首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Major depressive disorder (MDD) and generalized anxiety disorder (GAD) are highly prevalent and debilitating disorders. The high overlap on the symptomatic and neurobiological level led to ongoing debates about their diagnostic and neurobiological uniqueness. The present study aims to identify common and disorder-specific neuropathological mechanisms and treatment targets in MDD and GAD. To this end we combined categorical and dimensional disorder models with a fully data-driven intrinsic network-level analysis (intrinsic connectivity contrast, ICC) to resting-state fMRI data acquired in 108 individuals (n = 35 and n = 38 unmedicated patients with first-episode GAD, MDD, respectively, and n = 35 healthy controls). Convergent evidence from categorical and dimensional analyses revealed MDD-specific decreased whole-brain connectivity profiles of the medial prefrontal and dorsolateral prefrontal cortex while GAD was specifically characterized by decreased whole-brain connectivity profiles of the putamen and decreased communication of this region with the amygdala. Together, findings from the present data-driven analysis suggest that intrinsic communication of frontal regions engaged in executive functions and emotion regulation represent depression-specific neurofunctional markers and treatment targets whereas dysregulated intrinsic communication of the striato-amygdala system engaged in reinforcement-based and emotional learning processes represent GAD-specific markers.Subject terms: Biomarkers, Neuroscience  相似文献   

2.
The amygdala is a major structure that orchestrates defensive reactions to environmental threats and is implicated in hypervigilance and symptoms of heightened arousal in posttraumatic stress disorder (PTSD). The basolateral and centromedial amygdala (CMA) complexes are functionally heterogeneous, with distinct roles in learning and expressing fear behaviors. PTSD differences in amygdala-complex function and functional connectivity with cortical and subcortical structures remain unclear. Recent military veterans with PTSD (n=20) and matched trauma-exposed controls (n=22) underwent a resting-state fMRI scan to measure task-free synchronous blood-oxygen level dependent activity. Whole-brain voxel-wise functional connectivity of basolateral and CMA seeds was compared between groups. The PTSD group had stronger functional connectivity of the basolateral amygdala (BLA) complex with the pregenual anterior cingulate cortex (ACC), dorsomedial prefrontal cortex, and dorsal ACC than the trauma-exposed control group (p<0.05; corrected). The trauma-exposed control group had stronger functional connectivity of the BLA complex with the left inferior frontal gyrus than the PTSD group (p<0.05; corrected). The CMA complex lacked connectivity differences between groups. We found PTSD modulates BLA complex connectivity with prefrontal cortical targets implicated in cognitive control of emotional information, which are central to explanations of core PTSD symptoms. PTSD differences in resting-state connectivity of BLA complex could be biasing processes in target regions that support behaviors central to prevailing laboratory models of PTSD such as associative fear learning. Further research is needed to investigate how differences in functional connectivity of amygdala complexes affect target regions that govern behavior, cognition, and affect in PTSD.  相似文献   

3.
Irritability cuts across many pediatric disorders and is a common presenting complaint in child psychiatry; however, its neural mechanisms remain unclear. One core pathophysiological deficit of irritability is aberrant responses to frustrative nonreward. Here, we conducted a preliminary fMRI study to examine the ability of functional connectivity during frustrative nonreward to predict irritability in a transdiagnostic sample. This study included 69 youths (mean age = 14.55 years) with varying levels of irritability across diagnostic groups: disruptive mood dysregulation disorder (n = 20), attention-deficit/hyperactivity disorder (n = 14), anxiety disorder (n = 12), and controls (n = 23). During fMRI, participants completed a frustrating cognitive flexibility task. Frustration was evoked by manipulating task difficulty such that, on trials requiring cognitive flexibility, “frustration” blocks had a 50% error rate and some rigged feedback, while “nonfrustration” blocks had a 10% error rate. Frustration and nonfrustration blocks were randomly interspersed. Child and parent reports of the affective reactivity index were used as dimensional measures of irritability. Connectome-based predictive modeling, a machine learning approach, with tenfold cross-validation was conducted to identify networks predicting irritability. Connectivity during frustration (but not nonfrustration) blocks predicted child-reported irritability (ρ = 0.24, root mean square error = 2.02, p = 0.03, permutation testing, 1000 iterations, one-tailed). Results were adjusted for age, sex, medications, motion, ADHD, and anxiety symptoms. The predictive networks of irritability were primarily within motor-sensory networks; among motor-sensory, subcortical, and salience networks; and between these networks and frontoparietal and medial frontal networks. This study provides preliminary evidence that individual differences in irritability may be associated with functional connectivity during frustration, a phenotype-relevant state.Subject terms: Predictive markers, Reward  相似文献   

4.
Obsessive–compulsive disorder (OCD) is associated with alterations in cortico-striato-thalamo-cortical brain networks, but some resting-state functional magnetic resonance imaging studies report more diffuse alterations in brain connectivity. Few studies have assessed functional connectivity within or between networks across the whole brain in unmedicated OCD patients or how patterns of connectivity predict response to exposure and ritual prevention (EX/RP) therapy, a first-line treatment for OCD. Herein, multiband resting-state functional MRI scans were collected from unmedicated, adult patients with OCD (n = 41) and healthy participants (n = 36); OCD patients were then offered twice weekly EX/RP (17 sessions). A whole-brain-network-based statistic approach was used to identify group differences in resting-state connectivity. We detected altered pre-treatment functional connectivity between task-positive regions in the temporal gyri (middle and superior) and regions of the cingulo-opercular and default networks in individuals with OCD. Signal extraction was performed using a reconstruction independent components analysis and isolated two independent subcomponents (IC1 and IC2) within this altered connectivity. In the OCD group, linear mixed-effects models tested whether IC1 or IC2 values predicted the slope of change in Yale–Brown Obsessive–Compulsive Scale (Y-BOCS) scores across EX/RP treatment. Lower (more different from controls) IC2 score significantly predicted greater symptom reduction with EX/RP (Bonferroni-corrected p = 0.002). Collectively, these findings suggest that an altered balance between task-positive and task-negative regions centered around temporal gyri may contribute to difficulty controlling intrusive thoughts or urges to perform ritualistic behaviors.Subject terms: Translational research, Psychiatric disorders  相似文献   

5.
Previous studies point towards differential connectivity patterns among basolateral (BLA) and centromedial (CMA) amygdala regions in patients with posttraumatic stress disorder (PTSD) as compared with controls. Here we describe the first study to compare directly connectivity patterns of the BLA and CMA complexes between PTSD patients with and without the dissociative subtype (PTSD+DS and PTSD−DS, respectively). Amygdala connectivity to regulatory prefrontal regions and parietal regions involved in consciousness and proprioception were expected to differ between these two groups based on differential limbic regulation and behavioral symptoms. PTSD patients (n=49) with (n=13) and without (n=36) the dissociative subtype and age-matched healthy controls (n=40) underwent resting-state fMRI. Bilateral BLA and CMA connectivity patterns were compared using a seed-based approach via SPM Anatomy Toolbox. Among patients with PTSD, the PTSD+DS group exhibited greater amygdala functional connectivity to prefrontal regions involved in emotion regulation (bilateral BLA and left CMA to the middle frontal gyrus and bilateral CMA to the medial frontal gyrus) as compared with the PTSD−DS group. In addition, the PTSD+DS group showed greater amygdala connectivity to regions involved in consciousness, awareness, and proprioception—implicated in depersonalization and derealization (left BLA to superior parietal lobe and cerebellar culmen; left CMA to dorsal posterior cingulate and precuneus). Differences in amygdala complex connectivity to specific brain regions parallel the unique symptom profiles of the PTSD subgroups and point towards unique biological markers of the dissociative subtype of PTSD.  相似文献   

6.
Multiple structural and functional neuroimaging measures vary over the course of the lifespan and can be used to predict chronological age. Accelerated brain aging, as quantified by deviations in the MRI-based predicted age with respect to chronological age, is associated with risk for neurodegenerative conditions, bipolar disorder, and mortality. Whether age-related changes in resting-state functional connectivity are accelerated in major depressive disorder (MDD) is unknown, and, if so, it is unclear if these changes contribute to specific cognitive weaknesses that often occur in MDD. Here, we delineated age-related functional connectivity changes in a large sample of normal control subjects and tested whether brain aging is accelerated in MDD. Furthermore, we tested whether accelerated brain aging predicts individual differences in cognitive function. We trained a support vector regression model predicting age using resting-state functional connectivity in 710 healthy adults aged 18–89. We applied this model trained on normal aging subjects to a sample of actively depressed MDD participants (n = 109). The difference between predicted brain age and chronological age was 2.11 years greater (p = 0.015) in MDD patients compared to control participants. An older MDD brain age was significantly associated with increased impulsivity and, in males, increased depressive severity. Unexpectedly, accelerated brain aging was also associated with increased placebo response in a sham-controlled trial of high-frequency repetitive transcranial magnetic stimulation targeting the dorsomedial prefrontal cortex. Our results indicate that MDD is associated with accelerated brain aging, and that accelerated aging is selectively associated with greater impulsivity and depression severity.Subject terms: Depression, Cognitive ageing  相似文献   

7.
The goals of the current study were to determine whether topological organization of brain structural networks is altered in youth with bipolar disorder, whether such alterations predict treatment outcomes, and whether they are normalized by treatment. Youth with bipolar disorder were randomized to double-blind treatment with quetiapine or lithium and assessed weekly. High-resolution MRI images were collected from children and adolescents with bipolar disorder who were experiencing a mixed or manic episode (n = 100) and healthy youth (n = 63). Brain networks were constructed based on the similarity of morphological features across regions and analyzed using graph theory approaches. We tested for pretreatment anatomical differences between bipolar and healthy youth and for changes in neuroanatomic network metrics following treatment in the youth with bipolar disorder. Youth with bipolar disorder showed significantly increased clustering coefficient (Cp) (p = 0.009) and characteristic path length (Lp) (p = 0.04) at baseline, and altered nodal centralities in insula, inferior frontal gyrus, and supplementary motor area. Cp, Lp, and nodal centrality of the insula exhibited normalization in patients following treatment. Changes in these neuroanatomic parameters were correlated with improvement in manic symptoms but did not differ between the two drug therapies. Baseline structural network matrices significantly differentiated medication responders and non-responders with 80% accuracy. These findings demonstrate that both global and nodal structural network features are altered in early course bipolar disorder, and that pretreatment alterations in neuroanatomic features predicted treatment outcome and were reduced by treatment. Similar connectome normalization with lithium and quetiapine suggests that the connectome changes are a downstream effect of both therapies that is related to their clinical efficacy.Subject terms: Bipolar disorder, Outcomes research  相似文献   

8.
Alcohol consumption during adolescence might impede normal brain development, while more excessive drinking during this period poses a risk for developing alcohol use disorder. Here it was tested whether nucleus accumbens (NAcc) resting-state functional connectivity could be associated with lifetime drinking behavior in young adults, and whether it could predict their alcohol consumption during a one-year follow-up period. The current investigation was part of the bicentric Learning and Alcohol Dependence (LeAD) population-based prospective cohort study. One hundred and eighty-four 18-year-old male social drinking volunteers without a lifetime diagnosis of psychotic, bipolar, or alcohol use disorder were recruited from the general population. Seed-based resting-state functional connectivity was calculated for the bilateral NAcc in each participant. Across the group, the association between NAcc functional connectivity and lifetime alcohol consumption was assessed (p < .05, whole-brain FWE-corrected). Individual connectivity values were then extracted from regions that demonstrated a significant association to predict drinking behavior during a one-year follow-up period (n = 143), correcting for lifetime alcohol consumption. Weaker connectivity between the left NAcc and bilateral dorsolateral prefrontal cortex, inferior frontal gyrus, left caudate nucleus, left putamen, and left insula was associated with greater lifetime alcohol consumption, as well as with greater alcohol consumption during the one-year follow-up period. Our findings underscore the relevance of fronto-striatal connectivity to the field of alcohol research. Impaired prefrontal cognitive control might mediate excessive drinking behavior and may prove a promising biomarker for risk of future alcohol (ab)use.  相似文献   

9.
Generalized social anxiety disorder (GSAD) is characterized by aberrant patterns of amygdala-frontal connectivity to social signals of threat and at rest. The neuropeptide oxytocin (OXT) modulates anxiety, stress, and social behaviors. Recent functional neuroimaging studies suggest that these effects are mediated through OXT''s effects on amygdala reactivity and/or amygdala-frontal connectivity. The aim of the current study was to examine OXT''s effects on amygdala-frontal resting-state functional connectivity (rsFC) in GSAD patients and healthy controls (HCs). In a randomized, double-blind, cross-over design, 18 GSAD and 18 HC participants received intranasal OXT (24 IU or 40.32 μg) or placebo (PBO) before resting-state functional magnetic resonance imaging. In individuals with GSAD, OXT enhanced rsFC of the left and right amygdala with rostral anterior cingulate cortex (ACC)/medial prefrontal cortex (mPFC), and in doing so, reversed (ie, ‘normalized'') the reduced amygdala-frontal connectivity observed relative to HCs evident on PBO. Higher social anxiety severity in GSAD subjects correlated with lower amygdala-ACC/mPFC connectivity on PBO and higher social anxiety also correlated with greater enhancement in amygdala-frontal connectivity induced by OXT. These findings show that OXT modulates a neural circuit known for social threat processing and emotion regulation, suggesting a neural mechanism by which OXT may have a role in the pathophysiology and treatment of social anxiety disorder.  相似文献   

10.
BackgroundKetamine’s potent and rapid antidepressant properties have shown great promise to treat severe forms of major depressive disorder (MDD). A recently hypothesized antidepressant mechanism of action of ketamine is the inhibition of N-methyl-D-aspartate receptor–dependent bursting activity of the habenula (Hb), a small brain structure that modulates reward and affective states.MethodsResting-state functional magnetic resonance imaging was conducted in 35 patients with MDD at baseline and 24 hours following treatment with i.v. ketamine. A seed-to-voxel functional connectivity (FC) analysis was performed with the Hb as a seed-of-interest. Pre-post changes in FC and the associations between changes in FC of the Hb and depressive symptom severity were examined.ResultsA reduction in Montgomery–Åsberg Depression Rating Scale scores from baseline to 24 hours after ketamine infusion was associated with increased FC between the right Hb and a cluster in the right frontal pole (t = 4.65, P = .03, false discovery rate [FDR]-corrected). A reduction in Quick Inventory of Depressive Symptomatology-Self Report score following ketamine was associated with increased FC between the right Hb and clusters in the right occipital pole (t = 5.18, P < .0001, FDR-corrected), right temporal pole (t = 4.97, P < .0001, FDR-corrected), right parahippocampal gyrus (t = 5.80, P = .001, FDR-corrected), and left lateral occipital cortex (t = 4.73, P = .03, FDR-corrected). Given the small size of the Hb, it is possible that peri-habenular regions contributed to the results.ConclusionsThese preliminary results suggest that the Hb might be involved in ketamine’s antidepressant action in patients with MDD, although these findings are limited by the lack of a control group.  相似文献   

11.
Early interventions to improve resilience require the identification of objective risk biomarkers for PTSD symptom development. Although altered hippocampal and amygdala volumes are consistently observed in PTSD, it remains currently unknown whether they represent a predisposing vulnerability factor for PTSD symptom development or an acquired consequence of trauma exposure and/or the disorder. We conducted a longitudinal, prospective study in 210 police recruits at high risk for trauma exposure (56 females(26.7%); mean[SD] age = 24.02[5.19]). Structural MRI scans and trauma-related symptom severity were assessed at pre-trauma baseline and at 16-month follow-up. Between assessments, police recruits were exposed to various potentially traumatic events during their police training. Police recruits reported a significant increase in police-related trauma exposure and stress-related symptoms between assessments. Smaller hippocampal left dentate gyrus (DG) volumes at baseline predicted increase in self-reported PTSD symptoms (B[SE] = −0.21[0.08], p = 0.011), stress symptoms (B[SE] = −0.16[0.07], p = 0.024) and negative affect (B[SE] = −0.21[0.07], p = 0.005) upon trauma exposure. Amount of police-related trauma exposure between assessments was positively associated with an increase in left basal amygdala nucleus volume (B[SE] = 0.11[0.05], p = 0.026). Taken together, smaller DG-volumes pre-trauma may represent a predisposing neurobiological vulnerability factor for development of trauma-related symptoms. On the other hand, amount of trauma exposure between assessments was positively associated with increased amygdala basal nucleus volume, suggesting acquired neural effects. These findings suggest that preventive interventions for PTSD aimed at improving resilience could be targeted at increasing DG-volume and potentially its functioning.Subject terms: Stress and resilience, Predictive markers, Risk factors  相似文献   

12.
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by symptoms of inattention, hyperactivity, and impulsivity associated with clinically significant impairment in functioning. ADHD has an early onset, but frequently persists, with a prevalence estimate of 4% in adults. Dasotraline is a novel compound that is a potent inhibitor of dopamine and norepinephrine transporters that achieves stable plasma concentrations with once-daily dosing. In this study, adult outpatients meeting DSM-IV-TR criteria for ADHD were randomized to 4 weeks of double-blind, once-daily treatment with dasotraline 4 and 8 mg/day or placebo. The primary efficacy end point was change from baseline at week 4 in the ADHD Rating Scale, Version IV (ADHD RS-IV) total score. Secondary efficacy end points included the Clinical Global Impression, Severity (CGI-S) scale, modified for ADHD symptoms. Least squares (LS) mean improvements at week 4 in ADHD RS-IV total score were significantly greater for dasotraline 8 mg/day vs placebo (−13.9 vs −9.7; P=0.019), and nonsignificantly greater for 4 mg/day (−12.4; P=0.076). The LS mean improvements in modified CGI-S were significantly greater at week 4 for dasotraline 8 mg/day vs placebo (−1.1 vs −0.7; P=0.013), and for 4 mg/day vs placebo (−1.1 vs −0.7; P=0.021). The most frequent adverse events reported were insomnia, decreased appetite, nausea, and dry mouth. Discontinuations due to treatment-emergent adverse events were 10.3% and 27.8% of patients in 4 and 8 mg/day treatment groups, respectively. This study provides preliminary evidence that once-daily dosing with dasotraline, a long-acting, dual monoamine reuptake inhibitor, may be a safe and efficacious treatment for adult ADHD.  相似文献   

13.
Methylphenidate is a widely prescribed psychostimulant for treatment of attention deficit hyperactivity disorder (ADHD) in children and adolescents, which raises questions regarding its potential interference with the developing brain. In the present study, we investigated effects of 3 weeks oral methylphenidate (5 mg/kg) vs vehicle treatment on brain structure and function in adolescent (post-natal day [P]25) and adult (P65) rats. Following a 1-week washout period, we used multimodal magnetic resonance imaging (MRI) to assess effects of age and treatment on independent component analysis-based functional connectivity (resting-state functional MRI), D-amphetamine-induced neural activation responses (pharmacological MRI), gray and white matter tissue volumes and cortical thickness (postmortem structural MRI), and white matter structural integrity (postmortem diffusion tensor imaging (DTI)). Many age-related differences were found, including cortical thinning, white matter development, larger dopamine-mediated activation responses and increased striatal functional connectivity. Methylphenidate reduced anterior cingulate cortical network strength in both adolescents and adults. In contrast to clinical observations from ADHD patient studies, methylphenidate did not increase white matter tissue volume or cortical thickness in rat. Nevertheless, DTI-based fractional anisotropy was higher in the anterior part of the corpus callosum following adolescent treatment. Furthermore, methylphenidate differentially affected adolescents and adults as evidenced by reduced striatal volume and myelination upon adolescent treatment, although we did not observe adverse treatment effects on striatal functional activity. Our findings of small but significant age-dependent effects of psychostimulant treatment in the striatum of healthy rats highlights the importance of further research in children and adolescents that are exposed to methylphenidate.  相似文献   

14.
The ability to maximize rewards and minimize the costs of obtaining them is vital to making advantageous explore/exploit decisions. Exploratory decisions are theorized to be greater among individuals with attention-deficit/hyperactivity disorder (ADHD), potentially due to deficient catecholamine transmission. Here, we examined the effects of ADHD status and methylphenidate, a common ADHD medication, on explore/exploit decisions using a 6-armed bandit task. We hypothesized that ADHD participants would make more exploratory decisions than controls, and that MPH would reduce group differences. On separate study days, adults with (n = 26) and without (n = 23) ADHD completed the bandit task at baseline, and after methylphenidate or placebo in counter-balanced order. Explore/exploit decisions were modeled using reinforcement learning algorithms. ADHD participants made more exploratory decisions (i.e., chose options without the highest expected reward value) and earned fewer points than controls in all three study days, and methylphenidate did not affect these outcomes. Baseline exploratory choices were positively associated with hyperactive ADHD symptoms across all participants. These results support several theoretical models of increased exploratory choices in ADHD and suggest the unexplained variance in ADHD decisions may be due to less value tracking. The inability to suppress actions with little to no reward value may be a key feature of hyperactive ADHD symptoms.Subject terms: ADHD, Cognitive control  相似文献   

15.
Affective disorders (AD, including bipolar disorder, BD, and major depressive disorder) are severe recurrent illnesses. Identifying neural markers of processes underlying AD development in at-risk youth can provide objective, “early-warning” signs that may predate onset or worsening of symptoms. Using data (n = 34) from the Bipolar Offspring Study, we examined relationships between neural response in regions supporting executive function, and those supporting self-monitoring, during an emotional n-back task (focusing on the 2-back face distractor versus the 0-back no-face control conditions) and future depressive and hypo/manic symptoms across two groups of youth at familial risk for AD: Offspring of parents with BD (n = 15, age = 14.15) and offspring of parents with non-BD psychopathology (n = 19, age = 13.62). Participants were scanned and assessed twice, approximately 4 years apart. Across groups, less deactivation in the mid-cingulate cortex during emotional regulation (Rate Ratio = 3.07(95% CI:1.09–8.66), χ2(1) = 4.48, p = 0.03) at Time-1, and increases in functional connectivity from Time-1 to 2 (Rate Ratio = 1.45(95% CI:1.15–1.84), χ2(1) = 8.69, p = 0.003) between regions that showed deactivation during emotional regulation and the right caudate, predicted higher depression severity at Time-2. Both effects were robust to sensitivity analyses controlling for clinical characteristics. Decreases in deactivation between Times 1 and 2 in the right putamen tail were associated with increases in hypo/mania at Time-2, but this effect was not robust to sensitivity analyses. Our findings reflect neural mechanisms of risk for worsening affective symptoms, particularly depression, in youth across a range of familial risk for affective disorders. They may serve as potential objective, early-warning signs of AD in youth.Subject terms: Predictive markers, Depression, Bipolar disorder  相似文献   

16.
There is a critical need to better understand the neural basis of antidepressant medication (ADM) response with respect to both symptom alleviation and quality of life (QoL) in major depressive disorder (MDD). Reward neurocircuitry has been implicated in QoL, the neural basis of MDD, and the mechanisms of ADM response. Yet, we do not know whether change in reward neurocircuitry as a function of ADM is associated with change in symptoms and QoL. To address this gap in knowledge, we analyzed data from 128 patients with MDD who participated in the iSPOT-D trial and were assessed with functional neuroimaging pre- and post-ADM treatment (randomized to sertraline, venlafaxine-XR, or escitalopram). 58 matched healthy controls were scanned at the same time points. We quantified functional connectivity (FC) of reward neurocircuitry using nucleus accumbens (NAc) seed regions of interest, and then characterized how changes in FC relate to symptom response (primary outcome) and QoL response (secondary outcome). Symptom responders showed an increase in NAc-dorsal anterior cingulate cortex (ACC) FC relative to non-responders (p < 0.001) which was associated with improvement in physical QoL (p < 0.0003), and a decrease in NAc-inferior parietal lobule FC relative to controls (p < 0.001). QoL response was characterized by increases in FC between NAc-ventral ACC for environmental, NAc-thalamus for physical, and NAc-paracingulate gyrus for social domains (p < 0.001). Symptom responders to sertraline were distinguished by a decrease in NAc-insula FC (p < 0.001) and to venlafaxine-XR by an increase in NAc-inferior temporal gyrus FC (p < 0.005). Findings suggest that change in reward neurocircuitry may underlie differential ADM response profiles with respect to symptoms and QoL in depression.Subject terms: Predictive markers, Depression  相似文献   

17.
The neurobiology of social anxiety disorder (SAD) is not yet fully understood. Structural and functional neuroimaging studies in SAD have identified abnormalities in various brain areas, particularly the amygdala and elements of the salience network. This study is the first to examine resting-state functional brain connectivity in a drug-naive sample of SAD patients without psychiatric comorbidity and healthy controls, using seed regions of interest in bilateral amygdala, in bilateral dorsal anterior cingulate cortex for the salience network, and in bilateral posterior cingulate cortex for the default mode network. Twelve drug-naive SAD patients and pair-wise matched healthy controls, all drawn from the Netherlands Study of Depression and Anxiety sample, underwent resting-state fMRI. Group differences were assessed with voxel-wise gray matter density as nuisance regressor. All results were cluster corrected for multiple comparisons (Z>2.3, p<.05). Relative to control subjects, drug-naive SAD patients demonstrated increased negative right amygdala connectivity with the left middle temporal gyrus, left supramarginal gyrus and left lateral occipital cortex. In the salience network patients showed increased positive bilateral dorsal anterior cingulate connectivity with the left precuneus and left lateral occipital cortex. Default mode network connectivity was not different between groups. These data demonstrate that drug-naive SAD patients without comorbidity show differences in functional connectivity of the amygdala, and of areas involved in self-awareness, some of which have not been implicated in SAD before.  相似文献   

18.
BackgroundDespite its morbidity and mortality, the neurobiology of treatment-resistant depression (TRD) in adolescents and the impact of treatment on this neurobiology is poorly understood.MethodsUsing automatic segmentation in FreeSurfer, we examined brain magnetic resonance imaging baseline volumetric differences among healthy adolescents (n = 30), adolescents with major depressive disorder (MDD) (n = 19), and adolescents with TRD (n = 34) based on objective antidepressant treatment rating criteria. A pooled subsample of adolescents with TRD were treated with 6 weeks of active (n = 18) or sham (n = 7) 10-Hz transcranial magnetic stimulation (TMS) applied to the left dorsolateral prefrontal cortex. Ten of the adolescents treated with active TMS were part of an open-label trial. The other adolescents treated with active (n = 8) or sham (n = 7) were participants from a randomized controlled trial.ResultsAdolescents with TRD and adolescents with MDD had decreased total amygdala (TRD and MDD: −5%, P = .032) and caudal anterior cingulate cortex volumes (TRD: −3%, P = .030; MDD: −.03%, P = .041) compared with healthy adolescents. Six weeks of active TMS increased total amygdala volumes (+4%, P < .001) and the volume of the stimulated left dorsolateral prefrontal cortex (+.4%, P = .026) in adolescents with TRD.ConclusionsAmygdala volumes were reduced in this sample of adolescents with MDD and TRD. TMS may normalize this volumetric finding, raising the possibility that TMS has neurostructural frontolimbic effects in adolescents with TRD. TMS also appears to have positive effects proximal to the site of stimulation.  相似文献   

19.
Patients with bipolar disorder (BD) often show increased risk-taking propensity, which may contribute to poor clinical outcome. While these two phenotypes are genetically correlated, there is scarce knowledge on the shared genetic determinants. Using GWAS datasets on BD (41,917 BD cases and 371,549 controls) and risk-taking (n = 466,571), we dissected shared genetic determinants using conjunctional false discovery rate (conjFDR) and local genetic covariance analysis. We investigated specificity of identified targets using GWAS datasets on schizophrenia (SCZ) and attention-deficit hyperactivity disorder (ADHD). The putative functional role of identified targets was evaluated using different tools and GTEx v. 8. Target druggability was evaluated using DGIdb and enrichment for drug targets with genome for REPositioning drugs (GREP). Among 102 loci shared between BD and risk-taking, 87% showed the same direction of effect. Sixty-two were specifically shared between risk-taking propensity and BD, while the others were also shared between risk-taking propensity and either SCZ or ADHD. By leveraging pleiotropic enrichment, we reported 15 novel and specific loci associated with BD and 22 with risk-taking. Among cross-disorder genes, CACNA1C (a known target of calcium channel blockers) was significantly associated with risk-taking propensity and both BD and SCZ using conjFDR (p = 0.001 for both) as well as local genetic covariance analysis, and predicted to be differentially expressed in the cerebellar hemisphere in an eQTL-informed gene-based analysis (BD, Z = 7.48, p = 3.8E−14; risk-taking: Z = 4.66, p = 1.6E−06). We reported for the first time shared genetic determinants between BD and risk-taking propensity. Further investigation into calcium channel blockers or development of innovative ligands of calcium channels might form the basis for innovative pharmacotherapy in patients with BD with increased risk-taking propensity.Subject terms: Genetic markers, Bipolar disorder  相似文献   

20.
Studies reporting significant associations between maternal prenatal stress and child outcomes are frequently confounded by correlates of prenatal stress that influence the postnatal rearing environment. The major objective of this study is to identify whether maternal prenatal stress is associated with variation in human brain functional connectivity prior to birth. We utilized fetal fMRI in 118 fetuses [48 female; mean age 32.9 weeks (SD = 3.87)] to evaluate this association and further addressed whether fetal neural differences were related to maternal health behaviors, social support, or birth outcomes. Community detection was used to empirically define networks and enrichment was used to isolate differential within- or between-network connectivity effects. Significance for χ2 enrichment was determined by randomly permuting the subject pairing of fetal brain connectivity and maternal stress values 10,000 times. Mixtures modelling was used to test whether fetal neural differences were related to maternal health behaviors, social support, or birth outcomes. Increased maternal prenatal negative affect/stress was associated with alterations in fetal frontoparietal, striatal, and temporoparietal connectivity (β = 0.82, p < 0.001). Follow-up analysis demonstrated that these associations were stronger in women with better health behaviors, more positive interpersonal support, and lower overall stress (β = 0.16, p = 0.02). Additionally, magnitude of stress-related differences in neural connectivity was marginally correlated with younger gestational age at delivery (β = −0.18, p = 0.05). This is the first evidence that negative affect/stress during pregnancy is reflected in functional network differences in the human brain in utero, and also provides information about how positive interpersonal and health behaviors could mitigate prenatal brain programming.Subject terms: Risk factors, Neural patterning  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号