首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prostaglandins (PG) have a regulatory influence on ovulation. α-Linolenic acid (ALA) vs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) differently influence PG biosynthesis. Whereas high EPA/DHA reduces PGE2, enhancing ovulation, we hypothesized that ALA would not affect ovulation. Our objective was to determine the effect of low and high ALA intake vs EPA/DHA on ovarian phospholipids, ovulation, and PG synthesis in rats. Following 27 days on diet and ovulation induction, ovaries were isolated and analyzed in 22 pups per diet. Ovarian phospholipid (n-3) polyunsaturated fatty acid (PUFA) incorporation increased with EPA/DHA ingestion. With significant ovarian (n-3) PUFA or EPA (P < .05) enrichment in the high–n-3 PUFA diets, ova release increased. Although high ALA did not enrich total (n-3), it increased ova release and tissue EPA over low ALA or control. Dietary EPA/DHA more effectively reduced ovarian arachidonic acid levels than dietary ALA. Dietary ALA increased PGF and very high intake reduced PGE, whereas EPA/DHA did not alter PGE or PGF. Enhanced ova release with high (n-3) PUFA intake may be induced via multiple mechanisms including reduced ovarian arachidonic acid. Significant ovarian retention of EPA and DHA enhanced ovulation with unchanged total PGE and PGF. Lack of change in PGE may have resulted from reduced PGE2 combined with increased PGE3. When EPA alone was elevated, PGE was reduced, whereas PGF was increased. Results indicate that very high ALA intake enhances ovulation similar to very high EPA/DHA ingestion, an effect potentially mediated via similar patterns of PGF2α and PGE2 synthesis.  相似文献   

2.
The purpose of this pilot study was to test the validity and reliability of a quantitative n-3 fatty acid food frequency questionnaire (FFQ) for later use with larger groups of individuals. A convenience sample of heart patients provided dietary data via three 24-hour food recalls and FFQs. Participants were women (n=17) and men (n=11), 43 to 77 years of age. The association of mean daily intake of n-3 fatty acids obtained using food recalls and the FFQ was assessed by Pearson correlation. The reliability of the FFQ was assessed using coefficient alpha. Correlation of n-3 fatty acid intake using the food recalls and the FFQ was r=0.42 (P<0.05). The coefficient alpha for the test-retest of the FFQ was .83. The top two foods, walnuts and flaxseed, contributed 58% of the n-3 fatty acid intake, and the third food, salmon, contributed 5%. This quantitative n-3 FFQ is a valid instrument for use in place of food recalls for estimating n-3 fatty acid intakes in heart patients and is a reliable instrument to estimate n-3 fatty acid intakes from plant, animal, and seafood sources. The FFQ should be tested in a larger population. Registered dietitians can use this FFQ to screen for intakes, educate patients on food sources, and measure change in intakes after nutrition intervention.  相似文献   

3.
The role of n-3 polyunsaturated fatty acids (PUFAs) in psychiatric illness is a topic of public health importance. This report describes development and biomarker validation of a 21-item, self-report food frequency questionnaire (FFQ) intended for use in psychiatric research to assess intake of α-linolenic acid (18:3n-3 [ALA]), docosahexaenoic acid (22:6n-3 [DHA]), and eicosapentaenoic acid (20:5n-3 [EPA]). In a cross-sectional study conducted from September 2006 to September 2008, sixty-one ethnically diverse adult participants with (n=34) and without (n=27) major depressive disorder completed this n-3 PUFA FFQ and provided a plasma sample. Plasma levels of n-3 PUFAs EPA and DHA, and n-6 PUFA arachidonic acid (20:4n-6 [AA]) were quantified by gas chromatography. Using Spearman's ρ, FFQ-estimated intake correlated with plasma levels of DHA (r=0.50; P<0.0001) and EPA (r=0.38; P=0.002), but not with ALA levels (r=0.22; P=0.086). Participants were classified into quartiles by FFQ-estimated intake and plasma PUFA concentrations. Efficacy of the FFQ to rank individuals into same or adjacent plasma quartiles was 83% for DHA, 78.1% for EPA, and 70.6% for ALA; misclassification into extreme quartiles was 4.9% for DHA, 6.5% for EPA, and 8.2% for ALA. FFQ-estimated EPA intake and plasma EPA were superior to plasma AA levels as predictors of the plasma AA to EPA ratio. This brief FFQ can provide researchers and clinicians with valuable information concerning dietary intake of DHA and EPA.  相似文献   

4.
Jiajie Liu  David W. L. Ma 《Nutrients》2014,6(11):5184-5223
Breast cancer (BC) is the most common cancer among women worldwide. Dietary fatty acids, especially n-3 polyunsaturated fatty acids (PUFA), are believed to play a role in reducing BC risk. Evidence has shown that fish consumption or intake of long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial for inhibiting mammary carcinogenesis. The evidence regarding α-linolenic acid (ALA), however, remains equivocal. It is essential to clarify the relation between ALA and cancer since ALA is the principal source of n-3 PUFA in the Western diet and the conversion of ALA to EPA and DHA is not efficient in humans. In addition, the specific anticancer roles of individual n-3 PUFA, alone, have not yet been identified. Therefore, the present review evaluates ALA, EPA and DHA consumed individually as well as in n-3 PUFA mixtures. Also, their role in the prevention of BC and potential anticancer mechanisms of action are examined. Overall, this review suggests that each n-3 PUFA has promising anticancer effects and warrants further research.  相似文献   

5.
目的 对研制的北京市儿童青少年食物频率问卷的信度和效度进行评价,为儿童青少年营养状况评估和健康干预以及饮食习惯与慢性疾病关联性的研究提供一个简便、可信的研究工具。方法 对北京市130名10~17岁儿童青少年进行4次24 h饮食回顾调查和2次食物频率问卷调查,24- h饮食回顾作为“标准”方法与食物频率问卷比较来评价其效度, 2次间隔6个月的食物频率问卷调查结果相比较来评价其信度。结果 两次食物频率问卷调查结果间能量及营养素摄入量估计差异较小,除蛋白质、磷和锌的摄入量第二次低于第一次外(P<0.05),其他营养素摄入量间差异无统计学意义(P>0.05)。两次食物频率问卷调查结果间所有能量及营养素摄入量均呈正相关(P<0.01),Pearson相关系数从0.315(钙)至0.521(锌),平均为0.431,女性高于男性(0.49 vs 0.32)。食物频率问卷调查的能量及营养素摄入量均高于24 h饮食回顾(P<0.01),食物频率问卷高估明显。调整总能量摄入和个体内变异等影响后,食物频率问卷与24 h饮食回顾调查结果的能量和所有营养素摄入量均呈正相关(P<0.05),Pearson相关系数从0.27(维生素A)至0.53(锌),平均0.38。四分位分组显示:研究对象被良好区分(相同组或相邻组),比例从66.2%(维生素E、钙)至79.2%(铁),平均73.0%,研究对象被严重错分(相隔2组),比例平均为6.2%。结论 此食物频率问卷有较好的信度和效度,可作为今后儿童青少年膳食营养摄入状况调查和评价的适用工具。  相似文献   

6.
Dietary intake of n-3 and n-6 fatty acids and the risk of prostate cancer   总被引:12,自引:0,他引:12  
BACKGROUND: Laboratory studies have shown that n-3 fatty acids inhibit and n-6 fatty acids stimulate prostate tumor growth, but whether the dietary intake of these fatty acids affects prostate cancer risk in humans remains unclear. OBJECTIVE: We prospectively evaluated the association between intakes of alpha-linolenic (ALA; 18:3n-3), eicosapentaenoic (EPA; 20:5n-3), docosahexaenoic (DHA; 22:6n-3), linoleic (LA; 18:2n-6), and arachidonic (AA; 20:4n-6) acids and prostate cancer risk. DESIGN: A cohort of 47 866 US men aged 40-75 y with no cancer history in 1986 was followed for 14 y. RESULTS: During follow-up, 2965 new cases of total prostate cancer were ascertained, 448 of which were advanced prostate cancer. ALA intake was unrelated to the risk of total prostate cancer. In contrast, the multivariate relative risks (RRs) of advanced prostate cancer from comparisons of extreme quintiles of ALA from nonanimal sources and ALA from meat and dairy sources were 2.02 (95% CI: 1.35, 3.03) and 1.53 (0.88, 2.66), respectively. EPA and DHA intakes were related to lower prostate cancer risk. The multivariate RRs of total and advanced prostate cancer from comparisons of extreme quintiles of the combination of EPA and DHA were 0.89 (0.77, 1.04) and 0.74 (0.49, 1.08), respectively. LA and AA intakes were unrelated to the risk of prostate cancer. The multivariate RR of advanced prostate cancer from a comparison of extreme quintiles of the ratio of LA to ALA was 0.62 (0.45, 0.86). CONCLUSIONS: Increased dietary intakes of ALA may increase the risk of advanced prostate cancer. In contrast, EPA and DHA intakes may reduce the risk of total and advanced prostate cancer.  相似文献   

7.
N-3 Polyunsaturated fatty acids have been shown to have potential beneficial effects for chronic diseases including cancer, insulin resistance and cardiovascular disease. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in particular have been studied extensively, whereas substantive evidence for a biological role for the precursor, alpha-linolenic acid (ALA), is lacking. It is not enough to assume that ALA exerts effects through conversion to EPA and DHA, as the process is highly inefficient in humans. Thus, clarification of ALA's involvement in health and disease is essential, as it is the principle n-3 polyunsaturated fatty acid consumed in the North American diet and intakes of EPA and DHA are typically very low. There is evidence suggesting that ALA, EPA and DHA have specific and potentially independent effects on chronic disease. Therefore, this review will assess our current understanding of the differential effects of ALA, EPA and DHA on cancer, insulin resistance, and cardiovascular disease. Potential mechanisms of action will also be reviewed. Overall, a better understanding of the individual role for ALA, EPA and DHA is needed in order to make appropriate dietary recommendations regarding n-3 polyunsaturated fatty acid consumption.  相似文献   

8.
High linoleic acid (LA) intakes have been suggested to reduce alpha-linolenic acid [ALA, 18:3(n-3)] metabolism to eicosapentaenoic acid [EPA, 20:5(n-3)] and docosahexaenoic acid [DHA, 22:6(n-3)], and favor high arachidonic acid [ARA, 20:4(n-6)]. We used a randomized cross-over study with men (n = 22) to compare the effect of replacing vegetable oils high in LA with oils low in LA in foods, while maintaining constant ALA, for 4 wk each, on plasma (n-3) fatty acids. Nonvegetable sources of fat, except fish and seafoods, were unrestricted. We determined plasma phospholipid fatty acids at wk 0, 2, 4, 6, and 8, and triglycerides, cholesterol, serum CRP, and IL-6, and platelet aggregation at wk 0, 4, and 8. LA and ALA intakes were 3.8 +/- 0.12% and 1.0 +/- 0.05%, and 10.5 +/- 0.53% and 1.1 +/- 0.06% energy with LA:ALA ratios of 4:0 and 10:1 during the low and high LA diets, respectively. The plasma phospholipid LA was higher and EPA was lower during the high than during the low LA diet period (P < 0.001), but DHA declined over the 8-wk period (r = -0.425, P < 0.001). The plasma phospholipid ARA:EPA ratios were (mean +/- SEM) 20.7 +/- 1.52 and 12.9 +/- 1.01 after 4 wk consuming the high or low LA diets, respectively (P < 0.001); LA was inversely associated with EPA (r = -0.729, P < 0.001) but positively associated with ARA:EPA (r = 0.432, P < 0.001). LA intake did not influence ALA, ARA, DPA, DHA, or total, LDL or HDL cholesterol, CRP or IL-6, or platelet aggregation. In conclusion, high LA intakes decrease plasma phospholipid EPA and increase the ARA:EPA ratio, but do not favor higher ARA.  相似文献   

9.
BackgroundCanadian dietary sources of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) include marine and non-marine whole foods, functional foods, and nutraceuticals.Objective/designIn the present study, these sources were incorporated into a nutrient-specific, semi-quantitative food frequency questionnaire (FFQ) and the ability to measure the EPA and DHA intakes of Canadian adults was assessed. Specifically, the EPA and DHA intakes estimated by FFQ of 78 men and women, 20 to 60 years of age, were compared with EPA and DHA measurements from 3-day food records and measures of EPA and DHA in fasting whole blood.ResultsMean (±standard deviation) and median intakes of EPA+DHA were 0.34±0.34 and 0.21 g/day by FFQ and 0.47±0.71 and 0.13 g/day by food record, with no significant differences between mean intakes (P=0.93). The FFQ provided higher estimates than the food record at low intakes of EPA and DHA and lower estimates at high intakes based on Bland-Altman plots. The FFQ was moderately correlated with food record (r=0.31 to 0.49) and with blood biomarker measures of EPA and DHA (r=0.31 to 0.51). Agreement analysis revealed that 42% of participants were classified in the same and 77% into same or adjacent quartile when EPA and DHA intake was assessed by food record and by FFQ. Similar quartile agreement was found for EPA and DHA intakes by FFQ with blood biomarker EPA and DHA. The range of the validity coefficients, calculated using the method of triads, was 0.43 to 0.71 for FFQ measurement of EPA+DHA.ConclusionsThe FFQ is an adequate tool for estimating usual EPA and DHA intakes and ranking Canadian adults by their intakes.  相似文献   

10.
The omega-3 fatty acid (n-3 FA) eicosapentaenoic acid (EPA) reduces stroke in patients with atherosclerotic cardiovascular disease. Whether EPA affects stroke or cerebral small vessel dis-ease in patients with atrial fibrillation (AF) remains uncertain. EPA, docosahexaenoic acid (DHA), docosapentaenoic acid (DPA), and alpha-linolenic acid (ALA) were determined by gas chromatography in 1657 AF patients from the Swiss Atrial Fibrillation study. All patients underwent brain MRI to detect ischemic brain infarcts, classified as large noncortical or cortical infarcts (LNCCIs); markers of small vessel disease, classified as small noncortical infarcts (SNCIs), number of microbleeds, and white matter lesion (WML) volumes. Individual and total n-3 FAs (EPA + DHA + DPA + ALA) were correlated with LNCCIs and SNCIs using logistic regression, with numbers of microbleeds using a hurdle model, and WML volumes using linear regression. LNCCIs were detected in 372 patients (22.5%). EPA correlated inversely with the prevalence of LNCCIs (odds ratio [OR] 0.51 per increase of 1 percentage point EPA, 95% confidence interval [CI] 0.29–0.90). DPA correlated with a higher LNCCI prevalence (OR 2.48, 95%CI 1.49–4.13). No associations with LNCCIs were found for DHA, ALA, and total n-3 FAs. Neither individual nor total n-3 FAs correlated with markers of small vessel disease. In conclusion, EPA correlates inversely with the prevalence of ischemic brain infarcts, but not with markers of small vessel disease in patients with AF.  相似文献   

11.
BackgroundFood frequency questionnaires (FFQs) are often used to evaluate individuals' food intakes in epidemiologic studies because of their simplicity and low cost.ObjectiveTo assess the validity of a short (24 items), qualitative FFQ used in the MONA LISA-NUT study.DesignCross-sectional study of a representative sample in three French counties.Participants/settingThe sample included 2,630 participants aged 35 to 65 years from the MONA LISA-NUT study.Main outcome measuresFood consumption was measured with the FFQ and via food records for 3 consecutive days. Plasma fatty acids were measured from a subset of participants.Statistical analyses performedThe FFQ items' validity was assessed by calculating crude and deattenuated Pearson correlation coefficients between frequencies reported by the FFQ and average weights reported by the food records. Furthermore, the validity of some items of the FFQ measuring the consumption of fatty foods was assessed by calculating Pearson correlation coefficients between frequencies of consumption of these foods and dosages of the corresponding plasma fatty acids: fish and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), olive oil and oleic acid, margarine and elaidic acid, and dairy products and pentadecanoic and heptadecanoic acids.ResultsThe mean of the deattenuated Pearson correlation coefficients for all items was 0.46, with values ranging from 0.22 (fried food) to 0.77 (breakfast cereal). The correlation coefficient was ≤0.4 for one third of the 24 items. Moderate correlations were found between fish and EPA/DHA (EPA: r=0.43, 95% CI 0.33 to 0.51; DHA: r=0.39, 95% CI 0.30 to 0.47), but not for other food items.ConclusionsOne third of the 24 items in the short, qualitative FFQ evaluated here were not sufficiently valid. However, for the food groups most commonly studied in the literature, this FFQ had the same degree of validity as other questionnaires designed to classify subjects according to their level of intake.  相似文献   

12.
PUFA are hypothesized to influence bone health, but longitudinal studies on hip fracture risk are lacking. We examined associations between intakes of PUFA and fish, and hip fracture risk among older adults (n = 904) in the Framingham Osteoporosis Study. Participants (mean age ~75 y at baseline) were followed for incident hip fracture from the time they completed the baseline exam (1988-1989) until December 31, 2005. HR and 95% CI were estimated for energy-adjusted dietary fatty acid exposure variables [(n-3) fatty acids: α-linolenic acid (ALA), EPA, DHA, EPA+DHA; (n-6) fatty acids: linoleic acid, arachidonic acid (AA); and the (n-6):(n-3) ratio] and fish intake categories, adjusting for potential confounders and covariates. Protective associations were observed between intakes of ALA (P-trend = 0.02) and hip fracture risk in a combined sample of women and men and between intakes of AA (P-trend = 0.05) and hip fracture risk in men only. Participants in the highest quartile of ALA intake had a 54% lower risk of hip fracture than those in the lowest quartile (Q4 vs. Q1: HR = 0.46; 95% CI = 0.26-0.83). Men in the highest quartile of AA intake had an 80% lower risk of hip fracture than those in the lowest quartile (Q4 vs. Q1: HR = 0.20; 95% CI = 0.04-0.96). No significant associations were observed among intakes of EPA, DHA, EPA+DHA, or fish. These findings suggest dietary ALA may reduce hip fracture risk in women and men and dietary AA may reduce hip fracture risk in men.  相似文献   

13.
Compared with diets high in fat, low-fat diets are associated with reduced risk of cardiovascular disease. We hypothesized that a low-fat (LF) (20% fat) and an LF high–omega-3 (n-3) fatty acid diet (LFn3) (23% fat with 3% as α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid [DHA]) would enhance n-3 composition of plasma phospholipid fatty acid and reduce urinary prostaglandin E2 (PGE2) relative to a high-fat diet (HF) (40% fat) and that these changes would be associated with alterations in δ5 desaturase (D5D) and δ6 desaturase (D6D) activity. Phospholipid fatty acids and urinary PGE2 were measured, and D5D and D6D activity indices calculated in a crossover trial in 17 postmenopausal women fed each of 3 test diets (HF, LF, and LFn3) for 8-week feeding periods. Desaturase activity indices were calculated as D5D, 20:4n-6/20:3n-6, and D6D, 20:3n-6/18:2n-6. Plasma phospholipid fatty acid, α-linolenic acid, eicosapentaenoic acid, docosapentaenoic acid (DPA), DHA, and total n-3 fatty acids increased, whereas linoleic acid and arachidonic acid decreased with consumption of LFn3. The LF resulted in enhanced arachidonic acid and DHA. High fat reduced D6D, whereas both HF and LF increased D5D. Urinary PGE2 was reduced in response to both the LF and LFn3 diets. Low-fat diets, with or without long-chain n-3 fatty acids, promote positive health effects due in part to favorable alteration of plasma phospholipid fatty acid profiles and modification in desaturase activity indices, suggesting that the type and amount of fat consumed are modifiable risk factors for the prevention of cardiovascular disease.  相似文献   

14.
Due to the growing knowledge about the role of specific fatty acids in health and disease, dietary intake measurements of individual fatty acids or classes of fatty acids are becoming increasingly important. The objective of this study was to evaluate the ability of the Nambour FFQ to estimate intakes of specific fatty acids, particularly PUFA. The study population was a sub-sample of adult participants in a randomised controlled trial of beta-carotene and sunscreen in the prevention of skin cancer (n 43). Dietary intake was assessed by a self-administered FFQ and a weighed food record (WFR). Non-fasting blood samples were collected and analysed for plasma phospholipid fatty acids. Median intakes on the FFQ were generally higher than the WFR except for the n-3 PUFA groups, where the FFQ estimated higher intakes. Correlations between the FFQ and WFR were moderate (r 0 x 32-0 x 59) except for trans fatty acids (r 0 x 03). Correlations between each of the dietary assessment methods and the plasma phospholipids were poor for all fatty acids other than the PUFA. Using the methods of triads approach, the FFQ validity coefficients for total n-3 fatty acids, total long chain n-3 fatty acids, EPA, arachidonic acid, docosapentaenoic acid and DHA were 0 x 50, 0 x 63, 0 x 45 and 0 x 62 and 0 x 62, respectively. For most fatty acids, the FFQ adequately estimates group mean fatty acid intakes and can adequately rank individuals; however, the ability of this FFQ to estimate trans fatty acids was poor.  相似文献   

15.
Background: EPA and DHA n-3 FA play crucial roles in both neurological and cardiovascular health and high dietary intakes along with supplementation suggest potential neuroprotection and concussion recovery support. Rugby athletes have a high risk of repetitive sub-concussive head impacts which may lead to long-term neurological deficits, but there is a lack of research looking into n-3 FA status in rugby players. We examined the dietary n-3 FA intake through a FFQ and n-3 FA status by measuring the percentage of n-3 FA and O3I in elite Canadian Rugby 7s players to show distribution across O3I risk zones; high risk, <4%; intermediate risk, 4 to 8%; and low risk, >8%. Methods: n-3 FA profile and dietary intake as per FFQ were collected at the beginning of the 2017–2018 Rugby 7s season in male (n = 19; 24.84 ± 2.32 years; 95.23 ± 6.93 kg) and female (n = 15; 23.45 ± 3.10 years; 71.21 ± 5.79 kg) athletes. Results: O3I averaged 4.54% ± 1.77, with female athlete scores slightly higher, and higher O3I scores in supplemented athletes (4.82% vs. 3.94%, p = 0.183), with a greater proportion of non-supplemented athletes in the high-risk category (45.5% vs. 39.1%). Dietary intake in non-supplemented athletes did not meet daily dietary recommendations for ALA or EPA + DHA compared to supplemented athletes. Conclusions: Overall, despite supplementation, O3I score remained in the high-risk category in a proportion of athletes who met recommended n-3 FA dietary intakes, and non-supplemented athletes had a higher proportion of O3I scores in the high-risk category, suggesting that dietary intake alone may not be enough and athletes may require additional dietary and n-3 FA supplementation to reduce neurological and cardiovascular risk.  相似文献   

16.
BACKGROUND: Dietary alpha-linolenic acid (ALA) can be converted to long-chain n-3 polyunsaturated fatty acids (PUFAs) in humans and may reproduce some of the beneficial effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on cardiovascular disease risk factors. OBJECTIVE: This study aimed to compare the effects of increased dietary intakes of ALA and EPA+DHA on a range of atherogenic risk factors. DESIGN: This was a placebo-controlled, parallel study involving 150 moderately hyperlipidemic subjects randomly assigned to 1 of 5 interventions: 0.8 or 1.7 g EPA+DHA/d, 4.5 or 9.5 g ALA/d, or an n-6 PUFA control for 6 mo. Fatty acids were incorporated into 25 g of fat spread and 3 capsules to be consumed daily. RESULTS: The change in fasting or postprandial lipid, glucose, or insulin concentrations or in blood pressure was not significantly different after any of the n-3 PUFA interventions compared with the n-6 PUFA control. The mean (+/- SEM) change in fasting triacylglycerols after the 1.7-g/d EPA+DHA intervention (-7.7 +/- 4.99%) was significantly (P < 0.05) different from the change after the 9.5-g/d ALA intervention (10.9 +/- 4.5%). The ex vivo susceptibility of LDL to oxidation was higher after the 1.7-g/d EPA+DHA intervention than after the control and ALA interventions (P < 0.05). There was no significant change in plasma alpha-tocopherol concentrations or in whole plasma antioxidant status in any of the groups. CONCLUSION: At estimated biologically equivalent intakes, dietary ALA and EPA+DHA have different physiologic effects.  相似文献   

17.
BACKGROUND: An increase in plasma n-3 fatty acid content, particularly eicosapentaenoic acid (20:5n-3; EPA) and docosahexaenoic acid (22:6n-3; DHA), is observed after consumption of fish oil-enriched supplements. Because alpha-linolenic acid (18:3n-3; ALA) is the direct precursor of EPA and DHA, ALA-enriched supplements such as flax may have a similar effect, although this hypothesis has been challenged because of reported low conversion of ALA into DHA. OBJECTIVE: To address this question, we designed a clinical trial in which flax oil, fish-oil, and sunflower oil (placebo group) capsules were given to firefighters (n = 62), a group traditionally exposed to cardiovascular disease risk factors. DESIGN: Firefighters were randomly divided into 6 experimental groups receiving 1.2, 2.4, or 3.6 g flax oil/d; 0.6 or 1.2 g fish oil/d; or 1 g sunflower oil/d for 12 wk. Blood was drawn every 2 wk, and the total phospholipid fatty acid composition of red blood cells was determined. RESULTS: As expected, fish oil produced a rapid increase in erythrocyte DHA and total n-3 fatty acids. The consumption of either 2.4 or 3.6 g flax oil/d (in capsules) was sufficient to significantly increase erythrocyte total phospholipid ALA, EPA, and docosapentaenoic acid (22:5n-3) fatty acid content. There were no differences among groups in plasma inflammatory markers or lipid profile. CONCLUSIONS: The consumption of ALA-enriched supplements for 12 wk was sufficient to elevate erythrocyte EPA and docosapentaenoic acid content, which shows the effectiveness of ALA conversion and accretion into erythrocytes. The amounts of ALA required to obtain these effects are amounts that are easily achieved in the general population by dietary modification.  相似文献   

18.
BACKGROUND: Greatly increasing dietary flaxseed oil [rich in the n-3 polyunsaturated fatty acid (PUFA) alpha-linolenic acid (ALA)] or fish oil [rich in the long-chain n-3 PUFAs eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids] can reduce markers of immune cell function. The effects of more modest doses are unclear, and it is not known whether ALA has the same effects as its long-chain derivatives. OBJECTIVE: The objective was to determine the effects of enriching the diet with ALA or EPA+DHA on immune outcomes representing key functions of human neutrophils, monocytes, and lymphocytes. DESIGN: In a placebo-controlled, double-blind, parallel study, 150 healthy men and women aged 25-72 y were randomly assigned to 1 of 5 interventions: placebo (no additional n-3 PUFAs), 4.5 or 9.5 g ALA/d, and 0.77 or 1.7 g EPA+DHA/d for 6 mo. The n-3 PUFAs were provided in 25 g fat spread plus 3 oil capsules. Blood samples were taken at 0, 3, and 6 mo. RESULTS: The fatty acid composition of peripheral blood mononuclear cell phospholipids was significantly different in the groups with higher intakes of ALA or EPA+DHA. The interventions did not alter the percentages of neutrophils or monocytes engaged in phagocytosis of Escherichia coli or in phagocytic activity, the percentages of neutrophils or monocytes undergoing oxidative burst in response to E. coli or phorbol ester, the proliferation of lymphocytes in response to a T cell mitogen, the production of numerous cytokines by monocytes and lymphocytes, or the in vivo delayed-type hypersensitivity response. CONCLUSION: An intake of 相似文献   

19.

Background

Periodontitis is a common, chronic inflammatory disease. Although n-3 fatty acids have anti-inflammatory properties, it is unclear whether n-3 fatty acids can treat or prevent periodontitis.

Method

We studied 9,182 adults aged 20 years and older who participated in the National Health and Nutrition Examination Survey between 1999 and 2004. Periodontitis was assessed by dental exam and was defined as >4 mm pocket depth and >3 mm attachment loss in any one tooth. Intake of n-3 fatty acids was assessed by 24-hour dietary recall. We used multivariable logistic regression to estimate the associations between periodontitis and intakes of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and linolenic acid (LNA).

Results

The weighted prevalence and 95% confidence interval (CI) of periodontitis was 8.2% (95% CI 7.0 to 9.4). Compared with the lowest tertiles, the adjusted odds ratios for periodontitis associated with the highest tertiles of dietary n-3 intake were 0.78 (95% CI 0.61 to 1.00; P=0.009) for DHA, 0.85 (95% CI 0.67 to 1.08; P=0.10) for EPA, and 0.86 (95% CI 0.60 to 1.23; P=0.28) for LNA. The associations were little changed by multivariable adjustment or exclusion of individuals reporting use of dietary supplements containing DHA, EPA, or LNA.

Conclusions

In this nationally representative sample, higher dietary intakes of DHA and, to a lesser degree, EPA, were associated with lower prevalence of periodontitis. Interventional studies are needed to confirm the potential protective effects of n-3 fatty acids on periodontitis.  相似文献   

20.
Currently, there is no FFQ designed to capture the intakes of the long-chain (LC) n-3 PUFA. The objectives of this study were to validate a new LC n-3 PUFA FFQ by comparison with 3 d weighed food records (FR) and to determine its reproducibility assessed 4 to 6 weeks apart. Healthy male and female subjects (n 53) were recruited from Wollongong and the Australian Capital Territory, Australia. The FFQ and FR were analysed for LC n-3 PUFA intakes using a nutrient analysis software package and these intakes were compared using Wilcoxon signed rank tests and Spearman correlation coefficients. Bland-Altman analysis and quintile assignment assessed the agreement between the two methods and the FFQ's ability to rank individuals according to intakes, respectively. Comparison of intakes from FFQ and FR correlated significantly for total LC n-3 PUFA, EPA, docosapentaenoic acid (DPA) and DHA, 0.75, 0.64, 0.62 and 0.72, respectively (P < 0.05); hence, there is reasonable agreement between the FFQ and the FR in assessing LC n-3 PUFA intakes. Quintile assignments correctly assigned 49 % of subjects into the same quintiles and 87 % of subjects were correctly assigned either to the same or adjacent quintiles. The FFQ was reproducible for intakes of LC n-3 PUFA, EPA, DPA and DHA with Spearman correlation coefficients of 0.88, 0.88, 0.90 and 0.87, respectively. In conclusion, the new FFQ is a valid and reproducible method that can be used to estimate the LC n-3 PUFA intake of healthy adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号