niflumic acid, a Ca2+-activated Cl- channel blocker. Isoflurane caused a rightward shift of the Ca2+-force relation only in the fura-2-loaded strips but not in the [beta]-escin-permeabilized strips.  相似文献   


8.
BACKGROUND: Local anesthetics (LAs) are known to inhibit voltage-dependent Na+ channels, as well as K+ and Ca2+ channels, but with lower potency. Since cellular excitability and responsiveness are largely determined by intracellular Ca2+ availability, sites along the Ca2+ signaling pathways may be targets of LAs. This study was aimed to investigate the LA effects on depolarization and receptor-mediated intracellular Ca2+ changes and to examine the role of Na+ and K+ channels in such functional responses. METHODS: Effects of bupivacaine, ropivacaine, mepivacaine, and lidocaine (0.1-2.3 mm) on evoked [Ca2+](i) transients were investigated in neuronal SH-SY5Y cell suspensions using Fura-2 as the intracellular Ca2+ indicator. Potassium chloride (KCl, 100 mm) and carbachol (1 mm) were individually or sequentially applied to evoke increases in intracellular Ca2+. Coapplication of LA and Na+/K+ channel blockers was used to evaluate the role of Na+ and K+ channels in the LA effect on the evoked [Ca2+](i) transients. RESULTS: All four LAs concentration-dependently inhibited both KCl- and carbachol-evoked [Ca2+](i) transients with the potency order bupivacaine > ropivacaine > lidocaine >/= mepivacaine. The carbachol-evoked [Ca2+](i) transients were more sensitive to LAs without than with a KCl prestimulation, whereas the LA-effect on the KCl-evoked [Ca2+](i) transients was not uniformly affected by a carbachol prestimulation. Na+ channel blockade did not alter the evoked [Ca2+](i) transients with or without a LA. In the absence of LA, K+ channel blockade increased the KCl-, but decreased the carbachol-evoked [Ca2+](i) transients. A coapplication of LA and K+ channel blocker resulted in larger inhibition of both KCl- and carbachol-evoked [Ca2+](i) transients than by LA alone. CONCLUSIONS: Different and overlapping sites of action of LAs are involved in inhibiting the KCl- and carbachol-evoked [Ca2+](i) transients, including voltage-dependent Ca2+ channels, a site associated with the caffeine-sensitive Ca2+ store and a possible site associated with the IP(3)-sensitive Ca2+ store, and a site in the muscarinic pathway. K+ channels, but not Na+ channels, seem to modulate the evoked [Ca2+](i) transients, as well as the LA-effects on such responses.  相似文献   

9.
BACKGROUND: Many muscarinic functions are relevant to anesthesia, and alterations in muscarinic activity affect the anesthetic/analgesic potency of various drugs. Volatile anesthetics have been shown to depress muscarinic receptor function, and inhibition of the muscarinic signaling pathway alters the minimal alveolar anesthetic concentration of inhaled anesthetics. The purpose of this investigation was to determine in a neuronal cell which source of Ca2+ underlying the carbachol-evoked transient increase in cytoplasmic Ca2+ was reduced by isoflurane. METHODS: Experiments were performed at 37 degrees C on continuously perfused monolayers of human neuroblastoma SH-SY5Y cells using Fura-2 as the cytoplasmic Ca2+ indicator. Carbachol (1 mm) was applied to evoke a transient increase in cytoplasmic Ca2+. RESULTS: Isoflurane (1 mm) reduces the carbachol-evoked transient increase in cytoplasmic Ca2+, and this isoflurane action is eliminated when the cells are continuously stimulated with 200 mm KCl or pretreated with 10 mm caffeine or 200 microm ryanodine. CONCLUSIONS: Isoflurane reduction of the carbachol-evoked transient increase in cytoplasmic Ca2+ requires full caffeine-sensitive Ca2+ stores and Ca2+ release from the caffeine-sensitive stores through the ryanodine-sensitive Ca2+ release channels. The results indicate that isoflurane interferes with a muscarinic Ca2+ signaling through a mechanism downstream from the muscarinic receptors.  相似文献   

10.
Background: Vascular smooth muscle tone is regulated by changes in intracellular free Ca2+ concentration ([Ca2+]i) and myofilament Ca2+ sensitivity. These cellular mechanisms could serve as targets for anesthetic agents that alter vasomotor tone. This study tested the hypothesis that propofol increases myofilament Ca2+ sensitivity in pulmonary artery smooth muscle (PASM) via the protein kinase C (PKC) signaling pathway.

Methods: Canine PASM strips were denuded of endothelium, loaded with fura-2/AM, and suspended in modified Krebs- Ringer's buffer at 37[degrees]C for simultaneous measurement of isometric tension and [Ca2+]i.

Results: The KCl (30 mm) induced monotonic increases in [Ca2+]i and tension. Verapamil, an L-type Ca2+ channel blocker, attenuated KCl-induced increases in [Ca2+]i and tension to an equal extent. In contrast, propofol attenuated KCl-induced increases in [Ca2+]i to a greater extent than concomitant changes in tension and caused an upward shift in the peak tension-[Ca2+]i relation. Increasing extracellular Ca2+ in the presence of 30 mm KCl resulted in similar increases in [Ca2+]i in control and propofol-pretreated strips, whereas concomitant increases in tension were greater during propofol administration. The Ca2+ ionophore, ionomycin (0.1 [mu]m), increased [Ca2+]i to approximately 50% of the value induced by 60 mm KCl. Under these conditions, propofol (10, 100 [mu]m) caused increases in tension equivalent to 11 +/- 2 and 28 +/- 3% of the increases in tension in response to 60 mm KCl, whereas [Ca2+]i was slightly decreased. Similar effects were observed in response to the PKC activator, phorbol 12-myristate 13-acetate (PMA, 1 [mu]m). Specific inhibition of PKC with bisindolylmaleimide I before ionomycin administration decreased the propofol- and PMA-induced increases in tension and abolished the propofol- and PMA-induced decreases in [Ca2+]i. Selective inhibition of Ca2+-dependent PKC isoforms with Go 6976 also attenuated propofol-induced increases in tension.  相似文献   


11.
Background: Isoflurane has been reported to cause dose-dependent constriction in isolated coronary microvessels. However, these results are inconsistent with data from in situ and in vivo heart preparations which show that isoflurane dilates the coronary vasculature. To clarify the direct effects of isoflurane on coronary tone, we measured the response of isolated porcine resistance arterioles (ID, 75 +/- 4.0 [mu]m; range, 41-108 [mu]m) to isoflurane in the presence and absence of adenosine triphosphate-sensitive and Ca2+-activated potassium channel blockers and also after endothelial removal.

Methods: Subepicardial arterioles were isolated, cannulated, and pressurized to 45 mmHg without flow in a 37[degrees]C vessel chamber filled with MOPS buffer (pH = 7.4). After all vessels developed spontaneous (intrinsic) tone, dose-dependent (0.17-0.84 mm; approximately 0.5-2.5 minimum alveolar concentration) isoflurane-mediated effects on vessel ID were studied in the presence and absence of extraluminal glibenclamide (1 [mu]m; an adenosine triphosphate-sensitive channel blocker) or iberiotoxin (100 nm; a Ca2+-activated potassium channel blocker) or before and after endothelial denudation using the nonionic detergent CHAPS (0.4%). Vessel ID was measured using an inverted microscope and videomicrometer, and vasomotor responses were analyzed by normalizing changes in arteriole ID to the dilation observed after exposure to 10-4 m sodium nitroprusside, which causes maximal dilation.

Results: Isoflurane caused dose-dependent dilation of all coronary arterioles. This vasodilation was 6.0 +/- 0.7 [mu]m at an isoflurane concentration of 0.16 mm (approximately 0.5 minimum alveolar concentration) and 25.3 +/- 2.1 [mu]m at 0.75 mm (approximately 2.5 minimum alveolar concentration). These values represent 18.1 +/- 1.7% and 74.1 +/- 3.3%, respectively, of that observed with 10-4 sodium nitroprusside (34 +/- 3 [mu]m). Glibenclamide, but not iberiotoxin, exposure affected arteriolar dilation in response to isoflurane. Glibenclamide caused a downward displacement of the isoflurane dose-response curve, reducing isoflurane-mediated dilation by an average of 36%. Denuded arterioles showed a marked (approximately 70%) reduction in their ability to dilate in response to isoflurane.  相似文献   


12.
Background: The precise mechanisms behind the direct inhibitory action of sevoflurane on vascular smooth muscle have not been fully elucidated.

Methods: Endothelium-denuded smooth muscle strips were prepared from rat small mesenteric arteries. Isometric force and intracellular Ca2+ concentration ([Ca2+]i) were measured simultaneously in the fura-2-loaded strips. In another series of experiments, only isometric force was measured in the [beta]-escin-membrane-permeabilized strips.

Results: Sevoflurane (3-5%) inhibited the increases in both the [Ca2+]i and the force induced by either norepinephrine (0.5-10 [mu]m) or 40 mm K+. Sevoflurane still inhibited the increase in [Ca2+]i induced by norepinephrine after depletion of intracellular Ca2+ stores with ionomycin, although it little influenced the increase in [Ca2+]i induced by norepinephrine after treatment with verapamil. In the fura-2-loaded membrane-intact muscle, sevoflurane caused a rightward shift of Ca2+-force relation during force development to stepwise increment of extracellular Ca2+ concentration during 40-mm K+ depolarization in either the presence or the absence of norepinephrine. In contrast, sevoflurane did not influence Ca2+-activated contraction in the [beta]-escin-permeabilized muscle, in which [alpha]-adrenergic receptor coupling was not retained.  相似文献   


13.
Background: Although considerable evidence indicates neuronal Ca channels play significant roles in pain perception, their possible importance in hypersensitization after acute inflammation has not been investigated.

Methods: Using carrageenan for inducing hypersensitization, the authors investigated the analgesic effects of intrathecally administered N- and P/Q-type channel blockers, [omega]-conotoxin GVIA and [omega]-agatoxin IVA, respectively, and also examined the level of N-type channel expression.

Results: Acute inflammation, produced by carrageenan injection in a rat hind paw, caused mechanical hypersensitivity that resolved within several days. Injection of prostaglandin E2 into the same hind paw after resolution caused a markedly prolonged mechanical allodynia lasting more than 4 h. Similar but less potent prolonged allodynia was also induced in the contralateral hind paws. Intrathecal administration of [omega]-conotoxin GVIA (0.03-0.3 [mu]g) produced dose-dependent inhibition of the allodynia in both control and carrageenan-preconditioned rats. However, the potency of [omega]-conotoxin GVIA was significantly lower in carrageenan-preconditioned paws than in those in the contralateral and saline-preconditioned paws. In contrast, [omega]-agatoxin IVA (0.01-0.1 [mu]g) did not reduce the allodynia. Significant up-regulation of N-type channel expression was observed in both dorsal root ganglia and the spinal cord ipsilateral to the carrageenan-preconditioned hind paw.  相似文献   


14.
Background: Volatile anesthetics relax airway smooth muscle (ASM) by altering intracellular Ca2+ concentration ([Ca2+]i). The authors hypothesized that relaxation is produced by decreasing sarcoplasmic reticulum Ca2+ content via increased Ca2+ "leak" through both inositol trisphosphate (IP3) and ryanodine receptor channels.

Methods: Enzymatically dissociated porcine ASM cells were exposed to acetylcholine in the presence or absence of 2 minimum alveolar concentration (MAC) halothane, and IP3 levels were measured using radioimmunoreceptor assay. Other cells were loaded with the Ca2+ indicator fluo-3 and imaged using real-time confocal microscopy.

Results: Halothane increased IP3 concentrations in the presence and absence of acetylcholine. Inhibition of phospholipase C blunted the IP3 response to halothane. Exposure to 2 MAC halothane induced a transient [Ca2+]i response, suggesting depletion of sarcoplasmic reticulum Ca2+. Exposure to 20 [mu]m Xestospongin D, a cell-permeant IP3 receptor antagonist, resulted in a 45 +/- 13% decrease in the [Ca2+]i response to halothane compared with halothane exposure alone. In permeabilized cells, Xestospongin D or 0.5 mg/ml heparin decreased the [Ca2+]i response to halothane by 65 +/- 13% and 68 +/- 22%, respectively, compared with halothane alone. In both intact and permeabilized cells, 20 [mu]m ryanodine blunted the [Ca2+]i response to halothane by 32 +/- 13% and 39 +/- 21%, respectively, compared with halothane alone. Simultaneous exposure to Xestospongin D and ryanodine completely inhibited the [Ca2+]i response to halothane.  相似文献   


15.
Background: General anesthetics inhibit evoked release of classic neurotransmitters. However, their actions on neuropeptide release in the central nervous system have not been well characterized.

Methods: The effects of representative intravenous and volatile anesthetics were studied on the release of sulfated cholecystokinin 8 (CCK8s), a representative excitatory neuropeptide, from isolated rat cerebrocortical nerve terminals (synaptosomes). Basal, elevated KCl depolarization-evoked and veratridine-evoked release of CCK8s from synaptosomes purified from rat cerebral cortex was evaluated at 35[degrees]C in the absence or presence of extracellular Ca2+. CCK8s released into the incubation medium was determined by enzyme-linked immunoassay after filtration.

Results: Elevation of extracellular KCl concentration (to 15-30 mm) or veratridine (10-20 [mu]m) stimulated Ca2+-dependent CCK8s release. Basal, elevated KCl- or veratridine-evoked CCK8s release was not affected significantly by propofol (12.5-50 [mu]m), pentobarbital (50 and 100 [mu]m), thiopental (20 [mu]m), etomidate (20 [mu]m), ketamine (20 [mu]m), isoflurane (0.6-0.8 mm), or halothane (0.6-0.8 mm).  相似文献   


16.
Background: Because exposure to low temperature can modify the effect of volatile anesthetics on airway smooth muscle contraction, this study was conducted to investigate low-temperature modifications of the inhibitory effects of isoflurane and sevoflurane on canine tracheal smooth muscle tone by simultaneously measuring the muscle tension and intracellular concentration of Ca2+ ([Ca2+]i) and by measuring voltage-dependent Ca2+ channel activity.

Methods: [Ca2+]i was monitored by the 500-nm light emission ratio of preloaded fura-2, a Ca2+ indicator. Isometric tension was measured simultaneously. Whole cell patch clamp recording techniques were used to observe voltage-dependent Ca2+ channel activity in dispersed muscle cells. Isoflurane (0-3.0%) or sevoflurane (0-3%) was introduced to a bath solution at various temperatures (37, 34, or 31[degrees]C).

Results: Low temperature (34 or 31[degrees]C) reduced high-K+-induced (72.7 mm) muscle contraction and increased [Ca2+]i, but it enhanced carbachol-induced (1 [mu]m) muscle contraction with a decrease in [Ca2+]i. The volatile anesthetics tested showed significant inhibition of both high-K+-induced and carbachol-induced airway smooth muscle contraction, with a concomitant decrease in [Ca2+]i. The inhibition of the carbachol-induced muscle contraction by volatile anesthetics was abolished partially by exposure to low temperature. Volatile anesthetics and low-temperature exposure significantly inhibited voltage-dependent Ca2+ channel activity of the smooth muscle.  相似文献   


17.
BACKGROUND: Isoflurane depresses the intracellular Ca2+ transient and force development during a twitch, but its effects on crossbridge cycling rates are difficult to predict because of the transient nature of the twitch. Measurements of the effects of isoflurane on crossbridge cycling kinetics during tetanic contractions, which provide a steady state level of activation in intact cardiac muscle, have not been previously reported. METHODS: Ferret right ventricular papillary muscles were isolated, and superficial cells were microinjected with the bioluminescent photoprotein aequorin to monitor the intracellular Ca2+ concentration. The rate of tension redevelopment (kTR) was measured during steady state isometric activation (tetanic stimulation, frequency 20 Hz, 1 microM ryanodine, temperature = 30 degrees C) in the absence of isoflurane (2, 6, and 12 mM extracellular [Ca2+]) and in the presence of 0.5, 1.0, and 1.5 minimum alveolar concentration isoflurane (12 mM extracellular [Ca2+]). RESULTS: Intracellular [Ca2+], isometric force, and kTR all increased when the extracellular [Ca2+] increased. Isoflurane (0.5, 1.0, and 1.5 minimum alveolar concentration) caused intracellular [Ca2+], isometric force, and kTR to decrease in a dose-dependent manner in the presence of 12 mM extracellular [Ca2+]. In the presence of increasing concentrations of isoflurane, the relation between intracellular [Ca2+] and force remained unchanged, whereas the relation between intracellular [Ca2+] and kTR was shifted toward higher [Ca2+]. CONCLUSIONS: These results indicate that isoflurane depresses myocardial crossbridge cycling rates. It appears that this effect is partially mediated by a decrease in the intracellular [Ca2+]. However, additional mechanisms must be considered to explain the shift of the relation between intracellular [Ca2+] and kTR toward higher [Ca2+].  相似文献   

18.
Background: The authors have previously demonstrated that propofol attenuates capacitative calcium entry (CCE) via the protein kinase C signaling pathway in pulmonary artery smooth muscle cells (PVSMCs). The current goals were to determine whether CCE exists in PVSMCs; to assess the roles of the protein kinase C, tyrosine kinase (TK), and [rho]-kinase signaling pathways in regulating CCE; and to investigate the extent and cellular mechanisms by which intravenous anesthetics (thiopental, midazolam, ketamine, and propofol) alter CCE.

Methods: Primary cultures of fura-2-loaded canine PVSMCs were placed in a dish (37[degrees]C) on an inverted fluorescence microscope. Intracellular Ca2+ concentration ([Ca2+]i) was measured as the 340/380 fluorescence ratio in individual PVSMCs. Thapsigargin, a sarcoplasmic reticulum Ca2+-adenosine triphosphatase inhibitor, was used to deplete intracellular Ca2+ stores after removing extracellular Ca2+. CCE was then activated by restoring extracellular Ca2+ (2.2 mm).

Results: Thapsigargin caused a transient increase in [Ca2+]i (160 +/- 6%). Restoring extracellular Ca2+ caused a rapid peak increase in [Ca2+]i (155 +/- 7% of baseline), followed by a sustained increase in [Ca2+]i (129 +/- 5% of baseline), i.e., CCE was stimulated in PVSMCs. Neither protein kinase C activation nor inhibition had an effect on CCE. [rho]-Kinase inhibition also had no effect on CCE, whereas TK inhibition attenuated both peak and sustained CCE. Thiopental, midazolam, ketamine, and propofol each attenuated both peak and sustained CCE. TK inhibition abolished the thiopental-, midazolam-, and ketamine-induced, but not the propofol-induced, decreases in CCE.  相似文献   


19.
Background: Although barbiturates activate [Greek small letter alpha]-aminobutyric acid type A receptors as part of their hypnotic effect, these drugs also inhibit voltage-gated calcium channels. The authors determined if barbiturates could decrease neuronal intracellular Ca2+ transients and the resulting glutamate release.

Methods: Neonatal rat cerebellar granule neurons were isolated and cultured on coverslips and studied at 37 [degree sign]C. Spectrofluorometric assays were used during identical conditions to monitor intracellular Ca2+ with the Ca2+-sensitive fluorophore fura-2 and glutamate release by a glutamate dehydrogenase-coupled assay, which produced the reduced form of nicotinamide-adenine dinucleotide phosphate in proportion to the amount of glutamate released. Neurons were depolarized by a rapid increase in external [K+] from 5 to 55 mM. Control responses were compared with those in the presence of 10, 30, and 100 [micro sign]M thiopental; 3, 10, and 30 [micro sign]M methohexital; decreased external [Ca2+]; or voltage-gated calcium channel blockers.

Results: Thiopental and methohexital depressed the intracellular Ca2+ transient peak and plateau in a dose-dependent manner, as did decreased Ca (2+). The intermediate dose of either drug caused [almost equal to] 50% decrease in peak intracellular Ca2+ and 60% decrease in glutamate release. In the presence of specific L-and/or N-type voltage-gated calcium channel blockade by nicardipine or [Greek small letter omega]-conotoxin-GVIA, respectively, 30 [micro sign]M thiopental further decreased the intracellular Ca2+ transient. Thiopental caused a dose-dependent decrease in glutamate release, which was proportional to the decreased peak intracellular Ca2+.  相似文献   


20.
In the phospholipase-C (PLC) signaling system, Ca2+ is mobilized from intracellular Ca2+ stores by an action of inositol 1,4,5-trisphosphate (IP3). The depletion of IP3-sensitive Ca2+ stores activates a store-operated Ca2+ entry (SOCE). However, no direct evidence has been obtained about these signaling pathways in odontoblasts. In this study, we investigate the characteristics of the SOCE and IP3-mediated Ca2+ mobilizations in rat odontoblasts using fura-2 microfluorometry and a nystatin-perforated patch-clamp technique. In the absence of extracellular Ca2+ ([Ca2+]o), thapsigargin (TG) evoked a transient rise in intracellular Ca2+ concentration ([Ca2+]i). After TG treatment to deplete the store, the subsequent application of Ca2+ resulted in a rapid rise in [Ca2+]i caused by SOCE. In the absence of TG treatment, no SOCE was evoked. The Ca2+ influx was dependent on [Ca2+]o (KD = 1.29 mM) and was blocked by an IP3 receptor inhibitor, 2-aminoethoxydiphenyl borate (2-APB), as well as La3+ in a concentration-dependent manner (IC50 = 26 microM). In TG-treated cells, an elevation of [Ca2+]o from 0 to 2.5 mM elicited an inwardly rectifying current at hyperpolarizing potentials with a positive reversal potential. The currents were selective for Ca2+ over the other divalent cations (Ca2+ > Ba2+ > Sr2+ > Mn2+). In the absence of [Ca2+]o, carbachol, bradykinin, and 2-methylthioadenosine 5'triphosphate activated Ca2+ release from the store; these were inhibited by 2-APB. These results indicate that odontoblasts possessed Ca2+ signaling pathways through the activation of store-operated Ca2+ channels by the depletion of intracellular Ca2+ stores and through the IP3-induced Ca2+ release activated by PLC-coupled receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号