首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R M Beckstead 《Neuroscience》1988,27(3):851-863
To ascertain the cellular associations of the D1 and D2 dopamine receptor subtypes in components of the basal ganglia, cats were prepared with unilateral, axon-sparing, ibotenic acid lesions of the striatum (n = 6) or lesions of the nigrostriatal dopamine system by intranigral infusion of 6-hydroxydopamine (n = 8). After 42 days survival, tissue sections from the brains were processed for quantitative, in vitro receptor autoradiography with [3H]SCH23390 (D1 radioligand) or [3H]spiroperidol (D2 radioligand). Lesion-induced changes in basal ganglia nuclei were assessed by comparing them to the corresponding nuclei on the intact side and in naive brains. Ibotenate lesions cause a decline in specific D1 and D2 receptor-binding in the area of the striatal lesion of 94% and 85%, respectively, and completely eliminate the uneven patterns of high- and low-density binding that are characteristic of the cat's caudate nucleus. The globus pallidus, entopeduncular nucleus and pars reticulata of the substantia nigra also show marked reductions in binding after striatal ibotenate lesions. Thus, after caudate nucleus lesions, D2 binding in the two pallidal segments declines by approximately 50%, but remains unchanged in the substantia nigra. Binding of the D1 radioligand (which is not measurable in the globus pallidus) declines by about 75% in the affected regions of the entopeduncular nucleus and pars reticulata, and by about 30% in the pars compacta. Lesions of the nigral dopamine neurons reduce D2 receptor-binding by 95% in the pars compacta and 40% in the pars reticulata, but have no effect on the concentration of D1 or D2 radioligand-binding in the striatum or pallidum. Moreover, such lesions failed to alter the uneven patterns of binding in the striatum. These data suggest that most, if not all, D1 receptors in the basal ganglia are associated with cells of the striatum and their axons in the entopeduncular nucleus and substantia nigra, and likewise, a large majority of D2 receptors are associated with striatal cells and their axons in pallidal structures. Nearly all D2 receptors in the substantia nigra are associated with dopamine neurons (autoreceptors). Finally, the heterogeneous patterns of D1 and D2 receptors in the striatum are a consequence of intrinsic neuronal distributions.  相似文献   

2.
Anatomical tract-tracing and immunohistochemical techniques involving correlated light and electron microscopy were used to determine whether the descending striatal and pallidal afferents to the substantia nigra pars reticulata converge onto individual neurons projecting to the pontomedullary and medullary reticular formation in the rat. Injections of biocytin into the ventrolateral region of the striatum and Phaseolus vulgaris-leucoagglutinin into the ventrolateral and caudal regions of the globus pallidus led to overlapping anterogradely labelled terminal fields within the dorsolateral substantia nigra pars reticulata. These terminal fields were punctuated by neurons which had been retrogradely labelled following injections of wheatgerm agglutinin conjugated to horseradish peroxidase into the lateral pontomedullary reticular formation. The anterogradely labelled striatal and pallidal terminals displayed different morphological characteristics; the striatal terminals were small and diffusely distributed throughout the neuropil without any particular neuronal association whereas the pallidal terminals were large and formed pericellular baskets around the perikarya of retrogradely and non-retrogradely labelled nigral neurons. In areas of the substantia nigra where there was an overlap between the two terminal fields, individual retrogradely labelled nigroreticular neurons were found to be apposed by both sets of anterogradely labelled terminals. Electron microscopic analysis revealed that the striatonigral and pallidonigral terminals displayed different ultrastructural features, the striatal terminals were small, contained few mitochondria and formed symmetric synaptic contacts predominantly with the distal dendrites of nigroreticular neurons whereas the pallidal terminals were large, contained numerous mitochondria and formed symmetric synaptic contacts preferentially with perikarya and proximal dendrites of nigroreticular neurons. Post-embedding immunohistochemical staining revealed that both striatonigral and pallidonigral terminals, some which formed synaptic contact with nigroreticular neurons, displayed GABA immunoreactivity. Examination of twelve retrogradely labelled neurons in the electron microscope revealed that all received synaptic inputs from both sets of anterogradely labelled terminals. In addition to the substantia nigra pars reticulata, neurons of the retrorubral field were also retrogradely labelled following injections of wheatgerm agglutinin conjugated to horseradish peroxidase into pontomedullary reticular formation. These retrorubroreticular neurons were part of a continuum of labelled cells which extended from the dorsolateral substantia nigra pars reticulata caudally into the retrorubral field. When combined with anterograde tracing methods it was found that the retrorubroreticular neurons received synaptic inputs from pallidal terminals which were morphologically similar to the pallidonigral terminals and formed symmetric synapses with the neuronal somata and proximal dendrites. In contrast to nigroreticular neurons, the stratonigral terminals were not seen in contact with retrorubroreticular cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The distribution of the neurons of the central complex (or "centre médian-parafascicular complex") and of other thalamic regions projecting to the striatum was studied using a cartographic technique based on ventricular landmarks. The brain of a macaque was used as a reference for the cytoarchitectonic study of the complex. Three parts were isolated: the pars parafascicularis (or medial part), the pars media (or middle part) and the pars paralateralis (or lateral part). Wheat germ agglutinin conjugated to horseradish peroxidase was stereotaxically injected into either the sensorimotor or the associative territory of the striatum (i.e. the striatal space occupied by the axonal endings coming from either the sensorimotor or the associative cortex) of four macaques. Neurons projecting to the sensorimotor territory of the striatum were found to be located within the pars media (middle part) of the central complex while neurons projecting to the associative territory of the striatum were located within the pars parafascicularis. In all experimental cases, labelled neurons were scarce or absent in the pars paralateralis (or lateral part). Outside the central complex, neurons projecting to the sensorimotor territory of the striatum were scattered within the lateral part of the lateral mass, in the intralaminar nuclei and in the posterior part of the internal lamina. Neurons projecting to the associative territory of the striatum were observed mainly in the paraventricular region, dorsal to the rostral part of the lateral mass, and in the dorsolateral part of the nucleus oralis medialis. Our three-dimensional analysis of the clusters of the central complex cells projecting to the two striatal territories justifies the partitioning of the central complex into three parts. The pars media (or middle part), which projects to the sensorimotor territory of the striatum, receives selectively pallidal afferent axons. It belongs to the Nauta-Mehler loop, a closed loop linking the central complex to the basal ganglia. The pars parafascicularis, which projects to the associative territory of the striatum, seems more related to oculomotor neuronal systems. The pars paralateralis (or lateral part) appears to have very little, if any, relation with the striatum.  相似文献   

4.
Compartmental origins of striatal efferent projections in the cat   总被引:4,自引:0,他引:4  
Injections of the retrograde tracer, wheat germ agglutinated-horseradish peroxidase were placed in the substantia nigra, in adjoining dopamine-containing cell groups A8 and A10, and in the internal and external parts of the pallidal complex of 20 cats in order to identify the compartmental origins of striatal efferent projections to the pallidum and midbrain. Patterns of retrograde cell-labeling in the caudate nucleus were analysed with respect to its striosomal architecture as detected in sections stained for acetylcholinesterase. Where possible, a similar compartmental analysis of cell-labeling in the putamen was also carried out. In 15 cats anterograde labeling in the striatum was studied in the sections stained with wheat germ agglutinated-horseradish peroxidase or in autoradiographically treated sections from cases in which [35S]methionine was mixed with the wheat germ agglutinated-horseradish peroxidase in the injection solution. Predominant labeling of projection neurons lying in striosomes (usually with some labeling of dorsomedial matrix neurons) occurred in a subset of the cases of nigral injection, including all cases (n = 9) in which the injection sites were centered in the densocellular zone of the substantia nigra pars compacta [Jiménez-Castellanos J. and Graybiel A. M. (1987) Neuroscience 23, 223-242.] Dense labeling of neurons in the extrastriosomal matrix, with at most sparse labeling of striosomal neurons, occurred in all cases of pallidal injection (n = 8) and in two cases of nigral injection in which the injection sites were lateral and anterior to the densocellular zone. Mixed labeling of striosomal and matrical neurons occurred in a third group of cases in which the injection sites were lateral to the densocellular zone but close to it. In a single case with an injection site situated in the pars lateralis of the substantia nigra, there was preferential labeling of striosomal neurons in the caudal caudate nucleus but widespread labeling of neurons in both striosomes and matrix in the putamen. A second type of compartmental ordering of projection neurons was found in the extrastriosomal matrix of the striatum. In cases of pallidal and nigral injection, there were gaps in cell labeling that did not match striosomes precisely, and often clusters of labeled cells appeared that did not correspond to acetylcholinesterase-poor striosomes but, instead, to patches of matrix. Especially prominent were clusters beside striosomes. There was a topographic ordering of striatal projection neurons both in the striosomes and in the extrastriosomal matrix according to their dorsoventral and latitudinal positions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The frontal lobe and the basal ganglia are involved in a number of parallel, functionally segregated circuits. Information is thought to pass from distinct parts of the (pre)frontal cortex, via the striatum, the pallidum/substantia nigra and the thalamus, back to the premotor/prefrontal cortices. Currently, different views exist as to whether these circuits are to be considered as open or closed loops, as well as to the degree of interconnection between different circuits. The main goal of the present study is to answer some of these questions for the limbic corticostriatal circuits. The latter circuits involve the nucleus accumbens, the ventral pallidum/dorsomedial substantia nigra pars reticulata, the medial parts of the mediodorsal and ventromedial thalamic nuclei and the prefrontal cortex. Within the nucleus accumbens, a core and a shell region are recognized on the basis of anatomical and functional criteria. The shell of the nucleus accumbens projects predominantly to the mediodorsal, the midline and the reticular thalamic nuclei via the ventral pallidum, whereas the core reaches primarily the medial part of the ventromedial thalamic nucleus, the intralaminar and mediodorsal thalamic nuclei via a relay in the dorsomedial substantia nigra pars reticulata. By means of double labeling experiments with injections of anterograde tracers in both the ventral pallidum and the substantia nigra of rats, we were able to demonstrate that circuits involving the shell and the core of the nucleus accumbens remain largely segregated at the level of the thalamus. Only restricted areas of overlap of ventral pallidal and reticular nigral projections occur in the mediodorsal and ventromedial thalamic nuclei, which allows for a limited degree of integration, at the thalamic level, of information passing through the two circuits.  相似文献   

6.
The topography of the substantia nigra and its subdivisions was first analysed in macaques by using a topographic technique based on ventricular landmarks. This study shows the stability of the contours of the substantia nigra and its subdivisions in various species of macaques. The anteroposterior sequence of four subdivisions was standardized by defining eight verticotransverse levels, regularly interspaced and systemically used for each experimental case. Neurons of the substantia nigra sending axons to the striatum, thalamus and superior colliculus were identified by the technique of retrograde transport of horseradish peroxidase. The nigrostriatal labeled neurons were essentially located in the ipsilateral pars compacta but also scattered dorsally in the pars mixta and ventrally in the pars reticulata. In addition, the existence of a crossed nigrostriatal pathway was demonstrated in monkeys. Nigrothalamic labeled neurons were found in the whole pars reticulata at rostral levels and only in the medial part at more caudal levels. Comparatively, nigrotectal labeled neurons were also found in the whole pars reticulata at rostral levels, but caudally, they were confined to the lateral part of the pars reticulata and the pars lateralis. It thus appears that these three nigral components may overlap at some levels of the substantia nigra. This is discussed in relation to the existence of branched axons already documented. However, the present results underline the strong tendency of the nigrotectal neurons to be segregated from the nigrothalamic ones and to be laterally located in monkeys. In addition, two nigrotectal components have been identified on the basis of their topography and their somata size: one with large somata located in the pars lateralis, probably specific to primates, and the other with smaller somata located in the pars reticulata. These two components may indicate the existence of two different functional systems.  相似文献   

7.
The precise neuronal localization of D1 receptors in the substantia nigra has been studied autoradiographically in the rat by measuring the alterations of [3H]SCH 23390 binding site densities in this brain area after 6-hydroxydopamine (6-OHDA) induced destruction of nigrostriatal dopaminergic neurons and after ibotenate-induced lesion of striatal afferents. 6-OHDA-induced nigral lesion provoked a total loss of [3H]SCH 23390 binding sites in the pars compacta and pars lateralis (but not in the pars reticulata) of the substantia nigra. In contrast, ibotenate-induced striatal lesion caused a large diminution of the [3H]ligand binding site density in the pars reticulata but not in the pars compacta and pars lateralis of the substantia nigra. These results suggest that D1 receptors in the pars compacta or pars lateralis of the substantia nigra are located on the dopaminergic perikarya whereas those D1 receptors present in the pars reticulata of the substantia nigra lie on the terminals of nigral afferents of striatal origin.  相似文献   

8.
In the infant and adult human basal ganglia, the finding of mRNA exclusively in the striatal medium-sized neurons together with the detection of [3H]CP55,940 binding sites in the caudate-putamen, accumbens, substantia nigra pars reticulata and globus pallidus suggests cannabinoid receptor localization on the striatal intrinsic enkephalinergic and substance P-projecting neurons and on their nigral and pallidal terminals. However, the consistent finding of higher binding in the substantia nigra pars reticulata and medial part of the globus pallidus over its lateral segment suggests cannabinoid receptor enrichment on the striatal substance P neurons which express selectively the dopamine D1 receptor.  相似文献   

9.
Summary The high tonic discharge rates of globus pallidus neurons in awake monkeys suggest that these neurons may receive some potent excitatory input. Because most current electrophysiological evidence suggests that the major described pallidal afferent systems from the neostriatum are primarily inhibitory, we used retrograde transport of horseradish peroxidase (HRP) to identify possible additional sources of pallidal afferent fibers. The appropriate location was determined before HRP injection by mapping the characteristic high frequency discharge of single pallidal units in awake animals. In animals with injections confined to the internal pallidal segment, retrograde label was seen in neurons of the pedunculopontine nucleus, dorsal raphe nucleus, substantia nigra, caudate, putamen, subthalamic nucleus, parafascicular nucleus, zona incerta, medial and lateral subthalamic tegmentum, parabrachial nuclei, and locus coeruleus. An injection involving the external pallidal segment and the putamen as well resulted in additional labeling of cells in centromedian nucleus, pulvinar, and the ventromedial thalamus.Abbreviations AC anterior commissure - CG central grey - CM centromedian nucleus - CN caudate nucleus - DM dorsomedial nucleus - DR dorsal raphe nucleus - DSCP decussation of superior cerebellar peduncle - GPe globus pallidus, external segment - GPi globus pallidus, internal segment - LC locus coeruleus - LL lateral lemniscus - MG medial geniculate nucleus - ML medial lemniscus - NVI abducens nucleus - OT optic tract - Pbl lateral parabrachial nucleus - Pbm medial parabrachial nucleus - Pf parafascicular nucleus - PPN pedunculopontine nucleus - PuO oral pulvinar nucleus - RN red nucleus - SCP superior cerebellar peduncle - SI substantia innominata - SNc substantia nigra, pars compacta - SNr substantia nigra, pars reticulata - STN subthalamic nucleus - TMT mamillothalamic tract - VA ventral anterior nucleus - VLc ventral lateral nucleus, pars caudalis - VLm ventral lateral nucleus, pars medialis - VLo ventral lateral nucleus, pars oralis - VPI ventral posterior inferior nucleus - VPM ventral posterior medial nucleus - VPLc ventral posterior lateral nucleus, pars caudalis - ZI zona incerta  相似文献   

10.
M Wassef  A Berod  C Sotelo 《Neuroscience》1981,6(11):2125-2139
An antiserum prepared in the rabbit against bovine adrenal gland tyrosine hydroxylase has been used to identify by the immunoperoxidase method dopaminergic neurons in the rat substantia nigra. The purpose of this identification was (i) to assess the storing compartments and the release sites in the dopamine-containing processes of the pars reticulata; (ii) to determine if these processes receive a direct input from the neostriatum.Immunoreactive neurons were present in the three divisions of the substantia nigra (pars compacta, pars lateralis and pars reticulata), but they were much more numerous in pars compacta. The caudal half and the most rostral end of pars reticulata contained single and small clusters of reactive neurons, which were absent from the remaining regions. Processes emerging from the positive neurons, exhibiting also immunoperoxidase reactivity, spread throughout the whole pars reticulata. The ultrastructural study was limited to the region of the pars reticulata free of reactive perikarya, in order to analyze the processes that originate from neurons located in the pars compacta. Five hundred and eighty well-preserved immunoreactive processes were analyzed. Almost all of them (578) displayed cytological features allowing their identification as dendrites. Two of them corresponded to thin unmyelinated, non-synaptic segments of axons, probably in their way to their terminal fields outside the substantia nigra. The large majority of the reactive dendrites (82%) were postsynaptic to one or several axon terminals and did not establish direct appositions with other dendritic elements. Only 4.35% of the labeled dendrites were directly apposed to other reactive or unreactive dendrites. Two of the labeled dendrites (0.35%) contained synaptic-like vesicles. In one of them, the vesicles were clustered against a restricted area of the plasma-membrane, forming an active zone.In two animals, kainic acid was used to destroy neurons located within the central region of the main body of the neostriatum. Their projections were traced to the ipsilateral substantia nigra, in which dopaminergic neurons were visualized by the immunoperoxidase method. The axons originating from the injured neurons in the striatum established direct synaptic contacts with the immunoreactive dendrites in pars reticulata.These findings indicate that (i) there is no dopaminergic recurrent collateral axonal plexus in pars reticulata; (ii) the dopamine-storing compartment in the dendritic processes is not vesicular; the cisterns of the smooth endoplasmic reticulum might be such a compartment; (iii) The differentiation of presynaptic dendrites which establish typical junctional synaptic complexes does not occur in the dopaminergic dendrites present in pars reticulata; (iv) The proportion of presynaptic release sites observed in dopaminergic dendrites (1 active zone out of the 578 analyzed dendrites) is too low to account for the dendritic release revealed by biochemical analysis (Nieoullou, Chéramy &; Glowinski, 1977a). Therefore, the modality of transmitter release from dopaminergic dendrites must be different from that supposed in the vesicular theory; (v) combined anterograde degeneration and immunocytochemistry has allowed us to demonstrate a direct striatal input to the dopamine-containing dendrites present within the pars reticulata.  相似文献   

11.
Wittmann M  Hubert GW  Smith Y  Conn PJ 《Neuroscience》2001,105(4):881-889
The substantia nigra pars reticulata is a primary output nucleus of the basal ganglia motor circuit and is controlled by a fine balance between excitatory and inhibitory inputs. The major excitatory input to GABAergic neurons in the substantia nigra arises from glutamatergic neurons in the subthalamic nucleus, whereas inhibitory inputs arise mainly from the striatum and the globus pallidus. Anatomical studies revealed that metabotropic glutamate receptors (mGluRs) are highly expressed throughout the basal ganglia. Interestingly, mRNA for group I mGluRs are abundant in neurons of the subthalamic nucleus and the substantia nigra pars reticulata. Thus, it is possible that group I mGluRs play a role in the modulation of glutamatergic synaptic transmission at excitatory subthalamonigral synapses. To test this hypothesis, we investigated the effects of group I mGluR activation on excitatory synaptic transmission in putative GABAergic neurons in the substantia nigra pars reticulata using the whole cell patch clamp recording approach in slices of rat midbrain. We report that activation of group I mGluRs by the selective agonist (R,S)-3,5-dihydroxyphenylglycine (100 microM) decreases synaptic transmission at excitatory synapses in the substantia nigra pars reticulata. This effect is selectively mediated by presynaptic activation of the group I mGluR subtype, mGluR1. Consistent with these data, electron microscopic immunocytochemical studies demonstrate the localization of mGluR1a at presynaptic sites in the rat substantia nigra pars reticulata.From this finding that group I mGluRs modulate the major excitatory inputs to GABAergic neurons in the substantia nigra pars reticulata we suggest that these receptors may play an important role in basal ganglia functions. Studying this effect, therefore, provides new insights into the modulatory role of glutamate in basal ganglia output nuclei in physiological and pathophysiological conditions.  相似文献   

12.
Summary Projections from the basal ganglia to the nucleus tegmenti pedunculopontinus pars compacta (TPC) were studied by using anterograde and retrograde tracing techniques with horseradish peroxidase conjugated with wheat germ agglutinin (WGA-HRP) in the cat. Following WGA-HRP injections into the medial TPC area, a substantial number of retrogradely labeled cells were seen in the entopeduncular nucleus (EP) and medial half of the substantia nigra pars reticulata (SNr), whereas following WGA-HRP injections into the lateral TPC area, labeled cells were marked in the caudal half of the globus pallidus (GP) and lateral half of the SNr. To confirm the retrograde tracing study, WGA-HRP was injected into the EP or the caudal GP, and anterograde labeling was observed in the TPC areas. Terminal labeling was located in the medail TPC area in the EP injection case, while terminal labeling was observed in the lateral TPC area in the caudal GP injection case. Projections from the striatum to the pallidal complex (the EP and the caudal GP) were also studied autoradiographically by injecting amino acids into various parts of the caudate nucleus and the putamen. Terminal labeling was distributed over the whole extent of the EP and the rostral GP following injections into the rostral striatum (the head of the caudate nucleus or the rostral part of the putamen), while terminal labeling was distributed over the caudal GP following injections into the caudal striatum (the body of the caudate nucleus or the caudal part of the putamen). From these findings, we conclude that there exists a medio-lateral topography in the projection from the basal ganglia to the TPC: The EP receives afferent projections from the rostral striatum and projects to the medial TPC area, whereas the caudal GP receives projections from the caudal striatum and sends fibers to the lateral TPC area.Abbreviations BC brachium conjunctivum - CD caudate nucleus - CP cerebral peduncle - DBC decussation of the brachium conjunctivum - EP entopeduncular nucleus - GP globus pallidus - IC internal capsule - ICo inferior colliculus - LH lateral habenular nucleus - ML medial lemniscus - PN pontine nuclei - PUT putamen - SCo superior colliculus - SI substantia innominata - SN substantia nigra - SNc substantia nigra pars compacta - SNr substantia nigra pars reticulata - STN subthalamic nucleus - TH thalamus - TPC nucleus tegmenti pedunculopontinus pars compacta  相似文献   

13.
M Takada  Z K Li  T Hattori 《Neuroscience》1988,25(2):563-568
Our retrograde fluorescent double labeling study demonstrated the existence of divergent collateral projections from the substantia nigra to the striatum and superior colliculus in the rat. These bifurcating projection neurons were located predominantly in the ventrolateral portions of the substantia nigra pars reticulata at its rostral level, where they formed a narrow band along the boundary between the substantia nigra and cerebral peduncle. Such specific projection cells were also seen in the substantia nigra pars lateralis. However, nigral neurons did not give off axonal branches to the striatum and ventromedial thalamic nucleus. The new nigral cell population proposed here might constitute a neuroanatomical substrate for abnormal saccadic eye movements clinically manifested by many parkinsonian patients.  相似文献   

14.
A Reiner  L Medina  S N Haber 《Neuroscience》1999,88(3):775-793
Single- and double-label immunohistochemical techniques using several different highly specific antisera against dynorphin peptides were used to examine the distribution of dynorphinergic terminals in globus pallidus and substantia nigra in rhesus monkeys and humans in comparison to substance P-containing and enkephalinergic terminals in these same regions. Similar results were observed in monkey and human tissue. Dynorphinergic fibers were very abundant in the medial half of the internal pallidal segment, but scarce in the external pallidal segment and the lateral half of the internal pallidal segment. In substantia nigra, dynorphinergic fibers were present in both the pars compacta and reticulata. Labeling of adjacent sections for enkephalin or substance P showed that the dynorphinergic terminals overlapped those for substance P in the medial half of the internal pallidal segment, but showed only slight overlap with enkephalinergic terminals in the external pallidal segment. The substance P-containing fibers were moderately abundant along the borders of the external pallidal segment, and enkephalinergic fibers were moderately abundant in parts of the internal pallidal segment. Dynorphinergic and substance P-containing terminals overlapped extensively in the nigra, and both extensively overlapped enkephalinergic fibers in medial nigra. Immunofluorescence double-labeling studies revealed that dynorphin co-localized extensively with substance P in individual fibers and terminals in the medial half of the internal pallidal segment and in substantia nigra. Thus, as has been found in non-primates, dynorphin within the striatum and its projection systems appears to be extensively localized to substance P-containing striatopallidal and striatonigral projection neurons. Nonetheless, our results also raise the possibility that a population of substance P-containing neurons that projects to the internal pallidal segment and does not contain dynorphin is present in primate striatum. Our results also suggest the possible existence of populations of striatopallidal and striatonigral projection neurons in which substance P and enkephalin or dynorphin and enkephalin, or all three, are co-localized. Thus, striatal projection neurons in primates may not consist of merely two types, one containing substance P and dynorphin and the other enkephalin.  相似文献   

15.
The topographic organization of the nigral cells sending axons to the striatum, amygdala and inferior colliculus was studied in the rat substantia nigra pars lateralis by using retrograde fluorescent tracers. Nigral perikarya projecting to the inferior colliculus were located dorsolaterally within the substantia nigra pars lateralis, whereas nigral perikarya projecting to the striatum or to the amygdala were mostly situated ventromedially within the substantia nigra pars lateralis. The transmitter substances of the nigrotectal cells were examined by combining a retrograde tracing method with immunohistochemistry for tyrosine hydroxylase or glutamate decarboxylase. Nigral neurons projecting to the inferior colliculus lacked tyrosine hydroxylase immunoreactivity, but exhibited immunoreactivity for glutamate decarboxylase. The substantia nigra pars lateralis is made up of different neuronal populations: one projecting to the inferior colliculus and another directed to the striatum and amygdala. The pars lateralis pathway to the inferior colliculus utilized GABA as a neurotransmitter, whereas the previously characterized nigral cells projecting to the striatum and superior colliculus use GABA and dopamine as neurotransmitters.  相似文献   

16.
Dopaminergic neurons express both GABA(A) and GABA(B) receptors and GABAergic inputs play a significant role in the afferent modulation of these neurons. Electrical stimulation of GABAergic pathways originating in neostriatum, globus pallidus or substantia nigra pars reticulata produces inhibition of dopaminergic neurons in vivo. Despite a number of prior studies, the identity of the GABAergic receptor subtype(s) mediating the inhibition evoked by electrical stimulation of neostriatum, globus pallidus, or the axon collaterals of the projection neurons from substantia nigra pars reticulata in vivo remain uncertain. Single-unit extracellular recordings were obtained from substantia nigra dopaminergic neurons in urethane anesthetized rats. The effects of local pressure application of the selective GABA(A) antagonists, bicuculline and picrotoxin, and the GABA(B) antagonists, saclofen and CGP-55845A, on the inhibition of dopaminergic neurons elicited by single-pulse electrical stimulation of striatum, globus pallidus, and the thalamic axon terminals of the substantia nigra pars reticulata projection neurons were recorded in vivo. Striatal, pallidal, and thalamic induced inhibition of dopaminergic neurons was always attenuated or completely abolished by local application of the GABA(A) antagonists. In contrast, the GABA(B) antagonists, saclofen or CGP-55845A, did not block or attenuate the stimulus-induced inhibition and at times even increased the magnitude and/or duration of the evoked inhibition. Train stimulation of globus pallidus and striatum also produced an inhibition of firing in dopaminergic neurons of longer duration. However this inhibition was largely insensitive to either GABA(A) or GABA(B) antagonists although the GABA(A) antagonists consistently blocked the early portion of the inhibitory period indicating the presence of a GABA(A) component. These data demonstrate that dopaminergic neurons of the substantia nigra pars compacta are inhibited by electrical stimulation of striatum, globus pallidus, and the projection neurons of substantia nigra pars reticulata in vivo. This inhibition appears to be mediated via the GABA(A) receptor subtype, and all three GABAergic afferents studied appear to possess inhibitory presynaptic GABA(B) autoreceptors that are active under physiological conditions in vivo.  相似文献   

17.
Summary In Ketamine-anaesthetized rats the nigral efferents to the ipsilateral striatum, to both VL/VM thalamic nuclei and to both superior colliculi were studied. Nigral output neurons were antidromically activated from these target nuclei and characterized by their spontaneous activity and cellular localization within the substantia nigra. Neurons in the pars compacta, which give rise to the dopaminergic nigro-striatal pathway, exhibited a low spontaneous discharge rate (3 to 6/sec) and their axon had a slow conduction velocity (0.33 to 1 m/sec). They were antidromically activated from the striatum only. Neurons in the pars reticulata were characterized by a higher spontaneous activity (20 to 40/sec) and a faster conduction velocity (1.9 m/sec to 10 m/sec). They were antidromically activated from the thalamus, superior colliculus and striatum. Furthermore, some of these neurons were found to have branching axons projecting at least to two of the different target nuclei studied.This work was supported by INSERM Grant 76. I. 205. 6IBRO — UNESCO travel fellow  相似文献   

18.
The neurotransmitter cytochemistry of neurons in the substantia nigra and zona incerta which project to the cat superior colliculus was examined. Neurons in both structures were double-labeled with an antibody to the transmitter GABA and a retrograde tracer, [3H]n-acetylated wheat germ agglutinin, injected into the superior colliculus. All cells in the zona incerta and substantia nigra which projected to the superior colliculus were labeled by the GABA antiserum. Most other neurons within the zona incerta and virtually all within the substantia nigra pars reticulata and pars lateralis were also labeled by the GABA antibody. By contrast, neurons in the substantia nigra pars compacta were not labeled by either the GABA antibody or wheat germ agglutinin. Nigrotectal cells in the substantia nigra were of medium to large size and most had stellate-shaped cell bodies. Zona incerta cells projecting to the superior colliculus were also of medium to large size, but most had horizontal fusiform cell bodies. This study demonstrates two new findings: (1) that all nigrotectal neurons in cat are immunoreactive to a GABA antibody and probably contain the neurotransmitter GABA; and (2) that these GABA immunoreactive neurons in cat are found not only in the substantia nigra pars reticulata but also within the pars lateralis. Zona incerta cells projecting to the superior colliculus have a different morphology but are also apparently GABAergic. These data provide an anatomical substrate for the known inhibitory action of the nigrotectal pathway on superior colliculus neurons.  相似文献   

19.
The ventral striatum (VS) is of particular interest in the study of neuropsychiatric disorders. In this study, performed on non-human primates, we associated local perturbation with monosynaptic axonal tracer injection into medial, central and lateral VS to characterize anatomo-functional circuits underlying the respective expression of sexual manifestations, stereotyped behaviors and hypoactive state associated with loss of food motivation. For the three behavioral effects, we demonstrated the existence of three distinct cortico-basal ganglia (BG) circuits that were topographically organized and overlapping at some cortical (orbitofrontal cortex, anterior cingulate cortex) and subcortical (caudal levels of BG) levels, suggesting interactions between motivation domains. Briefly, erection was associated with a circuit involving the orbitofrontal cortex, medial prefrontal cortex (areas 10, 11) and limbic parts of BG, i.e. medial parts of the pallidal complex and the substantia nigra pars reticulata (SNr). Stereotyped behavior was linked to a circuit involving the lateral orbitofrontal cortex (area 12/47) and limbic parts of the pallidal complex and of the SNr, while the apathetic state was underlined by a circuit involving not only the orbital and medial prefrontal cortex but also the lateral prefrontal cortex (area 8, 45), the anterior insula and the lateral parts of the medial pallidal complex and of the ventro-medial SNr. For the three behavioral effects, the cortico-BG circuits mainly involved limbic regions of the external and internal pallidum, as well as the limbic part of the substantia nigra pars reticulata (SNr), suggesting the involvement of both direct and indirect striatal pathways and both output BG structures. As these motivation disorders could still be induced in dopamine (DA)-depleted monkeys, we suggest that DA issued from the substantia nigra pars compacta (SNc) modulates their expression rather than causes them. Finally, this study may give some insights into the structure to target to achieve therapeutic benefits from deep brain stimulation in motivation disorders.  相似文献   

20.
The cellular origin and degree of collateralization of the subcortical afferents to the caudate nucleus and the putamen in squirrel monkeys (Saimiri sciureus) were studied using the following combinations of fluorescent retrograde tracers: Evans blue and DAPI-Primuline, Fast blue and Nuclear yellow, True blue and Nuclear yellow. After the injections, cells containing the tracer delivered in caudate nucleus (caudate-labeled cells) and others labeled with the complementary tracer injected in putamen (putamen-labeled cells) occur in large number in intralaminar nuclei, substantia nigra pars compacta, midbrain raphe nuclei and central midbrain tegmentum. In addition, a small to moderate number of putamen-labeled cells is found in external pallidum, pulvinar and laterodorsal thalamic nuclei, and basolateral amygdaloid nucleus, whereas some caudate and putamen-labeled cells are scattered in ventral tegmental area and locus coeruleus. However, very few double-labeled cells are present in all these structures. In rostral intralaminar nuclei, the labeled cells are not confined to the known cytoarchitectonic boundaries of the nuclei but impinge slightly upon ventrolateral and mediodorsal nuclei. At this level, the caudate-labeled cells lie more dorsally and medially relative to putamen-labeled cells, but a high degree of intermingling exists and some double-labeled cells occur particularly in nucleus centralis lateralis. In caudal intralaminar nuclei, caudate-labeled cells are strictly confined to parafascicular nucleus and putamen-labeled cells present only in centre median, without any overlap between the two neuronal populations. In substantia nigra pars compacta, clusters of caudate-labeled cells are closely intermingled with clusters of putamen-labeled cells according to a complex mosaic-like pattern that varies along the rostrocaudal extent of the structure. Overall, however, caudate-labeled cells predominate rostrodorsally and putamen-labeled cells are more abundant caudoventrally in substantia nigra pars compacta, with only a few double-labeled cells. Some caudate and putamen-labeled cells are also scattered in contralateral substantia nigra pars compacta. In dorsal raphe nucleus, putamen-labeled cells tend to occupy a more lateral position relative to caudate-labeled cells, with again very few double-labeled neurons. The caudate and putamen-labeled cells are less numerous and more closely intermingled in nucleus centralis superior. Numerous striatal afferent cells are also found bilaterally in the peribrachial region of midbrain tegmentum, comprising the pedunculopontine nucleus area. There, the putamen-labeled cells are slightly more numerous than the caudate-labeled cells with less than 10% of these neurons being double-labeled.

Our findings suggest that the subcortical afferents to caudate and to putamen in primates arise largely from different neurons in thalamus and midbrain. These two types of striatal afferent neurons are distributed according to various patterns that are much more complex than could have been inferred from current knowledge of the topographical organization of striatal afferents.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号