首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent experimental evidence has shown that application of certain neurotrophic factors (NTs) to the developing primary visual cortex prevents the development of ocular dominance (OD) columns. One interpretation of this result is that afferents from the lateral geniculate nucleus compete for postsynaptic trophic factor in an activity-dependent manner. Application of excess trophic factor eliminates this competition, thereby preventing OD column formation. We present a model of OD column development, incorporating Hebbian synaptic modification and activity-driven competition for NT, which accounts for both normal OD column development as well as the prevention of that development when competition is removed. In the “control” situation, when available NT is below a critical amount, OD columns form normally. These columns form without weight normalization procedures and in the presence of positive inter-eye correlations. In the “experimental” case, OD column development is prevented in a local neighborhood in which excess NT has been added. Our model proposes a biologically plausible mechanism for competition between neural populations that is motivated by several pieces of experimental data, thereby accounting for both normal and experimentally perturbed conditions.  相似文献   

2.
The formation of cortical columns is often conceptualized as a local process in which synaptic microcircuits confined to the volume of the emerging column are established and selectively refined. Many neurons, however, while wiring up locally are simultaneously building macroscopic circuits spanning widely distributed brain regions, such as different cortical areas or the two brain hemispheres. Thus, it is conceivable that interareal interactions shape the local column layout. Here we show that the columnar architectures of different areas of the cat visual cortex in fact develop in a coordinated manner, not adequately described as a local process. This is revealed by comparing the layouts of orientation columns (i) in left/right pairs of brain hemispheres and (ii) in areas V1 and V2 of individual brain hemispheres. Whereas the size of columns varied strongly within all areas considered, columns in different areas were typically closely matched in size if they were mutually connected. During development, we find that such mutually connected columns progressively become better matched in size as the late phase of the critical period unfolds. Our results suggest that one function of critical-period plasticity is to progressively coordinate the functional architectures of different cortical areas—even across hemispheres.  相似文献   

3.
The cellular organization of the cortex is of fundamental importance for elucidating the structural principles that underlie its functions. It has been suggested that reconstructing the structure and synaptic wiring of the elementary functional building block of mammalian cortices, the cortical column, might suffice to reverse engineer and simulate the functions of entire cortices. In the vibrissal area of rodent somatosensory cortex, whisker-related “barrel” columns have been referred to as potential cytoarchitectonic equivalents of functional cortical columns. Here, we investigated the structural stereotypy of cortical barrel columns by measuring the 3D neuronal composition of the entire vibrissal area in rat somatosensory cortex and thalamus. We found that the number of neurons per cortical barrel column and thalamic “barreloid” varied substantially within individual animals, increasing by ∼2.5-fold from dorsal to ventral whiskers. As a result, the ratio between whisker-specific thalamic and cortical neurons was remarkably constant. Thus, we hypothesize that the cellular architecture of sensory cortices reflects the degree of similarity in sensory input and not columnar and/or cortical uniformity principles.Two major concepts of cortical neuronal organization have been proposed. Structurally, correlations between stereology-based measurements (1) of neuron density and cortical thickness resulted in the hypothesis of structural uniformity, arguing that the number of neurons beneath a square millimeter of cortical surface is constant and independent of cortical area and species (2, 3). Functionally, cortex is organized in a columnar fashion, reflecting similar neuronal activity along the vertical cortex axis in response to peripheral stimuli (48). Similar spatial extents of functional cortical columns in the horizontal plane, combined with the idea of cortical uniformity, resulted in the notion that a stereotypic columnar network may also represent the elementary structural building block of sensory cortices (9). In combination, the two concepts thus suggested a common organization of all sensory cortices, which led to reverse engineering and simulation efforts that build up large-scale network models of repeatedly occurring identical cortical circuits (10, 11).The ideal model system for investigating columnar structure and function is the vibrissal area of rodent somatosensory cortex. There, “barrels” of neurons in layer 4 (L4) have been identified as somatotopically organized structural correlates of peripheral receptor organs (i.e., facial whiskers). Whisker/barrel columns have thus been regarded as both structural and functional elementary cortical units (1214). To investigate the structural stereotypy of cortical barrel columns, independent of the drawbacks associated with stereology (i.e., extrapolations from small sampling regions), we decided to locate each excitatory and inhibitory neuron soma within the entire volume of interest. Using high-resolution, large-scale confocal microscopy (15) and automated image-processing routines (16), we found that the number of neurons per barrel column increased by ∼2.5-fold from columns that correspond to the dorsal facial whiskers (A-row) to columns corresponding to the ventral whiskers (E-row). Moreover, cortical thickness increased by ∼500 μm from A- to E-rows, resulting in whisker-specific laminar neuron profiles, layer locations, and thicknesses. Further, the distributions of excitatory and inhibitory neurons outside the L4 barrels were indistinguishable between barrel columns, the septa (the cortex separating the barrel columns) (14) and the dysgranular zones (DZ) surrounding the vibrissal cortex (17).We performed the same analyses for the ventral posterior medial division (VPM) of rat thalamus, which provides whisker-specific input to the vibrissal cortex (1820). Again, we found that the number of neurons per whisker (i.e., within so-called “barreloids”) (21) was constant within a whisker row, but increased by ∼2.5-fold from the A- to the E-row. Consequently, the ratio between neurons per barrel (column) and respective barreloid was remarkably constant. This whisker-specific cellular organization is in contrast to the ideas of columnar and cortical uniformity, questioning the stereology-based concept that mammalian cortices are composed of stereotypical elementary building blocks.  相似文献   

4.
Accurate interpretation of functional MRI (fMRI) signals requires knowledge of the relationship between the hemodynamic response and the neuronal activity that underlies it. Here we address the question of coupling between pre- and postsynaptic neuronal activity and the hemodynamic response in rodent somatosensory (Barrel) cortex in response to single-whisker deflection. Using full-field multiwavelength optical imaging of hemoglobin oxygenation and electrophysiological recordings of spiking activity and local field potentials, we demonstrate that a point hemodynamic measure is influenced by neuronal activity across multiple cortical columns. We demonstrate that the hemodynamic response is a spatiotemporal convolution of the neuronal activation. Therefore, positive hemodynamic response in one cortical column might be explained by neuronal activity not only in that column but also in the neighboring columns. Thus, attempts at characterizing the neurovascular relationship based on point measurements of electrophysiology and hemodynamics may yield inconsistent results, depending on the spatial extent of neuronal activation. The finding that the hemodynamic signal observed at a given location is a function of electrophysiological activity over a broad spatial region helps explain a previously observed increase of local vascular response beyond the saturation of local neuronal activity. We also demonstrate that the oxy- and total-hemoglobin hemodynamic responses can be well approximated by space-time separable functions with an antagonistic center-surround spatial pattern extending over several millimeters. The surround "negative" hemodynamic activity did not correspond to observable changes in neuronal activity. The complex spatial integration of the hemodynamic response should be considered when interpreting fMRI data.  相似文献   

5.
Childhood exposure to low-level lead can permanently reduce intelligence, but the neurobiologic mechanism for this effect is unknown. We examined the impact of lead exposure on the development of cortical columns, using the rodent barrel field as a model. In all areas of mammalian neocortex, cortical columns constitute a fundamental structural unit subserving information processing. Barrel field cortex contains columnar processing units with distinct clusters of layer IV neurons that receive sensory input from individual whiskers. In this study, rat pups were exposed to 0, 0.2, 1, 1.5, or 2 g/liter lead acetate in their dam's drinking water from birth through postnatal day 10. This treatment, which coincides with the development of segregated columns in the barrel field, produced blood lead concentrations from 1 to 31 microg/dl. On postnatal day 10, the area of the barrel field and of individual barrels was measured. A dose-related reduction in barrel field area was observed (Pearson correlation = -0.740; P < 0.001); mean barrel field area in the highest exposure group was decreased 12% versus controls. Individual barrels in the physiologically more active caudoventral group were affected preferentially. Total cortical area measured in the same sections was not altered significantly by lead exposure. These data support the hypothesis that lead exposure may impair the development of columnar processing units in immature neocortex. We demonstrate that low levels of blood lead, in the range seen in many impoverished inner-city children, cause structural alterations in a neocortical somatosensory map.  相似文献   

6.
Correlated spontaneous activity in the developing nervous system is robust to perturbations in the circuits that generate it, suggesting that mechanisms exist to ensure its maintenance. We examine this phenomenon in the developing retina, where blockade of cholinergic circuits that mediate retinal waves during the first postnatal week leads to the generation of “recovered” waves through a distinct, gap junction–mediated circuit. Unlike cholinergic waves, these recovered waves were modulated by dopaminergic and glutamatergic signaling, and required the presence of the gap junction protein connexin 36. Moreover, in contrast to cholinergic waves, recovered waves were stimulated by ambient light via activation of melanopsin-expressing intrinsically photosensitive retinal ganglion cells. The involvement of intrinsically photosensitive retinal ganglion cells in this reconfiguration of wave-generating circuits offers an avenue of retinal circuit plasticity during development that was previously unknown.  相似文献   

7.
Serotonin (5-HT) plays a key role in early brain development, and manipulation of 5-HT levels during this period can have lasting neurobiological and behavioral consequences. It is unclear how perinatal exposure to drugs, such as selective serotonin reuptake inhibitors (SSRIs), impacts cortical neural network function and what mechanism(s) may elicit the disruption of normal neuronal connections/interactions. In this article, we report on cortical wiring organization after pre- and postnatal exposure to the SSRI citalopram. We show that manipulation of 5-HT during early development in both in vitro and in vivo models disturbs characteristic chemoarchitectural and electrophysiological brain features, including changes in raphe and callosal connections, sensory processing, and myelin sheath formation. Also, drug-exposed rat pups exhibit neophobia and disrupted juvenile play behavior. These findings indicate that 5-HT homeostasis is required for proper brain maturation and that fetal/infant exposure to SSRIs should be examined in humans, particularly those with developmental dysfunction, such as autism.  相似文献   

8.
Activity-dependent plasticity is thought to underlie both formation of appropriate synaptic connections during development and reorganization of adult cortical topography. We have recently cloned many candidate plasticity-related genes (CPGs) induced by glutamate-receptor activation in the hippocampus. Screening the CPG pool for genes that may contribute to neocortical plasticity resulted in the identification of six genes that are induced in adult visual cortical areas in response to light. These genes are also naturally induced during postnatal cortical development. CPG induction by visual stimulation occurs primarily in neurons located in cortical layers II-III and VI and persists for at least 48 hr. Four of the visually responsive CPGs (cpg2, cpg15, cpg22, cpg29) are previously unreported genes, one of which (cpg2) predicts a "mini-dystrophin-like" structural protein. These results lend molecular genetic support to physiological and anatomical studies showing activity-dependent structural reorganization in adult cortex. In addition, these results provide candidate genes the function of which may underlie mechanisms of adult cortical reorganization.  相似文献   

9.
Disinhibition is an obligatory initial step in the remodeling of cortical circuits by sensory experience. Our investigation on disinhibitory mechanisms in the classical model of ocular dominance plasticity uncovered an unexpected form of experience-dependent circuit plasticity. In the layer 2/3 of mouse visual cortex, monocular deprivation triggers a complete, “all-or-none,” elimination of connections from pyramidal cells onto nearby parvalbumin-positive interneurons (Pyr→PV). This binary form of circuit plasticity is unique, as it is transient, local, and discrete. It lasts only 1 d, and it does not manifest as widespread changes in synaptic strength; rather, only about half of local connections are lost, and the remaining ones are not affected in strength. Mechanistically, the deprivation-induced loss of Pyr→PV is contingent on a reduction of the protein neuropentraxin2. Functionally, the loss of Pyr→PV is absolutely necessary for ocular dominance plasticity, a canonical model of deprivation-induced model of cortical remodeling. We surmise, therefore, that this all-or-none loss of local Pyr→PV circuitry gates experience-dependent cortical plasticity.

Experience during a postnatal, critical period is essential to properly shape the functional connectivity of cortical circuits. A canonical model of cortical plasticity is the shift in ocular dominance following monocular deprivation (MD), which biases responses toward the nondeprived (ND) eye. Prior research established that MD-induced changes result from the reorganization of excitatory glutamatergic synapses onto excitatory pyramidal neurons (Pyr), which is, in turn, regulated by an inhibitory GABAergic network composed of parvalbumin-positive inhibitory interneurons (PVs). The current consensus is that a reduced, permissive level of inhibition from PV circuits in cortical layer 2/3 is required for plasticity at downstream excitatory synapses and that inhibition above or below the permissive range constrains the response to MD (13). Although the notion that rapid cortical disinhibition precedes and initiates the plasticity of glutamatergic connectivity is well established (4, 5), and decades old (68), the underlying cellular mechanisms remain unclear.Disinhibition of excitatory cortical neurons could be achieved indirectly, for example by suppressing PV activity via enhancing inhibition from other interneurons through cholinergic neuromodulation (9, 10) but more directly, and likely more effectively, by reducing the excitatory input onto PVs (4, 1113). Our current investigation uncovered a unique form of experience-dependent plasticity that regulates the connectivity between pyramidal neurons and PVs. We found that the initial response to MD is the functional and structural elimination of ∼50% of these connections. In contrast to the outcome of known mechanisms of synaptic plasticity that manifest in widespread graded changes in synaptic strength, the loss of pyramidal–PV connectivity occurs in a discrete, “all-or-none,” fashion: whereas a subset of connections become completely eliminated, the persistent connections have normal strength. This disconnection is not only rapid but it is transient, affects only very local pyramidal–PV pairs, and, importantly, manipulations that promote/prevent this disconnection also promote/prevent shifts in ocular dominance. We surmise, therefore, that the rapid and transient disconnection of discrete subsets of PV circuits enables the subsequent Hebbian and homeostatic modification of glutamatergic circuitry.  相似文献   

10.
Cajal-Retzius (CR) cells are early-generated transient neurons and are important in the regulation of cortical neuronal migration and cortical laminar formation. Molecular entities characterizing the CR cell identity, however, remain largely elusive. We purified mouse cortical CR cells expressing GFP to homogeneity by fluorescence-activated cell sorting and examined a genome-wide expression profile of cortical CR cells at embryonic and postnatal periods. We identified 49 genes that exceeded hybridization signals by >10-fold in CR cells compared with non-CR cells at embryonic day 13.5, postnatal day 2, or both. Among these CR cell-specific genes, 25 genes, including the CR cell marker genes such as the reelin and calretinin genes, are selectively and highly expressed in both embryonic and postnatal CR cells. These genes, which encode generic properties of CR cell specificity, are eminently characterized as modulatory composites of voltage-dependent calcium channels and sets of functionally related cellular components involved in cell migration, adhesion, and neurite extension. Five genes are highly expressed in CR cells at the early embryonic period and are rapidly down-regulated thereafter. Furthermore, some of these genes have been shown to mark two distinctly different focal regions corresponding to the CR cell origins. At the late prenatal and postnatal periods, 19 genes are selectively up-regulated in CR cells. These genes include functional molecules implicated in synaptic transmission and modulation. CR cells thus strikingly change their cellular phenotypes during cortical development and play a pivotal role in both corticogenesis and cortical circuit maturation.  相似文献   

11.
Inhibitory interneurons regulate the responses of cortical circuits. In auditory cortical areas, inhibition from these neurons narrows spectral tuning and shapes response dynamics. Acute disruptions of inhibition expand spectral receptive fields. However, the effects of long-term perturbations of inhibitory circuitry on auditory cortical responses are unknown. We ablated ~30% of dendrite-targeting cortical inhibitory interneurons after the critical period by studying mice with a conditional deletion of Dlx1. Following the loss of interneurons, baseline firing rates rose and tone-evoked responses became less sparse in auditory cortex. However, contrary to acute blockades of inhibition, the sizes of spectral receptive fields were reduced, demonstrating both higher thresholds and narrower bandwidths. Furthermore, long-latency responses at the edge of the receptive field were absent. On the basis of changes in response dynamics, the mechanism for the reduction in receptive field size appears to be a compensatory loss of cortico-cortically (CC) driven responses. Our findings suggest chronic conditions that feature changes in inhibitory circuitry are not likely to be well modeled by acute network manipulations, and compensation may be a critical component of chronic neuronal conditions.  相似文献   

12.
Activation of type 1 cannabinoid receptors (CB1R) decreases GABA and glutamate release in cortical and subcortical regions, with complex outcomes on cortical network activity. To date there have been few attempts to disentangle the region- and cell-specific mechanisms underlying the effects of cannabinoids on cortical network activity in vivo. Here we addressed this issue by combining in vivo electrophysiological recordings with local and systemic pharmacological manipulations in conditional mutant mice lacking CB1R expression in different neuronal populations. First we report that cannabinoids induce hypersynchronous thalamocortical oscillations while decreasing the amplitude of faster cortical oscillations. Then we demonstrate that CB1R at striatonigral synapses (basal ganglia direct pathway) mediate the thalamocortical hypersynchrony, whereas activation of CB1R expressed in cortical glutamatergic neurons decreases cortical synchrony. Finally we show that activation of CB1 expressed in cortical glutamatergic neurons limits the cannabinoid-induced thalamocortical hypersynchrony. By reporting that CB1R activations in cortical and subcortical regions have contrasting effects on cortical synchrony, our study bridges the gap between cellular and in vivo network effects of cannabinoids. Incidentally, the thalamocortical hypersynchrony we report suggests a potential mechanism to explain the sensory “high” experienced during recreational consumption of marijuana.  相似文献   

13.
Visual inputs from the 2 eyes in most primates activate alternating bands of cortex in layer 4C of primary visual cortex, thereby forming the well-studied ocular dominance columns (ODCs). In addition, the enzymatic reactivity of cytochrome oxidase (CO) reveals “blob” structures within the supragranular layers of ODCs. Here, we present evidence for compartments within ODCs that have not been clearly defined previously. These compartments are revealed by the activity-dependent mRNA expression of immediate-early genes (IEGs), zif268 and c-fos, after brief periods of monocular inactivation (MI). After a 1–3-h period of MI produced by an injection of tetrodotoxin, IEGs were expressed in a patchy pattern that included infragranular layers, as well as supragranular layers, where they corresponded to the CO blobs. In addition, the expressions of IEGs in layer 4C were especially high in narrow zones along boundaries of ODCs, referred to here as the “border strips” of the ODCs. After longer periods of MI (>5 h), the border strips were no longer apparent. When either eyelid was sutured, changes in IEG expression were not evident in layer 4C; however, the patchy pattern of the expression in the infragranular and supragranular layers remained. These changes of IEG expression after MI indicate that cortical circuits involving the CO blobs of the supragranular layers include aligned groups of neurons in the infragranular layers and that the border strip neurons of layer 4C are highly active for a 3-h period after MI.  相似文献   

14.
Event-related brain potentials (ERPs) provide high-resolution measures of the time course of neuronal activity patterns associated with perceptual and cognitive processes. New techniques for ERP source analysis and comparisons with data from blood-flow neuroimaging studies enable improved localization of cortical activity during visual selective attention. ERP modulations during spatial attention point toward a mechanism of gain control over information flow in extrastriate visual cortical pathways, starting about 80 ms after stimulus onset. Paying attention to nonspatial features such as color, motion, or shape is manifested by qualitatively different ERP patterns in multiple cortical areas that begin with latencies of 100–150 ms. The processing of nonspatial features seems to be contingent upon the prior selection of location, consistent with early selection theories of attention and with the hypothesis that spatial attention is “special.”  相似文献   

15.
The rapid reorganization of the actin cytoskeleton in response to external stimuli is an essential property of many motile eukaryotic cells. Here, we report evidence that the actin machinery of chemotactic Dictyostelium cells operates close to an oscillatory instability. When averaging the actin response of many cells to a short pulse of the chemoattractant cAMP, we observed a transient accumulation of cortical actin reminiscent of a damped oscillation. At the single-cell level, however, the response dynamics ranged from short, strongly damped responses to slowly decaying, weakly damped oscillations. Furthermore, in a small subpopulation, we observed self-sustained oscillations in the cortical F-actin concentration. To substantiate that an oscillatory mechanism governs the actin dynamics in these cells, we systematically exposed a large number of cells to periodic pulse trains of different frequencies. Our results indicate a resonance peak at a stimulation period of around 20 s. We propose a delayed feedback model that explains our experimental findings based on a time-delay in the regulatory network of the actin system. To test the model, we performed stimulation experiments with cells that express GFP-tagged fusion proteins of Coronin and actin-interacting protein 1, as well as knockout mutants that lack Coronin and actin-interacting protein 1. These actin-binding proteins enhance the disassembly of actin filaments and thus allow us to estimate the delay time in the regulatory feedback loop. Based on this independent estimate, our model predicts an intrinsic period of 20 s, which agrees with the resonance observed in our periodic stimulation experiments.  相似文献   

16.
Imagery of motor movement plays an important role in learning of complex motor skills, from learning to serve in tennis to perfecting a pirouette in ballet. What and where are the neural substrates that underlie motor imagery-based learning? We measured electrocorticographic cortical surface potentials in eight human subjects during overt action and kinesthetic imagery of the same movement, focusing on power in “high frequency” (76–100 Hz) and “low frequency” (8–32 Hz) ranges. We quantitatively establish that the spatial distribution of local neuronal population activity during motor imagery mimics the spatial distribution of activity during actual motor movement. By comparing responses to electrocortical stimulation with imagery-induced cortical surface activity, we demonstrate the role of primary motor areas in movement imagery. The magnitude of imagery-induced cortical activity change was ∼25% of that associated with actual movement. However, when subjects learned to use this imagery to control a computer cursor in a simple feedback task, the imagery-induced activity change was significantly augmented, even exceeding that of overt movement.  相似文献   

17.
Background: There is growing evidence that deficits in neuronal plasticity account for some of the neurological problems observed in fetal alcohol spectrum disorders (FASD). Recently, we showed that early alcohol exposure results in a permanent impairment in visual cortex ocular dominance (OD) plasticity in a ferret model of FASD. This disruption can be reversed, however, by treating animals with a Phosphodiesterase (PDE) type 1 inhibitor long after the period of alcohol exposure. Aim: Because the mammalian brain presents different types of PDE isoforms we tested here whether inhibition of PDE type 4 also ameliorates the effects of alcohol on OD plasticity. Material and Methods: Ferrets received 3.5 g/Kg alcohol i.p. (25% in saline) or saline as control every other day between postnatal day (P) 10 to P30, which is roughly equivalent to the third trimester equivalent of human gestation. Following a prolonged alcohol‐free period (10 to 15 days), ferrets had the lid of the right eye sutured closed for 4 days and were examined for ocular dominance changes at the end of the period of deprivation. Results: Using in vivo electrophysiology we show that inhibition of PDE4 by rolipram does not restore OD plasticity in alcohol‐treated ferrets. Conclusion: This result suggests that contrary to PDE1, PDE4 inhibition does not play a role in the restoration of OD plasticity in the ferret model of FASD.  相似文献   

18.
The adult brain exhibits a local increase in cortical blood flow in response to external stimulus. However, broadly varying hemodynamic responses in the brains of newborn and young infants have been reported. Particular controversy exists over whether the “true” neonatal response to stimulation consists of a decrease or an increase in local deoxyhemoglobin, corresponding to a positive (adult-like) or negative blood oxygen level-dependent (BOLD) signal in functional magnetic resonance imaging (fMRI), respectively. A major difficulty with previous studies has been the variability in human subjects and measurement paradigms. Here, we present a systematic study in neonatal rats that charts the evolution of the cortical blood flow response during postnatal development using exposed-cortex multispectral optical imaging. We demonstrate that postnatal-day-12–13 rats (equivalent to human newborns) exhibit an “inverted” hemodynamic response (increasing deoxyhemoglobin, negative BOLD) with early signs of oxygen consumption followed by delayed, active constriction of pial arteries. We observed that the hemodynamic response then matures via development of an initial hyperemic (positive BOLD) phase that eventually masks oxygen consumption and balances vasoconstriction toward adulthood. We also observed that neonatal responses are particularly susceptible to stimulus-evoked systemic blood pressure increases, leading to cortical hyperemia that resembles adult positive BOLD responses. We propose that this confound may account for much of the variability in prior studies of neonatal cortical hemodynamics. Our results suggest that functional magnetic resonance imaging studies of infant and child development may be profoundly influenced by the maturing neurovascular and autoregulatory systems of the neonatal brain.  相似文献   

19.
The occurrence of cortical plasticity during adulthood has been demonstrated using many experimental paradigms. Whether this phenomenon is generated exclusively by changes in intrinsic cortical circuitry, or whether it involves concomitant cortical and subcortical reorganization, remains controversial. Here, we addressed this issue by simultaneously recording the extracellular activity of up to 135 neurons in the primary somatosensory cortex, ventral posterior medial nucleus of the thalamus, and trigeminal brainstem complex of adult rats, before and after a reversible sensory deactivation was produced by subcutaneous injections of lidocaine. Following the onset of the deactivation, immediate and simultaneous sensory reorganization was observed at all levels of the somatosensory system. No statistical difference was observed when the overall spatial extent of the cortical (9.1 ± 1.2 whiskers, mean ± SE) and the thalamic (6.1 ± 1.6 whiskers) reorganization was compared. Likewise, no significant difference was found in the percentage of cortical (71.1 ± 5.2%) and thalamic (66.4 ± 10.7%) neurons exhibiting unmasked sensory responses. Although unmasked cortical responses occurred at significantly higher latencies (19.6 ± 0.3 ms, mean ± SE) than thalamic responses (13.1 ± 0.6 ms), variations in neuronal latency induced by the sensory deafferentation occurred as often in the thalamus as in the cortex. These data clearly demonstrate that peripheral sensory deafferentation triggers a system-wide reorganization, and strongly suggest that the spatiotemporal attributes of cortical plasticity are paralleled by subcortical reorganization.  相似文献   

20.
Changes in neuronal activity are accompanied by the release of vasoactive mediators that cause microscopic dilation and constriction of the cerebral microvasculature and are manifested in macroscopic blood oxygenation level-dependent (BOLD) functional MRI (fMRI) signals. We used two-photon microscopy to measure the diameters of single arterioles and capillaries at different depths within the rat primary somatosensory cortex. These measurements were compared with cortical depth-resolved fMRI signal changes. Our microscopic results demonstrate a spatial gradient of dilation onset and peak times consistent with “upstream” propagation of vasodilation toward the cortical surface along the diving arterioles and “downstream” propagation into local capillary beds. The observed BOLD response exhibited the fastest onset in deep layers, and the “initial dip” was most pronounced in layer I. The present results indicate that both the onset of the BOLD response and the initial dip depend on cortical depth and can be explained, at least in part, by the spatial gradient of delays in microvascular dilation, the fastest response being in the deep layers and the most delayed response in the capillary bed of layer I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号