首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Like opioid tolerance, neuropathic pain syndrome manifested by hyperalgesia and allodynia responds poorly to opioids. Hitherto, its development is still not clear and its treatment and prevention are still disputable. Pertussis toxin (PTX) which ADP-ribosylates the alpha-subunit of inhibitory guanine nucleotide binding regulatory proteins (Gi/Go), is used to induce morphine tolerance through intrathecal (i.t.) injection. It decreases the antinociceptive effect of opioid receptor agonists, and produces a thermal hyperalgesia as well. With treatment of PTX the inhibitory Gi- and Go-proteins signal transduction is inactivated. Inhibition of the inhibitory system would likely lead to a predominance of the excitatory system. Intrathecal PTX administration has also been suggested as a model for study of the central mechanisms of neuropathic pain. In our previous studies, with intrathecal microdialysis and drug delivery techniques, we correlated the biochemical and pharmacological effects on the behavioral expressions of i.t. PTX-treated rats. Intrathecal PTX administration would induce thermal hyperalgesia in rats, with accompaniments of a prolonged increase in the concentrations of excitatory amino acids (EAAs), glutamate and aspartate, and a decrease in the concentration of the inhibitory amino acid (IAA) glycine in the spinal CSF dialysates. The PTX-induced thermal hyperalgesia peaked between day 2 and 4, but no cold allodynia is observed; i.t. administration of N-methyl-D-aspartate (NMDA) receptor antagonist, D-2-amino-5-phosponovaleric acid (D-AP5), glycine and protein kinase C (PKC) inhibitor chelerythrine attenuated the thermal hyperalgesia. The PKC gamma content of both synaptosomal and cytosolic fractions were significantly increased in PTX-treated rats. In contrast, the levels of PKC alpha, beta I, or beta II isozymes in these fractions were unaffected. Infusion of NMDA antagonist D-AP5 prevented both the thermal hyperalgesia and the increase in PKC gamma expression in PTX-treated rats. Similar to our previous report, i.t. PTX reduced morphine's analgesic effect. PKC inhibitor chelerythrine attenuated this reduction of morphine's analgesia, and an inhibition of the morphine-evoked EAAs release was observed in PTX-treated rats as well. Taken together, i.t. PTX-induced neuropathic pain syndrome is accompanied by increasing of EAAs, decreasing of IAA release, and a selective increasing of PKC gamma expression in the spinal cord. Inhibition of PKC not only blocked thermal hyperalgesia, but also reversed the reduction of morphine's analgesic effect in PTX-rats. These results suggest that PTX-induced neuropathic pain syndromes are involved in EAAs, IAAs and PKC alternations.  相似文献   

2.
BACKGROUND: Intravenous administration of N-methyl-D-aspartate (NMDA) receptor antagonists and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor antagonists reportedly reduce the minimum alveolar anaesthetic concentration (MAC) for inhalation anaesthetics. If pain perception can be prevented by the intrathecal administration of antinociceptive receptor antagonists, these agents may reduce the requirements for inhalation anaesthetics. We studied the effect of intrathecal administration of an AMPA/kainate receptor antagonist, a metabotropic glutamate (mGlu) receptor antagonist and co-administration of NMDA and a neurokinin-1(NK-1) receptor antagonist drugs at low doses on the MAC. METHODS: After Wistar rats (n=36) were fitted with indwelling intrathecal catheters, the MAC of isoflurane was determined following intrathecal administration of a non-NMDA receptor antagonist (CNQX) at 10 microg, a mGlu receptor antagonist (AP3) at 10 microg, or a combination of NMDA receptor antagonist (APV) at 0.01 microg to 1 microg with NK-1 receptor antagonist (CP96345, CP) at 0.1 microg to 10 microg. Subsequently, a reversal dose of intrathecal NMDA with substance P (SP) was administered, and the MAC of isoflurane was redetermined. Conscious rats (n=15) were also examined for the presence of locomotor dysfunction following the intrathecal co-administration of APV and CP. RESULTS: Neither CNQX nor AP3 reduced the MAC of isoflurane. APV at 0.01 microg plus CP at 1 microg, as well as APV at 0.1 microg plus CP at 10 microg, reduced the MAC of isoflurane, with respective reductions of 7.6% and 14%; (P<0.05). Co-administration of NMDA plus SP reversed the decrease in the MAC of isoflurane. Locomotive activity was not changed. CONCLUSIONS: The NMDA receptor and the NK-1 receptor are important determinants of the MAC of isoflurane, exerting this influence by inhibition of pain transmission in the spinal cord, while mGlu and AMPA receptors have no effect on the MAC of isoflurane.  相似文献   

3.
Mechanical loading modulates glutamate receptor subunit expression in bone   总被引:2,自引:0,他引:2  
The cellular mechanisms coupling mechanical loading with bone remodeling remain unclear. In the CNS, the excitatory amino acid glutamate (Glu) serves as a potent neurotransmitter exerting its effects via various membrane Glu receptors (GluR). Nerves containing Glu exist close to bone cells expressing functional GluRs. Demonstration of a mechanically sensitive glutamate/aspartate transporter protein and the ability of glutamate to stimulate bone resorption in vitro suggest a role for glutamate linking mechanical load and bone remodeling. We used immunohistochemical techniques to identify the expression of N-methyl-d-aspartate acid (NMDA) and non-NMDA (AMPA or kainate) ionotropic GluR subunits on bone cells in vivo. In bone sections from young adult rats, osteoclasts expressed numerous GluR subunits including AMPA (GluR2/3 and GluR4), kainic acid (GluR567) and NMDA (NMDAR2A, NMDAR2B and NMDAR2C) receptor subtypes. Bone lining cells demonstrated immunoexpression for NMDAR2A, NMDAR2B, NMDAR2C, GluR567, GluR23, GluR2 and GluR4 subunits. Immunoexpression was not evident on osteocytes, chondrocytes or vascular channels. To investigate the effects of mechanical loading on GluR expression, we used a Materials Testing System (MTS) to apply 10 N sinusoidal axial compressive loads percutaneously to the right limbs (radius/ulna, tibia/fibula) of rats. Each limb underwent 300-load cycles/day (cycle rate, 1 Hz) for 4 consecutive days. Contralateral, non-loaded limbs served as controls. Mechanically loaded limbs revealed a load-induced loss of immunoexpression for GluR2/3, GluR4, GluR567 and NMDAR2A on osteoclasts and NMDAR2A, NMDAR2B, GluR2/3 and GluR4 on bone lining cells. Both neonatal rabbit and rat osteoclasts were cultured on bone slices to investigate the effect of the NMDA receptor antagonist, MK801, and the AMPA/kainic acid receptor antagonist, NBQX, on osteoclast resorptive activity in vitro. The inhibition of resorptive function seen suggested that both NMDAR and kainic acid receptor function are required for normal osteoclast function. While the exact role of ionotropic GluRs in skeletal tissue remains unclear, the modulation of GluR subunit expression by mechanical loading lends further support for participation of Glu as a mechanical loading effector. These ionotropic receptors appear to be functionally relevant to normal osteoclast resorptive activity.  相似文献   

4.
Although there is an anatomical framework that is involved in pain processing, this system is not ‘hard wired’ but undergoes changes affecting the sensitivity and the ‘gain’ of nociception. Peripheral sensitization contributes to increasing afferent barrage to the spinal cord. It is mediated by many diverse elements, including nerve and immune cells, in a complex array of algogenic products. Numerous receptors and ion channels are involved. Continuing increased input into the spinal cord causes further changes of central sensitization. The glutamate receptor, N-methyl-d-aspartate (NMDA) is pivotal to these processes. The NMDA receptor is therefore a potential target for analgesic therapy. Visceral pain shares the features of the pain mechanisms described in this article, but there are some anatomical, physiological and biochemical differences to somatic pain. Damage to nerves causes changes in excitability, which induce similar peripheral and central sensitization processes that contribute to neuropathic pain. Knowledge of all these processes identifies not only a rationale for standard pain treatments but also novel potential analgesic targets. However, these systems display complex interactions and, rather than targeting a single moiety, a multi-mechanistic approach to analgesia is required.  相似文献   

5.
6.
Neurokinin-1-expressing neurones in lamina I to III of the spinal cord are intimately involved in the regulation of ascending and spino-bulbal pathways that regulate excitatory transmission. In experimental animals, ablation of these neurones reduces the responses to a variety of nociceptive stimuli. Furthermore, in animals, spinal application of the selective 5HT3 receptor antagonist ondansetron mimics these effects, indicating that 5HT3 receptors play a pronociceptive role and mediate descending excitatory controls that allow spinal neurones to fully code peripheral stimuli. In this study, we examined the potential analgesic effect of a single IV injection of ondansetron in humans with chronic neuropathic pain. Each consenting subject received a single IV injection of 8 mg ondansetron and placebo in varying order at least 1 wk apart with pain scores being recorded for the 48 h preceding and after each injection. Pain scores were significantly reduced 2 h after ondansetron injection (but at no other time point). This suggests that ondansetron can have an analgesic effect in neuropathic pain. Side effects were minor and infrequent. IMPLICATIONS: The selective 5HT3 receptor antagonist ondansetron, currently used as an antiemetic, may also have analgesic properties. Side effects with a single IV injection are infrequent and usually mild.  相似文献   

7.
BACKGROUND: Clinical studies suggest that intraoperative administration of the clinical remifentanil formulation Ultiva (GlaxoWellcome GmbH & Co, Bad Oldesloe, Germany) increases postoperative pain and postoperative analgesic requirements, but mechanisms remain unclear. N-methyl-D-aspartate (NMDA) receptors are thought to play a major role in development of postoperative pain and opiate tolerance. The authors hypothesized that Ultiva directly stimulates human NMDA receptors. METHODS: To test this hypothesis, the authors expressed human NR1A/NR2A and NR1A/NR2B NMDA receptors in Xenopus laevis oocytes by injection of messenger RNA prepared in vitro. After protein expression, they used a two-electrode voltage clamp to measure currents induced by NMDA receptor agonists and opioids. RESULTS: Noninjected cells were unresponsive to all compounds tested. Glutamate/glycine (1 nM-1 mM each) or Ultiva (0.01 pM-0.1 mM) stimulated NMDA receptors concentration dependently. NR1A/2A EC50 values were 8.0 microM/12 microM for glutamate/glycine and 3.5 nM for Ultiva, and NR1A/2B EC50 values were 3.9 microM/1.9 microM for glutamate/glycine and 0.82 microM for Ultiva. Glycine in combination with Ultiva showed no additive effect compared with Ultiva alone. Ultiva-induced currents were inhibited by MK-801 (pore blocker) but not by 7-CK (glycine antagonist), D-AP5 (glutamate antagonist), or naloxone. Fentanyl (10 microM) did not stimulate NMDA receptors. CONCLUSION: These data indicate that Ultiva but not fentanyl stimulates NMDA receptors of different subunit combinations (NR1A/2A, NR1A/2B). The mechanism seems to be allosteric activation of the NMDA receptor.  相似文献   

8.
Primary insults to the brain can initiate glutamate release that may result in excitotoxicity followed by neuronal cell death. This secondary process is mediated by both N-methyl-D-aspartate (NMDA) and non-NMDA receptors in vivo and requires new gene expression. Neuronal cyclooxygenase-2 (COX2) expression is upregulated following brain insults, via glutamatergic and inflammatory mechanisms. The products of COX2 are bioactive prostanoids and reactive oxygen species that may play a role in neuronal survival. This study explores the role of neuronal COX2 in glutamate excitotoxicity using cultured cerebellar granule neurons (day 8 in vitro). Treatment with excitotoxic concentrations of glutamate or kainate transiently induced COX2 mRNA (two- and threefold at 6 h, respectively, p < 0.05, Dunnett) and prostaglandin production (five- and sixfold at 30 min, respectively, p < 0.05, Dunnett). COX2 induction peaked at toxic concentrations of these excitatory amino acids. Surprisingly, NMDA, L-quisqualate, and trans-ACPD did not induce COX2 mRNA at any concentration tested. The glutamate receptor antagonist NBQX (5 microM, AMPA/kainate receptor) completely inhibited kainate-induced COX2 mRNA and partially inhibited glutamate-induced COX2 (p < 0.05, Dunnett). Other glutamate receptor antagonists, such as MK-801 (1 microM, NMDA receptor) or MCPG (500 microM, class 1 metabotropic receptors), partially attenuated glutamate-induced COX2 mRNA. These antagonists all reduced steady-state COX2 mRNA (p < 0.05, Dunnett). To determine whether COX2 might be an effector of excitotoxic cell death, cerebellar granule cells were pretreated (24 h) with the COX2-specific enzyme inhibitor, DFU (5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsulphonyl) phenyl-2((5)H)-furanone) prior to glutamate challenge. DFU (1 to 1000 nM) completely protected cultured neurons from glutamate-mediated neurotoxicity. Approximately 50% protection from NMDA-mediated neurotoxicity, and no protection from kainate-mediated neurotoxicity was observed. Therefore, glutamate-mediated COX2 induction contributes to excitotoxic neuronal death. These results suggest that glutamate, NMDA, and kainate neurotoxicity involve distinct excitotoxic pathways, and that the glutamate and NMDA pathways may intersect at the level of COX2.  相似文献   

9.
BACKGROUND: Inspiratory bulbospinal neurons in the caudal ventral medulla are premotor neurons that drive motoneurons, which innervate pump muscles such as the diaphragm and external intercostals. Excitatory drive to these neurons is mediated by N-methyl-d-aspartate (NMDA) receptors and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors and is modulated by an inhibitory gamma-aminobutyric acid type A (GABAA)ergic input. The authors investigated the effect of sevoflurane on these synaptic mechanisms in decerebrate dogs. METHODS: Studies were performed in decerebrate, vagotomized, paralyzed, and mechanically ventilated dogs during hypercapnic hyperoxia. The effect of 1 minimum alveolar concentration sevoflurane on extracellularly recorded activity of single neurons was measured during localized picoejection of the GABAA receptor blocker bicuculline and the glutamate agonists AMPA and NMDA. Complete blockade of the GABAAergic mechanism by bicuculline allowed differentiation between the effects of sevoflurane on overall GABAAergic inhibition and on overall glutamatergic excitation. The neuronal responses to exogenous AMPA and NMDA were used to estimate the anesthetic effect on postsynaptic glutamatergic neurotransmission. RESULTS: One minimum alveolar concentration sevoflurane depressed the spontaneous activity of 23 inspiratory premotor neurons by (mean +/- SD) 30.0 +/- 21.0% (P < 0.001). Overall glutamatergic excitation was depressed 19.2 +/- 18.5% (P < 0.001), whereas overall GABAAergic inhibition was enhanced by 11.9 +/- 25.1% (P < 0.05). The postsynaptic responses to exogenous AMPA and NMDA did not change. CONCLUSION: One minimum alveolar concentration depressed the activity of inspiratory premotor neurons by a reduction of glutamatergic excitation and an increase in overall inhibition. The postsynaptic AMPA and NMDA receptor response was unchanged. These findings contrast with studies in inspiratory premotor neurons where halothane did not change overall inhibition but significantly reduced the postsynaptic glutamate receptor response.  相似文献   

10.
Mansikka H  Zhao C  Sheth RN  Sora I  Uhl G  Raja SN 《Anesthesiology》2004,100(4):912-921
BACKGROUND: Mice lacking the mu-opioid receptor gene have been used to characterize the role of mu-opioid receptors in nociception and the analgesic actions of opioid agonists. In this study, the authors determined the role of mu-opioid receptors in neuropathic pain behaviors and the effectiveness of mu- and kappa-opioid receptor agonists on this behavior in mice. METHODS: The authors studied the behavioral responses of mu-opioid receptor knockout and wild-type mice to thermal and mechanical stimuli before and after neuropathic pain induced by unilateral ligation and section of the L5 spinal nerve. Response to mechanical stimuli was evaluated by determining the frequency of hind paw withdrawal to repetitive stimulation using a series of von Frey monofilaments. Thermal hyperalgesia was assessed by determining the paw withdrawal latencies to radiant heat and frequency of hind paw withdrawal to cooling stimuli. The effects of systemic morphine, the kappa-opioid agonist U50488H, and naloxone on responses to mechanical and thermal stimuli were also studied in spinal nerve-injured mice. RESULTS: After spinal nerve injury, wild-type mice developed increased responsiveness to mechanical, heat, and cooling stimuli ipsilateral to nerve injury. mu-Opioid receptor knockout mice not only had more prominent mechanical allodynia in the nerve-injured paw, but also expressed contralateral allodynia to mechanical stimuli. Hyperalgesia to thermal stimuli was similar between mu-opioid knockout and wild-type animals. Morphine decreased mechanical allodynia dose dependently (3-30 mg/kg subcutaneous) in wild-type mice--an effect that was attenuated in the heterozygous mice and absent in the homozygous mu-opioid knockout mice. The kappa-opioid agonist U50488H (3-10 mg/kg subcutaneous) attenuated mechanical allodynia in wild-type, heterozygous, and homozygous mu-opioid mice. Naloxone in wild-type mice resulted in enhanced ipsilateral and contralateral allodynia to mechanical stimuli that resembled the pain behavior observed in mu-opioid receptor knockout mice. CONCLUSIONS: The authors' observations indicate that (1) unilateral nerve injury induces a bilateral tonic activation of endogenous mu-opioid receptor-mediated inhibition that attenuates mechanical allodynia but not thermal hyperalgesia, (2) both mu- and kappa-opioid agonists attenuate neuropathic pain in mice, and (3) the antihyperalgesic actions of morphine are mediated primarily via mu-opioid receptors.  相似文献   

11.
Background: Two major neurotransmitters, [Greek small letter gamma]-aminobutyric acid (GABA) and the excitatory amino acid, glutamate, may be involved in nociception in the spinal cord. GABA and glutamate receptors may operate in concert to modify signals in the central nervous system. The purpose of this study was to investigate the spinal analgesic interaction between midazolam, a benzodiazepine-GABAA receptor agonist, and two glutamate receptor antagonists on acute thermal nociception.

Methods: Sprague-Dawley rats were implanted with chronic lumbar intrathecal catheters and were tested for their tail withdrawal response by the tail flick test after intrathecal administration of saline, midazolam (1-100 [micro sign]g), AP-5 (1-30 [micro sign]g), or YM872 (0.3-30 [micro sign]g). AP-5 is an N-methyl-D-aspartate (NMDA) receptor antagonist and YM872 is an [Greek small letter alpha]-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor antagonist. The combination of midazolam and the other two agents were also tested by isobolographic analyses. Motor disturbance and behavioral changes were observed.

Results: Dose-dependent increases in the tail flick latency were observed with midazolam, AP-5, and YM872 with 50% effective dose values of 1.57 +/- 0.34 (SEM) [micro sign]g, 5.54 +/- 0.19 [micro sign]g, and 1.0 +/- 0.22 [micro sign]g, respectively. A potent synergy in analgesia with decreased behavioral changes and motor disturbance was obtained when combining midazolam with AP-5 or YM872.  相似文献   


12.
BACKGROUND: Inspiratory bulbospinal neurons in the caudal ventral medulla are premotor neurons that drive phrenic motoneurons and ultimately the diaphragm. Excitatory drive to these neurons is mediated by N-methyl-d-aspartate (NMDA) receptors and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors and modulated by an inhibitory gamma-aminobutyric acid(A) (GABA(A))ergic input. The authors investigated the effect of halothane on these synaptic mechanisms in decerebrate dogs. METHODS: Studies were performed in decerebrate, vagotomized, paralyzed, and mechanically ventilated dogs during hypercapnic hyperoxia. The effect of 1 minimum alveolar concentration (MAC) halothane on extracellularly recorded neuronal activity was measured during localized picoejection of the GABA(A) receptor blocker bicuculline and the glutamate agonists AMPA and NMDA. Complete blockade of the GABA(A)ergic mechanism by bicuculline allowed differentiation between the effects of halothane on overall GABA(A)ergic inhibition and on overall glutamatergic excitation. The neuronal responses to exogenous AMPA and NMDA were used to estimate the anesthetic effect on postsynaptic glutamatergic neurotransmission. RESULTS: Halothane, 1 MAC, depressed the spontaneous activity of 21 inspiratory neurons by 20.6 +/- 18.0% (mean +/- SD; P = 0.012). Overall glutamatergic excitation was depressed 15.4 +/- 20.2% (P = 0.001), while overall GABA(A)ergic inhibition did not change. The postsynaptic responses to exogenous AMPA and NMDA were also depressed by 18.6 +/- 35.7% (P = 0.03) and 22.2 +/- 26.2% (P = 0.004), respectively. CONCLUSION: Halothane, 1 MAC, depressed the activity of inspiratory premotor neurons by a reduction of glutamatergic excitation. Overall inhibitory drive did not change. The postsynaptic AMPA and NMDA receptor response was significantly reduced. These findings contrast with studies in expiratory premotor neurons in which overall inhibition was significantly increased by halothane and there was no reduction in the postsynaptic glutamate receptor response.  相似文献   

13.
Spinal cord injury often damages the axons of cord-projecting central neurons. To determine whether their excitatory inputs are altered following axonal injury, we used rat rubrospinal neurons as a model and examined their excitatory input following upper cervical axotomy. Anterograde tracing showed that the primary afferents from the cerebellum terminated in a pattern similar to that of control animals. Ultrastructurally, neurons in the injured nucleus were contacted by excitatory synapses of normal appearance, with no sign of glial stripping. Since cerebellar fibers are glutamatergic, we examined the expression of ionotropic receptor subunits GluR1-4 and NR1 for AMPA and NMDA receptors, respectively, in control and injured neurons using immunolabeling methods. In control neurons, GluR2 appeared to be low as compared to GluR1, GluR3, and GluR4, while NR1 labeling was intense. Following unilateral tractotomy, the levels of expression of each subunit in axotomized neurons appeared to be normal, with the exception that they were lower than those of control neurons of the nonlesioned side at 2-6 days postinjury. These findings suggest that axotomized neurons are only temporarily protected from excitotoxicity. This is in sharp contrast to the responses of central neurons that innervate peripheral targets, in which both synaptic stripping and reduction of their ionotropic glutamate receptor subunits persist following axotomy. The absence of an injury-induced trimming of afferents and stripping of synapses and the lack of a persistent downregulation of postsynaptic receptors might enable injured cord-projection neurons to continue to control their supraspinal targets during most of their postinjury survival. Although this may support neurons by providing trophic influences, it nevertheless may subject them to excitotoxicity and ultimately lead to their degenerative fate.  相似文献   

14.
Background: Clinical studies suggest that intraoperative administration of the clinical remifentanil formulation Ultiva(R) (GlaxoWellcome GmbH & Co, Bad Oldesloe, Germany) increases postoperative pain and postoperative analgesic requirements, but mechanisms remain unclear. N-methyl-d-aspartate (NMDA) receptors are thought to play a major role in development of postoperative pain and opiate tolerance. The authors hypothesized that Ultiva(R) directly stimulates human NMDA receptors.

Methods: To test this hypothesis, the authors expressed human NR1A/NR2A and NR1A/NR2B NMDA receptors in Xenopus laevis oocytes by injection of messenger RNA prepared in vitro. After protein expression, they used a two-electrode voltage clamp to measure currents induced by NMDA receptor agonists and opioids.

Results: Noninjected cells were unresponsive to all compounds tested. Glutamate/glycine (1 nm-1 mm each) or Ultiva(R) (0.01 pm-0.1 mm) stimulated NMDA receptors concentration dependently. NR1A/2A EC50 values were 8.0 [mu]M/12 [mu]M for glutamate/glycine and 3.5 nM for Ultiva(R), and NR1A/2B EC50 values were 3.9 [mu]M/1.9 [mu]M for glutamate/glycine and 0.82 [mu]M for Ultiva(R). Glycine in combination with Ultiva(R) showed no additive effect compared with Ultiva(R) alone. Ultiva(R)-induced currents were inhibited by MK-801 (pore blocker) but not by 7-CK (glycine antagonist), D-AP5 (glutamate antagonist), or naloxone. Fentanyl (10 [mu]M) did not stimulate NMDA receptors.  相似文献   


15.
Modulation of synaptic neurotransmission through the ligand-gated ion channel is probably involved in the mechanisms of analgesic and anesthetic actions. In the central nervous system, adenosine triphosphate and glutamate are fast excitatory neurotransmitters through their effects on P2X and N-methyl-D-aspartate (NMDA) receptors respectively. To examine the anesthetic interaction between adenosine triphosphate and NMDA receptor antagonists, we studied the effect of intracerebroventricular administration of P2 and/or NMDA antagonists on the minimum alveolar concentration (MAC) of sevoflurane in rats. Intracerebro- ventricular administration of phosphonopentanoic acid azophenyl-2',4'-disulfonate and D (-)-2-anino-5-phophonopentanoic acid, P2 and NMDA antagonists, significantly reduced the MAC of sevoflurane. The reduction of the MAC by both phosphonopentanoic acid azophenyl-2',4'-disulfonate and D (-)-2-anino-5-phophonopentanoic acid was dose-dependent. The effect of coadministration of both antagonists was additive in the reduction of sevoflurane minimum alveolar concentration. These results suggest that P2 and NMDA receptors mediate nociceptive/anesthetic processing as inhibition of these receptors resulted in analgesic and anesthetic effects. However the pathway mediated through each receptor may be different postsynaptically and/or one of these presynaptic receptors may modulate the neurotransmitter release of the other.  相似文献   

16.
N-methyl-D-aspartat (NMDA) receptors are involved in the development of neuropathic pain. Ketamine, a non-competitive NMDA receptor antagonist, has in several case reports given pain relief but efficacy in dosages tolerated in long-term ketamine treatment is unknown. Another substance with an antagonist action at NMDA receptors and which is approved for per-oral administration is dextromethorphan. In a randomized study dextromethorphan was no better than placebo for neuropathic pain but this does not exclude efficacy in selected patients.
We report a patient with severe post-herpetic pain resistant to conventional pain treatment which was treated with ketamine for 4 years with good pain relief. The practical application of long-term treatment in different administration forms of ketamine is described. The patient also responded with pain relief in a double-blind trial with oral dextromethorphan.  相似文献   

17.
BACKGROUND: Many studies have demonstrated that either glutamate -methyl-d-aspartate (NMDA) receptor antagonists or opioid receptor agonists provide antinociception. Spinal coadministration of an NMDA receptor antagonist and morphine has an additive action for control of various pain states in animal models. The current study examined spinal coadministration of low doses of NMDA receptor antagonist, D-(-)-2-Amino-5-phosphonovalerate (D-APV), and mu-opioid receptor agonist, morphine sulfate (MS), in reducing visceral nociception using an acute bradykinin induced pancreatitis model in rats. METHODS: An intrathecal catheter was surgically inserted into the subarachnoid space for spinal drug administration in Sprague-Dawley rats. A laparotomy was performed for ligation and cannulation of the bile-pancreatic duct. Rats were pretreated intrathecally with artificial cerebrospinal fluid (aCSF), D-APV, MS, or combined administration of D-APV and MS. These treatments were given 30 min before noxious visceral stimulation with bradykinin injected through the bile-pancreatic catheter. Spontaneous behavioral activity tests, including cage crossing, rearing, and hind limb extension, were conducted before and after bradykinin injection into the bile-pancreatic duct to assess visceral nociception. RESULTS: Spinal pretreatment of D-APV or low doses of MS partially reduced visceral pain behaviors in this model. Pretreatments with combinations of low doses of MS (0.05-0.5 microg) and D-APV (1 microg) were maximally effective in returning all spontaneous behavioral activities to baseline. CONCLUSIONS: Spinal administration of combined doses of NMDA receptor antagonist, D-APV, and MS reversed three behavioral responses to induction of an acute pancreatitis model. These results suggest that in the clinical management of visceral pain, such as pancreatitis, restricted usage of glutamate antagonists might be useful as adjuvant potentiation at the onset of morphine therapy.  相似文献   

18.
BACKGROUND: Two major neurotransmitters, gamma-aminobutyric acid (GABA) and the excitatory amino acid, glutamate, may be involved in nociception in the spinal cord. GABA and glutamate receptors may operate in concert to modify signals in the central nervous system. The purpose of this study was to investigate the spinal analgesic interaction between midazolam, a benzodiazepine-GABA(A) receptor agonist, and two glutamate receptor antagonists on acute thermal nociception. METHODS: Sprague-Dawley rats were implanted with chronic lumbar intrathecal catheters and were tested for their tail withdrawal response by the tail flick test after intrathecal administration of saline, midazolam (1-100 microg), AP-5 (1-30 microg), or YM872 (0.3-30 microg). AP-5 is an N-methyl-D-aspartate (NMDA) receptor antagonist and YM872 is an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor antagonist. The combination of midazolam and the other two agents were also tested by isobolographic analyses. Motor disturbance and behavioral changes were observed. RESULTS: Dose-dependent increases in the tail flick latency were observed with midazolam, AP-5, and YM872 with 50% effective dose values of 1.57+/-0.34 (SEM) microg, 5.54+/-0.19 microg, and 1.0+/-0.22 microg, respectively. A potent synergy in analgesia with decreased behavioral changes and motor disturbance was obtained when combining midazolam with AP-5 or YM872. CONCLUSIONS: Spinally administered midazolam and an NMDA- or an AMPA-receptor antagonist exhibited potent synergistic analgesia on acute thermal nociception in rats. Side effects, shown by behavioral changes and motor disturbance, decreased with the combination of the agents. These results point out an important direction for the study of acute nociception.  相似文献   

19.
Background: Changes in the inhibitory activity mediated by [gamma]-aminobutyric acid (GABA) and glycine, acting at spinal GABAA receptors and strychnine-sensitive glycine receptors, are of interest in the development of neuropathic pain. There is anatomic evidence for changes in these transmitter systems after nerve injuries, and blocking either GABAA or glycine receptors has been shown to produce allodynia-like behavior in awake normal animals.

Methods: In this study, the possible changes in GABAergic and glycinergic inhibitory activity in the spinal nerve ligation model of neuropathic pain were studied by comparing the effects of the GABAA-receptor antagonist bicuculline and the glycine-receptor antagonist strychnine in neuropathic rats to their effects in sham-operated and nonoperated control rats.

Results: Bicuculline produced a dose-related facilitation of the A[delta]-fiber-evoked activity in all study groups and increased C-fiber-mediated activity in the spinal nerve ligation group but not in either of the control groups. There were no differences in the effect of bicuculline on low threshold responses between the study groups. The glycine receptor antagonist strychnine did not have a statistically significant effect on any of the parameters studied in any of the control groups.  相似文献   


20.
T Kawamata  K Omote 《Anesthesiology》1999,91(5):1415-1424
BACKGROUND: Increasing evidence has suggested the possibility that the activation of N-methyl-D-aspartate (NMDA) receptors modulates spinal nociceptive transmission via a nitric oxide (NO)/cyclic guanosine 3',5'-monophosphate (cGMP) pathway. However, the existence and the role of an NO/cGMP pathway in the modulation of spinal nociceptive transmission has been unclear. The authors hypothesized that the activation of NMDA receptors stimulates an NO/cGMP pathway, and this pathway evokes glutamate release within the spinal cord, modulating spinal nociceptive transmission. METHODS: The authors have examined the effects of an NO synthase inhibitor and a soluble guanylate cyclase inhibitor on the concentrations of NO metabolites (NO2-/NO3-) and glutamate in the cerebrospinal fluid after intrathecal perfusion of NMDA, concomitantly observing pain-related behavior (scratching, biting, and vocalization) in unanesthetized, free-moving rats using an intrathecal microdialysis method. The contents of cGMP in the dorsal horn were also measured using enzyme immunoassay method. RESULTS: Intrathecal perfusion of NMDA produced pain-related behavior and increased glutamate and NO2-/NO3-concentrations in a dose-dependent manner. A competitive NMDA receptor antagonist, D,L-2-amino-5-phosphonovaleric acid, completely blocked the NMDA-induced responses. An NO synthase inhibitor, N(G)-monomethyl-L-arginine acetate, at a dose that completely blocked the increase in NO2-/NO3-, inhibited both the NMDA-induced pain-related behavior and the increase in glutamate concentration. In addition, a soluble guanylate cyclase inhibitor, 1H-[1,2,4]oxadiazole[4,3-a]quinoxaline-1-one, also inhibited significantly NMDA-induced pain-related behavior and the increase in glutamate concentration. NMDA induced an increase in cGMP in the dorsal half of the spinal cord, which was blocked by N(G)-monomethyl-L-arginine acetate. CONCLUSIONS: The results of this study support the hypothesis that the activation of NMDA receptors modulated pain-related behavior via an NO/cGMP/glutamate release cascade within the spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号