首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small amounts of exogenous lipopolysaccharide (LPS) (10 ng/kg-100 microg/kg) enhance the hepatotoxicity of allyl alcohol in male Sprague-Dawley rats. This augmentation of allyl alcohol hepatotoxicity appears to be linked to Kupffer cell function, but the mechanism of Kupffer cell involvement is unknown. Since Kupffer cells produce tumor necrosis factor-alpha (TNF alpha) upon exposure to LPS, and this cytokine has been implicated in liver injury from large doses of LPS, we tested the hypothesis that TNF alpha contributes to LPS enhancement of allyl alcohol hepatotoxicity. Rats were treated with LPS (10-100 microg/kg iv) 2 h before allyl alcohol (30 mg/kg ip). Co-treatment with LPS and allyl alcohol caused liver injury as assessed by an increase in activity of alanine aminotransferase in plasma. Treatment with LPS caused an increase in plasma TNF alpha concentration, which was prevented by administration of either pentoxifylline (PTX) (100 mg/kg iv) or anti-TNF alpha serum (1 ml/rat iv) one h prior to LPS. Only PTX protected rats from LPS-induced enhancement of allyl alcohol hepatotoxicity; anti-TNF alpha serum had no effect. Exposure of cultured hepatocytes to LPS (1-10 microg/ml) or to TNF alpha (15-150 ng/ml) for 2 h did not increase the cytotoxicity of allyl alcohol (0.01-200 microM). These data suggest that neither LPS nor TNF alpha alone was sufficient to increase the sensitivity of isolated hepatocytes to allyl alcohol. Furthermore, hepatocytes isolated from rats treated 2 h earlier with LPS (i.e., hepatocytes which were exposed in vivo to TNF alpha and other inflammatory mediators) were no more sensitive to allyl alcohol-induced cytotoxicity than hepatocytes from na?ve rats. These data suggest that circulating TNF alpha is not involved in the mechanism by which LPS enhances hepatotoxicity of allyl alcohol and that the protective effect of PTX may be due to another of its biological effects.  相似文献   

2.
Although valproic acid (VPA) a proven anticonvulsant agent thought to have relatively few side-effects VPA has been referred as the third most common xenobiotic suspected of causing death due to liver injury. In this study the cellular pathways involved in VPA hepatotoxicity were investigated in isolated rat hepatocytes. Accelerated cytotoxicity mechanism screening (ACMS) techniques using fluorescent probes including, ortho-phthalaldehyde, rhodamine 123 and acridine orange were applied for measurement of ROS formation, glutathione depletion, mitochondrial membrane potential and Lysosomal membrane damage, respectively. Our results showed that cytotoxic action of VPA is mediated by lysosomal membrane leakiness along with reactive oxygen species (ROS) formation and decline of mitochondrial membrane potential before cell lysis ensued. Incubation of hepatocytes with VPA also caused rapid hepatocyte glutathione (GSH) depletion which is another marker of cellular oxidative stress. Most of the VPA induced GSH depletion could be attributed to the expulsion of GSSG. Our results also showed that CYP2EI is involved in the mechanism of VPA cytotoxicity. We finally concluded that VPA hepatotoxicity is a result of metabolic activation by CYP2E1 and ROS formation, leading to lysosomal labialization, mitochondrial/lysosomal toxic cross-talk and finally general cellular proteolysis in the rat hepatocytes.  相似文献   

3.
3-Butene-1,2-diol (BDD), an allylic alcohol and major metabolite of 1,3-butadiene, has previously been shown to cause hepatotoxicity and hypoglycemia in male Sprague-Dawley rats, but the mechanisms of toxicity were unclear. In this study, rats were administered BDD (250 mg/kg) or saline, ip, and serum insulin levels, hepatic lactate levels, and hepatic cellular and mitochondrial GSH, GSSG, ATP, and ADP levels were measured 1 or 4 h after treatment. The results show that serum insulin levels were not causing the hypoglycemia and that the hypoglycemia was not caused by an enhancement of the metabolism of pyruvate to lactate because hepatic lactate levels were either similar (1 h) or lower (4 h) than controls. However, both hepatic cellular and mitochondrial GSH and GSSG levels were severely depleted 1 and 4 h after treatment and the mitochondrial ATP/ADP ratio was also lowered 4 h after treatment relative to controls. Because these results suggested a role for hepatic cellular and mitochondrial GSH in BDD toxicity, additional rats were administered N-acetyl-l-cysteine (NAC; 200 mg/kg) 15 min after BDD administration. NAC treatment partially prevented depletion of hepatic cellular and mitochondrial GSH and preserved the mitochondrial ATP/ADP ratio. NAC also prevented the severe depletion of serum glucose concentration and the elevation of serum alanine aminotransferase activity after BDD treatment without affecting the plasma concentration of BDD. Thus, depletion of hepatic cellular and mitochondrial GSH followed by the decrease in the mitochondrial ATP/ADP ratio was likely contributing to the mechanisms of hepatotoxicity and hypoglycemia in the rat.  相似文献   

4.
Sanguinarine (SANG) has been suggested to be one of the principle constituents responsible for the toxicity of Argemone mexicana seed oil. In this study, we focused on the possible mechanism of SANG-induced hepatotoxicity. The serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) activities, hepatic vacuolization, lipid accumulation and lipid peroxidation of the liver were increased, and triglyceride (TG) was decreased in SANG-treated mice (10 mg kg(-1) i.p.), indicating damage to the liver. SANG induced cell death and DNA fragmentation, in a concentration- (0-30 microm) and time-dependent (0-24 h) manner, and the cytotoxicity of SANG (15 microm) was accompanied by an increase in reactive oxygen species and a lessening in protein thiol content; these outcomes were reversed by glutathione, N-acetyl-l-cysteine and 1,4-dithiothretol, and slightly improved by other antioxidants in hepatocytes. SANG can affect the function of mitochondria, leading to the depletion of the mitochondrial membrane potential and adenosine 5'-triphosphate content of hepatocytes. SANG caused an uncoupling effect of the respiratory chain at lower concentrations, but inhibited the respiratory chain at higher concentrations in mitochondria isolated from rat liver. In conclusion, the data suggest that SANG is a liver toxin that induces cytotoxicity in liver cells, possibly through oxidation of protein thiols, resulting in oxidative stress on the cells and disturbance of mitochondrial function.  相似文献   

5.
Masubuchi Y  Kano S  Horie T 《Toxicology》2006,222(3):233-239
Troglitazone, a thiazolidinedione class of antidiabetic agent, causes serious idiosyncratic hepatotoxicity. Troglitazone is metabolized to a reactive metabolite that covalently binds to cellular macromolecules, but the role of the covalent adduct in the hepatotoxicity is controversial. Because troglitazone has been found to cause cytotoxicity to hepatocytes along with mitochondrial dysfunction, we investigated the effects of troglitazone and other thiazolidinediones on mitochondrial function by using liver mitochondria fraction isolated from male CD-1 mice. Incubation of energized mitochondria with succinate in the presence of Ca2+ and troglitazone induced mitochondrial swelling, and the swelling was partially inhibited by cyclosporin A. Troglitazone also induced decreases in mitochondrial membrane potential and mitochondrial Ca2+ accumulation. These results demonstrate that troglitazone induces mitochondrial permeability transition (MPT). Similar results were obtained for ciglitazone, whereas rosiglitazone and pioglitazone, which are less hepatotoxic than troglitazone, had little effect on these mitochondria functions. It is therefore possible that the troglitazone-induced opening of MPT pore, which is not induced by rosiglitazone or pioglitazone, may contribute to the hepatotoxicity induced specifically by troglitazone.  相似文献   

6.
Fischer rats are more sensitive to acetaminophen-induced hepatotoxicity than Sprague-Dawley rats, however, the mechanisms for this enhanced sensitivity remain unclear. The susceptibility to hepatotoxicity is determined largely by the balance between acetaminophen toxification and detoxification. Since glutathione plays a critical role in the detoxification process, it would be of interest to compare the effects of acetaminophen on hepatic glutathione homeostasis in the Sprague-Dawley and Fischer rat, and relate these effects to cytotoxicity. To this end, we measured the sequential changes of intracellular and extracellular total glutathione in freshly isolated hepatocytes from untreated and 3-methylcholanthrene pretreated Fischer and Sprague-Dawley rats, both in the absence (basal) and presence of acetaminophen. In the basal state, the intracellular total glutathione content was significantly (P less than 0.01) increased in hepatocytes from untreated Fischer rats. Nevertheless, the sequential release of total glutathione into the medium and the sequential depletion of intracellular total glutathione were quantitatively similar in hepatocytes from untreated Fischer and Sprague-Dawley rats. Following exposure to acetaminophen, there was a striking dose and time associated depletion of intracellular total glutathione in untreated hepatocytes from both rat strains, and quantitatively the depletion was similar in untreated hepatocytes from both rat strains. This degree of depletion of intracellular total glutathione was not associated with acetaminophen-induced cytotoxicity in Sprague-Dawley hepatocytes, whereas significant (P less than 0.05) cytotoxicity was demonstrated in Fischer hepatocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
1.?Olanzapine (OLZ) is a widely used atypical antipsychotic agent for the treatment of schizophrenia and other disorders. Serious hepatotoxicity and elevated liver enzymes have been reported in patients receiving OLZ. However, the cellular and molecular mechanisms of the OLZ hepatotoxicity are unknown.

2.?In this study, the cytotoxic effect of OLZ on freshly isolated rat hepatocytes was assessed. Our results showed that the cytotoxicity of OLZ in hepatocytes is mediated by overproduction of reactive oxygen species (ROS), mitochondrial potential collapse, lysosomal membrane leakiness, GSH depletion and lipid peroxidation preceding cell lysis. All the aforementioned OLZ-induced cellular events were significantly (p?<?0.05) prevented by ROS scavengers, antioxidants, endocytosis inhibitors and adenosine triphosphate generators. Also, the present results demonstrated that CYP450 is involved in OLZ-induced oxidative stress and cytotoxicity mechanism.

3.?It is concluded that OLZ hepatotoxicity is associated with both mitochondrial/lysosomal involvement following the initiation of oxidative stress in hepatocytes.  相似文献   

8.

Aim:

Tetrandrine, an alkaloid with a remarkable pharmacological profile, induces oxidative stress and mitochondrial dysfunction in hepatocytes; however, mitochondria are not the direct target of tetrandrine, which prompts us to elucidate the role of oxidative stress in tetrandrine-induced mitochondrial dysfunction and the sources of oxidative stress.

Methods:

Rat primary hepatocytes were isolated by two-step collagenase perfusion. Mitochondrial function was evaluated by analyzing ATP content, mitochondrial membrane potential (MMP) and the mitochondrial permeability transition. The oxidative stress was evaluated by examining changes in the levels of reactive oxygen species (ROS) and glutathione (GSH).

Results:

ROS scavengers largely attenuated the cytotoxicity induced by tetrandrine in rat hepatocytes, indicating the important role of ROS in the hepatotoxicity of tetrandrine. Of the multiple ROS inhibitors that were tested, only inhibitors of CYP450 (SKF-525A and others) reduced the ROS levels and ameliorated the depletion of GSH. Mitochondrial function assays showed that the mitochondrial permeability transition (MPT) induced by tetrandrine was inhibited by SKF-525A and vitamin C (VC), both of which also rescued the depletion of ATP levels and the mitochondrial membrane potential. Upon inhibiting specific CYP450 isoforms, we observed that the inhibitors of CYP2D, CYP2C, and CYP2E1 attenuated the ATP depletion that occurred following tetrandrine exposure, whereas the inhibitors of CYP2D and CYP2E1 reduced the ROS induced by tetrandrine. Overexpression of CYP2E1 enhanced the tetrandrine-induced cytotoxicity.

Conclusion:

We demonstrated that CYP450 plays an important role in the mitochondrial dysfunction induced by the administration of tetrandrine. ROS generated by CYP450, especially CYP2E1, may contribute to the mitochondrial dysfunction induced by tetrandrine.  相似文献   

9.
1. The hepatotoxic effects of heroin and methadone, and the effect of ethanol on opioid-induced hepatotoxicity, have been investigated in human cultured hepatocytes. Hepatocytes pretreated with 50 and 100 mM ethanol were exposed to increasing concentrations of heroin and methadone. 2. Cytotoxicity was evaluated by measuring leakage of intracellular lactate dehydrogenase, and by assessment of hepatocyte mitochondrial succinate dehydrogenase. The half-maximal cytotoxic concentration of heroin for human hepatocytes (TC50) was decreased by 70-55% by pre-exposure to 50 mM ethanol, and that for methadone was decreased by 60-40%. 3. Metabolic functions of human hepatocytes were significantly impaired at concentrations of opioids that had shown little cytotoxicity. Ethanol potentiated opioid-induced hepatotoxicity; concentrations of heroin and methadone that had little or no effect on hepatocyte metabolism in the absence of ethanol caused a significant decrease in urea synthesis rate, metabolism of glycogen and depletion of the intracellular GSH pool after ethanol pretreatment. 4. The increase in toxicity of heroin and methadone produced by ethanol is concomitant with a 40% increase in cytochrome P-450 levels of the pretreated hepatocytes.  相似文献   

10.
Alterations in the hepatic metabolism of sulfur amino acids in experimental cholestasis induced by alpha-naphthylisothiocyanate (ANIT) (100 mg/kg, po) were monitored in male mice for 1 week. We also examined the effects of betaine supplementation (1% in drinking water) for 2 weeks on the hepatotoxicity and changes in the sulfur amino acid metabolism induced by ANIT treatment. Acute ANIT challenge elevated the serum alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST) activities, and total bilirubin contents from 5 h after the treatment, reaching a peak at t = 48-72 h. Hepatic S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) levels were decreased significantly in a manner almost inversely proportional to the changes in serum parameters measured to determine the ANIT-induced toxicity. Hepatic glutathione and cysteine levels were elevated at t = 120 h after the treatment. Betaine supplementation blocked or significantly attenuated induction of the hepatotoxicity by ANIT. The decrease in SAM and SAH levels was also inhibited by betaine intake. The results indicate that betaine supplementation may antagonize the induction of experimental cholestasis and changes in the metabolism of sulfur amino acids associated with ANIT treatment. The underlying mechanism and pharmacological significance of its action are discussed.  相似文献   

11.
Methimazole is used as an antithyroid drug to control the symptoms of hyperthyroidism and maintain patients in a euthyroid state. Administration of this drug is associated with agranulocytosis and hepatotoxicity, which are the two most significant adverse effects. The present investigation was conducted to study the protective role of taurine against cytotoxicity induced by methimazole and its proposed reactive intermediary metabolite, N-methylthiourea, in an in vitro model of isolated rat hepatocytes.At different points in time, markers such as cell viability, reactive oxygen species (ROS) formation, lipid peroxidation, mitochondrial membrane potential, and hepatocyte glutathione content were evaluated.Treating hepatocytes with methimazole resulted in cytotoxicity characterized by the reduction in cell viability, an increase in ROS formation and lipid peroxidation, mitochondrial membrane potential collapse, and a reduction in cellular glutathione content. Furthermore, a significant amount of oxidized glutathione (GSSG) was formed when rat hepatocytes were treated with methimazole. N-methylthiourea toxicity was accompanied by a reduction in cellular GSH content, but no significant changes in lipid peroxidation, ROS formation, GSSG production, or changes in mitochondrial membrane potential were detected. Administration of taurine (200 μM) effectively reduced the toxic effects of methimazole or its metabolite in isolated rat hepatocytes.  相似文献   

12.
Abstract: Fischer rats are more sensitive to acetaminophen-induced hepatotoxicity than Sprague-Dawley rats, however, the mechanisms for this enhanced sensitivity remain unclear. The susceptability to hepatotoxicity is determined largely by the balance between acetaminophen toxification and detoxification. Since glutathione plays a critical role in the detoxification process, it would be of interest to compare the effects of acetaminophen on hepatic glutathione homeostasis in the Sprague-Dawley and Fischer rat, and relate these effects to cytotoxicity. To this end, we measured the sequential changes of intracellular and extracellular total glutathione in freshly isolated hepatocytes from untreated and 3-methylchol-anthrene pretreated Fischer and Sprague-Dawley rats, both in the absence (basal) and presence of acetaminophen. In the basal state, the intracellular total glutathione content was significantly (P < 0.01) increased in hepatocytes from untreated Fischer rats. Nevertheless, the sequential release of total glutathione into the medium and the sequential depletion of intracellular total glutathione were quantitatively similar in hepatocytes from untreated Fischer and Sprague-Dawley rats. Following exposure to acetaminophen, there was a striking dose and time associated depletion of intracellular total glutathione in untreated hepatocytes from both rat strains, and quantitatively the depletion was similar in untreated hepatocytes from both rat strains. This degree of depletion of intracellular total glutathione was not associated with acetaminophen-induced cytotoxicity in Sprague-Dawley hepatocytes, whereas significant (P < 0.05) cytotoxicity was demonstrated in Fischer hepatocytes. In hepatocytes from 3-methylcholanthrene pretreated rats, there was an even more marked dose and time associated depletion of intracellular total glutathione as compared with untreated hepatocytes from both rat strains. Although the magnitude of this depletion was also similar in hepatocytes from both rat strains, the acetaminophen-induced cytotoxicity was significantly (P < 0.01) more prominent in hepatocytes from the Fischer rat. Our observations establish that basal hepatocellular glutathione concentrations are higher in Fischer than Sprague-Dawley rats, however sequential changes in basal intracellular and extracellular glutathione are similar in hepatocytes of both strains. Moreover, the effect of acetaminophen on these glutathione measures was also similar in hepatocytes from both rat strains. Finally, our observations reveal a discordance between acetaminophen-induced cytotoxicity and cellular glutathione content in the two rat strains, implying that the Fischer rats'enhanced susceptibility to hepatocellular injury may be related to a defective inherent cellular defense mechanism against attack by the reactive metabolite of acetaminophen.  相似文献   

13.
Pyrrolizidine alkaloids (PAs) are common secondary plant compounds with hepatotoxicity. The consumption of herbal medicines and herbal teas containing PAs is one of the main causes of hepatic sinusoidal obstruction syndrome (HSOS), a potentially life-threatening condition. The present study aimed to reveal the mechanism underlying the cytotoxicity of intermedine (Im), the main PA in Comfrey. We evaluated the toxicity of the retronecine-type PAs with different structures to cell lines derived from mammalian tissues, including primary mouse hepatocytes, human hepatocytes (HepD), mouse hepatoma-22 (H22) and human hepatocellular carcinoma (HepG2) cells. The cytotoxicity of Im to hepatocyte was evaluated by using cell counting kit-8 assay, colony formation experiment, wound healing assay and dead/live fluorescence imaging. In vitro characterization showed that these PAs were cytotoxic and induced cell apoptosis in a dose-dependent manner. We also demonstrated that Im induced cell apoptosis by generating excessive reactive oxygen species (ROS), changing the mitochondrial membrane potential and releasing cytochrome c (Cyt c) before activating the caspase-3 pathway. Importantly, we directly observed the destruction of the cell mitochondrial structure after Im treatment through transmission electron microscopy (TEM). This study provided the first direct evidence of Im inducing hepatotoxicity through mitochondria-mediated apoptosis. These results supplemented the basic toxicity data of PAs and facilitated the comprehensive and systematic evaluation of the toxicity caused by PA compounds.  相似文献   

14.
目的 在前期研究工作的基础上,对具有肝脏保护作用的中药五子衍宗复方(WZ)进行进一步的分离,考察WZ复方提取物中总多糖(TPC)对慢性酒精中毒大鼠肝脏的保护作用并探讨其可能的作用机制。 方法 本实验采用改良的Lieber-DeCarli液体酒精饲料喂养致慢性酒精性肝损伤大鼠模型,应用TPC治疗,观察血清生化指标和病理学改变,考察对肝脏氧化应激、脂质过氧化指标和细胞因子TNF-α水平及TNF-α mRNA 表达影响。 结果 TPC能够显著降低升高的肝脏指数和血清ALT、AST水平,减轻肝脏组织病理学改变;减  相似文献   

15.
Atorvastatin (ATO) is a 3‐hydroxy‐3‐methylglutaryl‐CoA reductase inhibitor widely used to treat hypercholesterolemia. However, clinical application is limited by potential hepatotoxicity. Nuclear factor‐erythroid 2‐related factor 2 (Nrf2) is a master regulator of cellular antioxidants, and oxidative stress is implicated in statin‐induced liver injury. This study investigated mechanisms of ATO‐induced hepatotoxicity and potential mitigation by Nrf2 signaling. ATO reduced Nrf2 and antioxidant enzyme superoxide dismutase‐2 (SOD2) expression in human hepatocarcinoma HepG2 cells. ATO also induced concentration‐dependent HepG2 cell toxicity, reactive oxygen species (ROS) accumulation, and mitochondrial dysfunction as evidenced by decreased mitochondrial membrane potential (MMP) and cellular adenosine triphosphate (ATP). Further, ATO induced mitochondria‐dependent apoptosis as indicated by increased Bax/Bcl‐2 ratio, cleaved caspase‐3, mitochondrial cytochrome c release and Annexin V‐fluorescein isothiocyanate/propidium iodide staining. Tert‐butylhydroquinone enhanced Nrf2 and SOD2 expression, and partially reversed ATO‐induced cytotoxicity, ROS accumulation, MMP reduction, ATP depletion and mitochondria‐dependent apoptosis. In conclusion, the present study demonstrates that ATO induces mitochondrial dysfunction and cell apoptosis in HepG2 cells, at least in part, via inhibition of the Nrf2 pathway. Nrf2 pathway activation is a potential prevention for ATO‐induced liver injury.  相似文献   

16.
Luteolin (LUT), an active ingredient in traditional Chinese medicines and an integral part of the human diet, has shown promising pharmacological activities with a great potential for clinical use. The purpose of this study was to evaluate the role of cytochrome P450 (CYP450)‐mediated reactive ortho‐benzoquinone metabolites formation and glutathione (GSH) depletion in LUT‐induced cytotoxicity in primary rat hepatocytes. A reactive ortho‐benzoquinone metabolite was identified by liquid chromatography coupled with tandem mass spectrometry (LC‐MS/MS) in rat liver microsomes (RLMs) and rat hepatocytes. Using a specific chemical inhibitor method, the CYP3A subfamily was found to be responsible for the reactive metabolite formation in RLMs. Induction of CYP3A by dexamethasone enhanced LUT‐induced cytotoxicity, whereas inhibition of CYP3A by ketoconazole (Keto) decreased the cytotoxicity. The cytotoxicity and cell apoptosis induced by LUT were related to the amount of reactive metabolite formation. Furthermore, Keto inhibited the LUT‐induced GSH exhaustion. The cytotoxicity was significantly enhanced by pretreatment with L‐buthionine sulfoximine to deplete the intracellular GSH. A time course experiment showed that GSH depletion by LUT was not via oxidation of GSH and occurred prior to the increase in 2', 7'‐dichlorofluorescein in hepatocytes. Collectively, these data suggest that CYP3A‐mediated reactive metabolite formation plays a critical role in LUT‐induced hepatotoxicity, and the direct GSH depletion is an initiating event in LUT‐mediated cytotoxicity in primary rat hepatocytes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Administration of codeine to freshly isolated rat hepatocytes resulted in cytotoxicity characterized by a dose- and time-dependent leakage of lactate dehydrogenase (LDH) out of the cells. Codeine also caused a decrease in hepatic reduced sulfhydryl content. Cytochrome P-450 content and NADPH levels were not changed. Induction and inhibition studies of several potential pathways of codeine biotransformation were carried out in order to determine if codeine must be metabolized to a reactive intermediate to elicit these hepatotoxic effects. Codeine hepatotoxicity as measured by LDH release was not changed after induction of cytochrome P-450 by phenobarbital and was decreased after cytochrome P-448 induction by beta-naphthoflavone. However, codeine hepatotoxicity was inhibited when an inhibitor of cytochrome P-450 metabolism, metyrapone, was added. Inhibition of the other major hepatic oxidative enzyme system, flavin adenine dinucleotide (FAD)-containing monooxygenase, increased the cytotoxicity of codeine. Inhibition of alcohol dehydrogenase had no effect on codeine hepatotoxicity. These results indicate that codeine hepatotoxicity is caused by a cytochrome P-450-generated intermediate of codeine, whereas FAD-containing monooxygenase may metabolize codeine to a nontoxic intermediate.  相似文献   

18.
The alkylating anticancer drugs, mechlorethamine (HN2), chlorambucil, cyclophosphamide, carmustine and lomustine readily induced cytotoxicity in isolated rat hepatocytes. Hepatocyte glutathione (GSH) was depleted rapidly following addition of the drugs. Lipid peroxidation ensued following GSH depletion and before cytotoxicity occurred. Furthermore, cytotoxicity was delayed by the antioxidants butylated hydroxyanisole (BHA) and alpha-tocopherol, the ferric iron chelator desferoxamine or the radical trap 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) even when added 10 min later. HN2 was much less toxic to hepatocytes under nitrogen and caused much less lipid peroxidation than under aerobic conditions. Cytotoxicity induced by HN2 was also prevented by choline, suggesting that a choline carrier is responsible for HN2 uptake in the hepatocytes. Various sulfur compounds acted as antidotes for HN2 cytotoxicity. Thiosulfate was still effective when added 30 min after HN2. Depletion of GSH in the hepatocytes markedly increased their susceptibility to HN2. However, BHA, desferoxamine or TEMPO protected these hepatocytes from HN2. This suggests that antioxidants could prove useful in preventing the increased risk of hepatotoxicity if GSH-depleting agents are used to overcome tumor resistance to nitrogen mustards.  相似文献   

19.
Course of ATP depletion in hydrazine hepatotoxicity   总被引:3,自引:0,他引:3  
The effect of hydrazine on ATP levels has been investigated in rats in vivo and in hepatocytes in vitro. Hydrazine was found to cause a dose-dependent depletion of hepatic ATP in vivo 3 h after dosing. In isolated hepatocytes in vitro hydrazine also caused a concentration-dependent depletion of ATP which preceded cytotoxicity as indicated by loss of cell viability. The ATP depletion in isolated hepatocytes was also significant at a concentration of hydrazine which was not cytotoxic. Attempts to determine hepatic ATP depletion in vivo over time using topical31P NMR were confounded by the effects of the thiopentobarbitone used to anaesthetise the animals. This was found to ameliorate the effects of hydrazine on ATP depletion but potentiate the lethality of hydrazine. Consequently, although ATP depletion was detected in some hydrazine-treated animals, this was only observed in animals which subsequently died. The results indicate that ATP depletion may underlie the hepatotoxicity of hydrazine.  相似文献   

20.
With the increased use of nanomaterials and increased exposure of humans to various nanomaterials, the potential health effects of nanomaterials cannot be ignored. The hepatotoxicity of cobalt nanoparticles (Nano-Co) is largely unknown and the underlying mechanisms remain obscure. The purpose of this study was to exam the hepatotoxicity induced by Nano-Co and its potential mechanisms. Our results showed that exposure of human fetal hepatocytes L02 to Nano-Co caused a dose- and a time-dependent cytotoxicity. Besides the generation of reactive oxygen species (ROS) and mitochondrial reactive oxygen species (mtROS), exposure to Nano-Co also caused activation of NOD-like receptor protein 3 (NLRP3) inflammasome in hepatocytes. After silencing NLRP3, one component of NLRP3 inflammasome, expression by siRNA strategy, we found that upregulation of NLRP3-related proteins was abolished in hepatocytes exposed to Nano-Co. Using antioxidants to scavenge ROS and mtROS, we demonstrated that Nano-Co-induced mtROS generation was related to Nano-Co-induced NLRP3 inflammasome activation. Our findings demonstrated that Nano-Co exposure may promote intracellular oxidative stress damage, and mtROS may mediate the activation of NLRP3 inflammasome in hepatocytes exposed to Nano-Co, suggesting an important role of ROS/NLRP3 pathway in Nano-Co-induced hepatotoxicity. These results provide scientific insights into the hepatotoxicity of Nano-Co and a basis for the prevention and treatment of Nano-Co-induced cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号